[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Gliomas are the most lethal adult primary brain cancers. Recent advances in their molecular characterization have contributed to a better understanding of their pathophysiology, but there is still a need to identify key genes controling glioma cell proliferation and differentiation. The p21-activated kinases PAK1 and PAK2 play essential roles in cell division and brain development and are well-known oncogenes. In contrast, the role of PAK3 in cancer is poorly understood. It is known, however, that this gene is involved in brain ontogenesis and has been identified as a gene of the proneural subtype signature in glioblastomas.

Methods

To better understand the role of PAK kinases in the pathophysiology of gliomas, we conducted expression analyses by querying multiple gene expression databases and analyzing primary human glioma samples. We next studied PAK3 expression upon differentiation in patient-derived cell lines (PDCLs) and the effects of PAK3 inhibition by lentiviral-mediated shRNA on glioma cell proliferation, differentiation and tumor growth.

Results

We show that contrary to PAK1 and PAK2, high PAK3 expression positively correlates with a longer survival of glioma patients. We also found that PAK3 displays differential expression patterns between glioma sub-groups with a higher expression in 1p/19q-codeleted oligodendrogliomas, and is highly expressed in tumors and PDCLs of the proneural subtype. In PDCLs, high PAK3 expression negatively correlated with proliferation and positively correlated with neuronal differentiation. Inhibition of PAK3 expression increased PDCL proliferation and glioma tumor growth in nude mice.

Conclusions

Our results indicate that PAK3 plays a unique role among PAKs in glioma development and may represent a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells. Nature 432, 396 (2004)

    Article  CAS  Google Scholar 

  2. M. Westphal, K. Lamszus, The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12, 495 (2011)

    Article  CAS  Google Scholar 

  3. H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, J.M. Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, K. Aldape, Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157 (2006)

    Article  CAS  Google Scholar 

  4. H. Noushmehr, D.J. Weisenberger, K. Diefes, H.S. Phillips, K. Pujara, B.P. Berman, F. Pan, C.E. Pelloski, E.P. Sulman, K.P. Bhat, R.G.W. Verhaak, K.A. Hoadley, D.N. Hayes, C.M. Perou, H.K. Schmidt, L. Ding, R.K. Wilson, D. Van Den Berg, H. Shen, H. Bengtsson, P. Neuvial, L.M. Cope, J. Buckley, J.G. Herman, S.B. Baylin, P.W. Laird, K. Aldape, Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510 (2010)

    Article  CAS  Google Scholar 

  5. D. Sturm, H. Witt, V. Hovestadt, D.-A. Khuong-Quang, D.T.W. Jones, C. Konermann, E. Pfaff, M. Tönjes, M. Sill, S. Bender, M. Kool, M. Zapatka, N. Becker, M. Zucknick, T. Hielscher, X.-Y. Liu, A.M. Fontebasso, M. Ryzhova, S. Albrecht, K. Jacob, M. Wolter, M. Ebinger, M.U. Schuhmann, T. van Meter, M.C. Frühwald, H. Hauch, A. Pekrun, B. Radlwimmer, T. Niehues, G. von Komorowski, M. Dürken, A.E. Kulozik, J. Madden, A. Donson, N.K. Foreman, R. Drissi, M. Fouladi, W. Scheurlen, A. von Deimling, C. Monoranu, W. Roggendorf, C. Herold-Mende, A. Unterberg, C.M. Kramm, J. Felsberg, C. Hartmann, B. Wiestler, W. Wick, T. Milde, O. Witt, A.M. Lindroth, J. Schwartzentruber, D. Faury, A. Fleming, M. Zakrzewska, P.P. Liberski, K. Zakrzewski, P. Hauser, M. Garami, A. Klekner, L. Bognar, S. Morrissy, F. Cavalli, M.D. Taylor, P. van Sluis, J. Koster, R. Versteeg, R. Volckmann, T. Mikkelsen, K. Aldape, G. Reifenberger, V.P. Collins, J. Majewski, A. Korshunov, P. Lichter, C. Plass, N. Jabado, S.M. Pfister, Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425 (2012)

    Article  CAS  Google Scholar 

  6. R.G.W. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O’Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98 (2010)

    Article  CAS  Google Scholar 

  7. M. Vitucci, D.N. Hayes, C.R. Miller, Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy. Br J Cancer 104, 545 (2011)

    Article  CAS  Google Scholar 

  8. P.-O. Guichet, I. Bieche, M. Teigell, C. Serguera, B. Rothhut, V. Rigau, F. Scamps, C. Ripoll, S. Vacher, S. Taviaux, H. Chevassus, H. Duffau, J. Mallet, A. Susini, D. Joubert, L. Bauchet, J.-P. Hugnot, Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia 61, 225 (2013)

    Article  Google Scholar 

  9. G.M. Bokoch, Biology of the p21-activated kinases. Annu Rev Biochem 72, 743 (2003)

    Article  CAS  Google Scholar 

  10. P. Kreis, J.-V. Barnier, PAK signalling in neuronal physiology. Cell Signal 21, 384 (2009)

    Article  CAS  Google Scholar 

  11. X. Pan, X. Chang, C. Leung, Z. Zhou, F. Cao, W. Xie, Z. Jia, PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation. Mol Brain 8, 36 (2015)

