Abstract
Purpose
Gliomas are the most lethal adult primary brain cancers. Recent advances in their molecular characterization have contributed to a better understanding of their pathophysiology, but there is still a need to identify key genes controling glioma cell proliferation and differentiation. The p21-activated kinases PAK1 and PAK2 play essential roles in cell division and brain development and are well-known oncogenes. In contrast, the role of PAK3 in cancer is poorly understood. It is known, however, that this gene is involved in brain ontogenesis and has been identified as a gene of the proneural subtype signature in glioblastomas.
Methods
To better understand the role of PAK kinases in the pathophysiology of gliomas, we conducted expression analyses by querying multiple gene expression databases and analyzing primary human glioma samples. We next studied PAK3 expression upon differentiation in patient-derived cell lines (PDCLs) and the effects of PAK3 inhibition by lentiviral-mediated shRNA on glioma cell proliferation, differentiation and tumor growth.
Results
We show that contrary to PAK1 and PAK2, high PAK3 expression positively correlates with a longer survival of glioma patients. We also found that PAK3 displays differential expression patterns between glioma sub-groups with a higher expression in 1p/19q-codeleted oligodendrogliomas, and is highly expressed in tumors and PDCLs of the proneural subtype. In PDCLs, high PAK3 expression negatively correlated with proliferation and positively correlated with neuronal differentiation. Inhibition of PAK3 expression increased PDCL proliferation and glioma tumor growth in nude mice.
Conclusions
Our results indicate that PAK3 plays a unique role among PAKs in glioma development and may represent a potential therapeutic target.
Similar content being viewed by others
References
S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells. Nature 432, 396 (2004)
M. Westphal, K. Lamszus, The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12, 495 (2011)
H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, J.M. Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, K. Aldape, Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157 (2006)
H. Noushmehr, D.J. Weisenberger, K. Diefes, H.S. Phillips, K. Pujara, B.P. Berman, F. Pan, C.E. Pelloski, E.P. Sulman, K.P. Bhat, R.G.W. Verhaak, K.A. Hoadley, D.N. Hayes, C.M. Perou, H.K. Schmidt, L. Ding, R.K. Wilson, D. Van Den Berg, H. Shen, H. Bengtsson, P. Neuvial, L.M. Cope, J. Buckley, J.G. Herman, S.B. Baylin, P.W. Laird, K. Aldape, Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510 (2010)
D. Sturm, H. Witt, V. Hovestadt, D.-A. Khuong-Quang, D.T.W. Jones, C. Konermann, E. Pfaff, M. Tönjes, M. Sill, S. Bender, M. Kool, M. Zapatka, N. Becker, M. Zucknick, T. Hielscher, X.-Y. Liu, A.M. Fontebasso, M. Ryzhova, S. Albrecht, K. Jacob, M. Wolter, M. Ebinger, M.U. Schuhmann, T. van Meter, M.C. Frühwald, H. Hauch, A. Pekrun, B. Radlwimmer, T. Niehues, G. von Komorowski, M. Dürken, A.E. Kulozik, J. Madden, A. Donson, N.K. Foreman, R. Drissi, M. Fouladi, W. Scheurlen, A. von Deimling, C. Monoranu, W. Roggendorf, C. Herold-Mende, A. Unterberg, C.M. Kramm, J. Felsberg, C. Hartmann, B. Wiestler, W. Wick, T. Milde, O. Witt, A.M. Lindroth, J. Schwartzentruber, D. Faury, A. Fleming, M. Zakrzewska, P.P. Liberski, K. Zakrzewski, P. Hauser, M. Garami, A. Klekner, L. Bognar, S. Morrissy, F. Cavalli, M.D. Taylor, P. van Sluis, J. Koster, R. Versteeg, R. Volckmann, T. Mikkelsen, K. Aldape, G. Reifenberger, V.P. Collins, J. Majewski, A. Korshunov, P. Lichter, C. Plass, N. Jabado, S.M. Pfister, Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425 (2012)