    Article  Google Scholar 

  12. M.M. Alves, G.M. Fuhler, K.C.S. Queiroz, J. Scholma, S. Goorden, J. Anink, C. Arnold Spek, M. Hoogeveen-Westerveld, M.J. Bruno, M. Nellist, Y. Elgersma, E. Aronica, M.P. Peppelenbosch, PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex. Sci Rep 5, 14534 (2015)

  13. J. Souopgui, M. Sölter, T. Pieler, XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J 21, 6429 (2002)

    Article  CAS  Google Scholar 

  14. I. Cobos, U. Borello, J.L.R. Rubenstein, Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54, 873 (2007)

    Article  CAS  Google Scholar 

  15. X. Dai, H. Iwasaki, M. Watanabe, S. Okabe, Dlx1 transcription factor regulates dendritic growth and postsynaptic differentiation through inhibition of neuropilin-2 and PAK3 expression. Eur J Neurosci 39, 531 (2014)

    Article  Google Scholar 

  16. M.R.L. Maglorius Renkilaraj, L. Baudouin, C.M. Wells, M. Doulazmi, R. Wehrlé, V. Cannaya, C. Bachelin, J.-V. Barnier, Z. Jia, B. Nait Oumesmar, I. Dusart, L. Bouslama-Oueghlani, The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiol Dis 98, 137 (2017)

  17. M. Radu, G. Semenova, R. Kosoff, J. Chernoff, Pak signaling in the development and progression of cancer. Nat Rev Cancer 14, 13 (2014)

    Article  CAS  Google Scholar 

  18. R. Kumar, R. Sanawar, X. Li, F. Li, Structure, biochemistry, and biology of PAK kinases. Gene 605, 20 (2017)

    Article  CAS  Google Scholar 

  19. R. Liu, W. Wang, L. Ye, Y. Bi, H. Fang, B. Cui, W. Zhou, M. Dai, J. Zhang, X. Li, G. Ning, p21-Activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocr 38, 38 (2010)

    Article  Google Scholar 

  20. T.J. Crisman, I. Zelaya, D.R. Laks, Y. Zhao, R. Kawaguchi, F. Gao, H.I. Kornblum, G. Coppola, identification of an efficient gene expression panel for glioblastoma classification. PLoS ONE 11, e0164649 (2016)

  21. A. Venu, B. Archana, R. Kanumuri, V.K. Vuttaradhi, L. D’Cruze, S. Murugan, K. Ganesh, D. Prathiba, M.A. Dymova, S.K. Rayala, G. Venkatraman, Clinical evaluation of P21 activated kinase 1 (PAK1) activation in gliomas and its effect on cell proliferation. Cancer Invest 39, 98–1130 (2021)

  22. Y. Zhang, K. Chen, S.A. Sloan, M.L. Bennett, A.R. Scholze, S. O’Keeffe, H.P. Phatnani, P. Guarnieri, C. Caneda, N. Ruderisch, S. Deng, S.A. Liddelow, C. Zhang, R. Daneman, T. Maniatis, B.A. Barres, J.Q. Wu, An RNA-Sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929 (2014)

    Article  CAS  Google Scholar 

  23. R2: Genomics Analysis and Visualization Platform (http://r2.amc.nlhttp://r2platform.com).

  24. L.A.M. Gravendeel, M.C.M. Kouwenhoven, O. Gevaert, J.J. de Rooi, A.P. Stubbs, J.E. Duijm, A. Daemen, F.E. Bleeker, L.B.C. Bralten, N.K. Kloosterhof, B. De Moor, P.H.C. Eilers, P.J. van der Spek, J.M. Kros, P.A.E. Sillevis Smitt, M.J. van den Bent, P.J. French, Intrinsic Gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69, 9065 (2009)

  25. A.J. Radenbaugh, S. Ma, A. Ewing, J.M. Stuart, E.A. Collisson, J. Zhu, D. Haussler, RADIA: RNA and DNA integrated analysis for somatic mutation detection. PLoS One 9, e111516 (2014)

  26. POLA Network, K. Labreche, I. Simeonova, A. Kamoun, V. Gleize, D. Chubb, E. Letouzé, Y. Riazalhosseini, S.E. Dobbins, N. Elarouci, F. Ducray, A. de Reyniès, D. Zelenika, C.P. Wardell, M. Frampton, O. Saulnier, T. Pastinen, S. Hallout, D. Figarella-Branger, C. Dehais, A. Idbaih, K. Mokhtari, J.-Y. Delattre, E. Huillard, G. Mark Lathrop, M. Sanson, R.S. Houlston, TCF12 is mutated in anaplastic oligodendroglioma. Nat Commun 6, 7207 (2015)

  27. S.-N. Bikeye, C. Colin, Y. Marie, R. Vampouille, P. Ravassard, A. Rousseau, B. Boisselier, A. Idbaih, C. Calvo, P. Leuraud, M. Lassalle, S. El Hallani, J.-Y. Delattre, M. Sanson, ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target. Cancer Cell Int 10, 1 (2010)