R.G.W. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O’Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98 (2010)
M. Vitucci, D.N. Hayes, C.R. Miller, Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy. Br J Cancer 104, 545 (2011)
P.-O. Guichet, I. Bieche, M. Teigell, C. Serguera, B. Rothhut, V. Rigau, F. Scamps, C. Ripoll, S. Vacher, S. Taviaux, H. Chevassus, H. Duffau, J. Mallet, A. Susini, D. Joubert, L. Bauchet, J.-P. Hugnot, Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia 61, 225 (2013)
G.M. Bokoch, Biology of the p21-activated kinases. Annu Rev Biochem 72, 743 (2003)
P. Kreis, J.-V. Barnier, PAK signalling in neuronal physiology. Cell Signal 21, 384 (2009)
X. Pan, X. Chang, C. Leung, Z. Zhou, F. Cao, W. Xie, Z. Jia, PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation. Mol Brain 8, 36 (2015)
M.M. Alves, G.M. Fuhler, K.C.S. Queiroz, J. Scholma, S. Goorden, J. Anink, C. Arnold Spek, M. Hoogeveen-Westerveld, M.J. Bruno, M. Nellist, Y. Elgersma, E. Aronica, M.P. Peppelenbosch, PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex. Sci Rep 5, 14534 (2015)
J. Souopgui, M. Sölter, T. Pieler, XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J 21, 6429 (2002)
I. Cobos, U. Borello, J.L.R. Rubenstein, Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54, 873 (2007)
X. Dai, H. Iwasaki, M. Watanabe, S. Okabe, Dlx1 transcription factor regulates dendritic growth and postsynaptic differentiation through inhibition of neuropilin-2 and PAK3 expression. Eur J Neurosci 39, 531 (2014)
M.R.L. Maglorius Renkilaraj, L. Baudouin, C.M. Wells, M. Doulazmi, R. Wehrlé, V. Cannaya, C. Bachelin, J.-V. Barnier, Z. Jia, B. Nait Oumesmar, I. Dusart, L. Bouslama-Oueghlani, The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiol Dis 98, 137 (2017)
M. Radu, G. Semenova, R. Kosoff, J. Chernoff, Pak signaling in the development and progression of cancer. Nat Rev Cancer 14, 13 (2014)
R. Kumar, R. Sanawar, X. Li, F. Li, Structure, biochemistry, and biology of PAK kinases. Gene 605, 20 (2017)
R. Liu, W. Wang, L. Ye, Y. Bi, H. Fang, B. Cui, W. Zhou, M. Dai, J. Zhang, X. Li, G. Ning, p21-Activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocr 38, 38 (2010)
T.J. Crisman, I. Zelaya, D.R. Laks, Y. Zhao, R. Kawaguchi, F. Gao, H.I. Kornblum, G. Coppola, identification of an efficient gene expression panel for glioblastoma classification. PLoS ONE 11, e0164649 (2016)
A. Venu, B. Archana, R. Kanumuri, V.K. Vuttaradhi, L. D’Cruze, S. Murugan, K. Ganesh, D. Prathiba, M.A. Dymova, S.K. Rayala, G. Venkatraman, Clinical evaluation of P21 activated kinase 1 (PAK1) activation in gliomas and its effect on cell proliferation. Cancer Invest 39, 98–1130 (2021)
Y. Zhang, K. Chen, S.A. Sloan, M.L. Bennett, A.R. Scholze, S. O’Keeffe, H.P. Phatnani, P. Guarnieri, C. Caneda, N. Ruderisch, S. Deng, S.A. Liddelow, C. Zhang, R. Daneman, T. Maniatis, B.A. Barres, J.Q. Wu, An RNA-Sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929 (2014)
R2: Genomics Analysis and Visualization Platform (http://r2.amc.nlhttp://r2platform.com).
L.A.M. Gravendeel, M.C.M. Kouwenhoven, O. Gevaert, J.J. de Rooi, A.P. Stubbs, J.E. Duijm, A. Daemen, F.E. Bleeker, L.B.C. Bralten, N.K. Kloosterhof, B. De Moor, P.H.C. Eilers, P.J. van der Spek, J.M. Kros, P.A.E. Sillevis Smitt, M.J. van den Bent, P.J. French, Intrinsic Gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69, 9065 (2009)
A.J. Radenbaugh, S. Ma, A. Ewing, J.M. Stuart, E.A. Collisson, J. Zhu, D. Haussler, RADIA: RNA and DNA integrated analysis for somatic mutation detection. PLoS One 9, e111516 (2014)
POLA Network, K. Labreche, I. Simeonova, A. Kamoun, V. Gleize, D. Chubb, E. Letouzé, Y. Riazalhosseini, S.E. Dobbins, N. Elarouci, F. Ducray, A. de Reyniès, D. Zelenika, C.P. Wardell, M. Frampton, O. Saulnier, T. Pastinen, S. Hallout, D. Figarella-Branger, C. Dehais, A. Idbaih, K. Mokhtari, J.-Y. Delattre, E. Huillard, G. Mark Lathrop, M. Sanson, R.S. Houlston, TCF12 is mutated in anaplastic oligodendroglioma. Nat Commun 6, 7207 (2015)
S.-N. Bikeye, C. Colin, Y. Marie, R. Vampouille, P. Ravassard, A. Rousseau, B. Boisselier, A. Idbaih, C. Calvo, P. Leuraud, M. Lassalle, S. El Hallani, J.-Y. Delattre, M. Sanson, ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target. Cancer Cell Int 10, 1 (2010)
S.M. Pollard, K. Yoshikawa, I.D. Clarke, D. Danovi, S. Stricker, R. Russell, J. Bayani, R. Head, M. Lee, M. Bernstein, J.A. Squire, A. Smith, P. Dirks, Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568 (2009)
G. Combeau, P. Kreis, F. Domenichini, M. Amar, P. Fossier, V. Rousseau, J.-V. Barnier, The p21-activated kinase PAK3 forms heterodimers with PAK1 in brain implementing trans-regulation of PAK3 activity. J Biol Chem 287, 30084 (2012)
S. Rosenberg, M. Verreault, C. Schmitt, J. Guegan, J. Guehennec, C. Levasseur, Y. Marie, F. Bielle, K. Mokhtari, K. Hoang-Xuan, K. Ligon, M. Sanson, J.-Y. Delattre, A. Idbaih, Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. NEUONC 2, 219 (2016)
V. Lamour, A. Henry, J. Kroonen, M.-J. Nokin, Z. von Marschall, L.W. Fisher, T.-L. Chau, A. Chariot, M. Sanson, J.-Y. Delattre, A. Turtoi, O. Peulen, B. Rogister, V. Castronovo, A. Bellahcène, Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo. Int J Cancer 137, 1047 (2015)
S.G.M. Piccirillo, B.A. Reynolds, N. Zanetti, G. Lamorte, E. Binda, G. Broggi, H. Brem, A. Olivi, F. Dimeco, A.L. Vescovi, Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761 (2006)
M. Ying, S. Wang, Y. Sang, P. Sun, B. Lal, C.R. Goodwin, H. Guerrero-Cazares, A. Quinones-Hinojosa, J. Laterra, S. Xia, Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 30, 3454 (2011)
V. Balasubramaniyan, B. Vaillant, S. Wang, J. Gumin, M.E. Butalid, K. Sai, F. Mukheef, S.H. Kim, H.W.G.M. Boddeke, F. Lang, K. Aldape, E.P. Sulman, K.P. Bhat, H. Colman, Aberrant mesenchymal differentiation of glioma stem-like cells: implications for therapeutic targeting. Oncotarget 6, 31007 (2015)
C. Neftel, J. Laffy, M.G. Filbin, T. Hara, M.E. Shore, G.J. Rahme, A.R. Richman, D. Silverbush, M.L. Shaw, C.M. Hebert, J. Dewitt, S. Gritsch, E.M. Perez, L.N.G. Castro, X. Lan, N. Druck, C. Rodman, D. Dionne, A. Kaplan, M.S. Bertalan, J. Small, K. Pelton, S. Becker, D. Bonal, Q.-D. Nguyen, R.L. Servis, J.M. Fung, R. Mylvaganam, L. Mayr, J. Gojo, C. Haberler, R. Geyeregger, T. Czech, I. Slavc, B.V. Nahed, W.T. Curry, B.S. Carter, H. Wakimoto, P.K. Brastianos, T.T. Batchelor, A. Stemmer-Rachamimov, M. Martinez-Lage, M.P. Frosch, I. Stamenkovic, N. Riggi, E. Rheinbay, M. Monje, O. Rozenblatt-Rosen, D.P. Cahill, A.P. Patel, T. Hunter, I.M. Verma, K.L. Ligon, D.N. Louis, A. Regev, B.E. Bernstein, I. Tirosh, M.L. Suvà, An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835 (2019)
R. Kumar, A.E. Gururaj, C.J. Barnes, p21-activated kinases in cancer. Nat Rev Cancer 6, 459 (2006)
P. Kreis, E. Thévenot, V. Rousseau, B. Boda, D. Muller, J.-V. Barnier, The p21-activated kinase 3 implicated in mental retardation regulates spine morphogenesis through a Cdc42-dependent pathway. J Biol Chem 282, 21497 (2007)
E. Thévenot, A.W. Moreau, V. Rousseau, G. Combeau, F. Domenichini, C. Jacquet, O. Goupille, M. Amar, P. Kreis, P. Fossier, J.-V. Barnier, p21-activated Kinase 3 (PAK3) protein regulates synaptic transmission through its interaction with the Nck2/Grb4 protein adaptor. J Biol Chem 286, 40044 (2011)
M. Lei, W. Lu, W. Meng, M.-C. Parrini, M.J. Eck, B.J. Mayer, S.C. Harrison, Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387 (2000)
M.C. Parrini, M. Lei, S.C. Harrison, B.J. Mayer, Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9, 73 (2002)
D. Yao, C. Li, M.S.R. Rajoka, Z. He, J. Huang, J. Wang, J. Zhang, P21-Activated kinase 1: emerging biological functions and potential therapeutic targets in cancer. Theranostics 10, 9741 (2020)
E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401 (2012)
Y. Dang, Y. Guo, X. Ma, X. Chao, F. Wang, L. Cai, Z. Yan, L. Xie, X. Guo, Systemic analysis of the expression and prognostic significance of PAKs in breast cancer. Genomics 112, 2433 (2020)
J.J. Crawford, K.P. Hoeflich, J. Rudolph, p21-Activated kinase inhibitors: a patent review. Expert Opin Ther Pat 22, 293 (2012)
R.I. Martinez-De Luna, R.Y. Ku, Y. Lyou, M.E. Zuber, Maturin is a novel protein required for differentiation during primary neurogenesis. Dev Biol 384, 26 (2013)
M. Santra, S. Santra, B. Buller, K. Santra, A. Nallani, M. Chopp, Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci 102, 1350 (2011)
A. Narayanan, F. Gagliardi, A.L. Gallotti, S. Mazzoleni, M. Cominelli, L. Fagnocchi, M. Pala, I.S. Piras, P. Zordan, N. Moretta, E. Tratta, G. Brugnara, L. Altabella, G. Bozzuto, P. Gorombei, A. Molinari, R.-A. Padua, A. Bulfone, L.S. Politi, A. Falini, A. Castellano, P. Mortini, A. Zippo, P.L. Poliani, R. Galli, The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death Differ 26, 1813 (2019)
J. Piccand, A. Meunier, C. Merle, Z. Jia, J.-V. Barnier, G. Gradwohl, Pak3 promotes cell cycle exit and differentiation of β-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice. Diabetes 63, 203 (2014)
Acknowledgements
We thank OncoNeuroTek for sharing data and samples from their banks. We are also grateful to C. Levasseur for assistance in mice inoculation and to A. Bonilla, C. Dubois and C. Rousseau for animal care. We also acknowledge the technical support from the ICM facility iGenSeq.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no potential conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Magne, N., Rousseau, V., Duarte, K. et al. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth. Cell Oncol. 44, 1257–1271 (2021). https://doi.org/10.1007/s13402-021-00635-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13402-021-00635-8