    Article  Google Scholar 

  28. S.M. Pollard, K. Yoshikawa, I.D. Clarke, D. Danovi, S. Stricker, R. Russell, J. Bayani, R. Head, M. Lee, M. Bernstein, J.A. Squire, A. Smith, P. Dirks, Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568 (2009)

    Article  CAS  Google Scholar 

  29. G. Combeau, P. Kreis, F. Domenichini, M. Amar, P. Fossier, V. Rousseau, J.-V. Barnier, The p21-activated kinase PAK3 forms heterodimers with PAK1 in brain implementing trans-regulation of PAK3 activity. J Biol Chem 287, 30084 (2012)

    Article  CAS  Google Scholar 

  30. S. Rosenberg, M. Verreault, C. Schmitt, J. Guegan, J. Guehennec, C. Levasseur, Y. Marie, F. Bielle, K. Mokhtari, K. Hoang-Xuan, K. Ligon, M. Sanson, J.-Y. Delattre, A. Idbaih, Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. NEUONC 2, 219 (2016)

    Google Scholar 

  31. V. Lamour, A. Henry, J. Kroonen, M.-J. Nokin, Z. von Marschall, L.W. Fisher, T.-L. Chau, A. Chariot, M. Sanson, J.-Y. Delattre, A. Turtoi, O. Peulen, B. Rogister, V. Castronovo, A. Bellahcène, Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo. Int J Cancer 137, 1047 (2015)

    Article  CAS  Google Scholar 

  32. S.G.M. Piccirillo, B.A. Reynolds, N. Zanetti, G. Lamorte, E. Binda, G. Broggi, H. Brem, A. Olivi, F. Dimeco, A.L. Vescovi, Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761 (2006)

    Article  CAS  Google Scholar 

  33. M. Ying, S. Wang, Y. Sang, P. Sun, B. Lal, C.R. Goodwin, H. Guerrero-Cazares, A. Quinones-Hinojosa, J. Laterra, S. Xia, Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 30, 3454 (2011)

    Article  CAS  Google Scholar 

  34. V. Balasubramaniyan, B. Vaillant, S. Wang, J. Gumin, M.E. Butalid, K. Sai, F. Mukheef, S.H. Kim, H.W.G.M. Boddeke, F. Lang, K. Aldape, E.P. Sulman, K.P. Bhat, H. Colman, Aberrant mesenchymal differentiation of glioma stem-like cells: implications for therapeutic targeting. Oncotarget 6, 31007 (2015)

    Article  Google Scholar 

  35. C. Neftel, J. Laffy, M.G. Filbin, T. Hara, M.E. Shore, G.J. Rahme, A.R. Richman, D. Silverbush, M.L. Shaw, C.M. Hebert, J. Dewitt, S. Gritsch, E.M. Perez, L.N.G. Castro, X. Lan, N. Druck, C. Rodman, D. Dionne, A. Kaplan, M.S. Bertalan, J. Small, K. Pelton, S. Becker, D. Bonal, Q.-D. Nguyen, R.L. Servis, J.M. Fung, R. Mylvaganam, L. Mayr, J. Gojo, C. Haberler, R. Geyeregger, T. Czech, I. Slavc, B.V. Nahed, W.T. Curry, B.S. Carter, H. Wakimoto, P.K. Brastianos, T.T. Batchelor, A. Stemmer-Rachamimov, M. Martinez-Lage, M.P. Frosch, I. Stamenkovic, N. Riggi, E. Rheinbay, M. Monje, O. Rozenblatt-Rosen, D.P. Cahill, A.P. Patel, T. Hunter, I.M. Verma, K.L. Ligon, D.N. Louis, A. Regev, B.E. Bernstein, I. Tirosh, M.L. Suvà, An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835 (2019)

    Article  CAS  Google Scholar 

  36. R. Kumar, A.E. Gururaj, C.J. Barnes, p21-activated kinases in cancer. Nat Rev Cancer 6, 459 (2006)

    Article  CAS  Google Scholar 

  37. P. Kreis, E. Thévenot, V. Rousseau, B. Boda, D. Muller, J.-V. Barnier, The p21-activated kinase 3 implicated in mental retardation regulates spine morphogenesis through a Cdc42-dependent pathway. J Biol Chem 282, 21497 (2007)

    Article  CAS  Google Scholar 

  38. E. Thévenot, A.W. Moreau, V. Rousseau, G. Combeau, F. Domenichini, C. Jacquet, O. Goupille, M. Amar, P. Kreis, P. Fossier, J.-V. Barnier, p21-activated Kinase 3 (PAK3) protein regulates synaptic transmission through its interaction with the Nck2/Grb4 protein adaptor. J Biol Chem 286, 40044 (2011)

    Article  Google Scholar 

  39. M. Lei, W. Lu, W. Meng, M.-C. Parrini, M.J. Eck, B.J. Mayer, S.C. Harrison, Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387 (2000)

    Article  CAS  Google Scholar 

  40. M.C. Parrini, M. Lei, S.C. Harrison, B.J. Mayer, Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9, 73 (2002)

    Article  CAS  Google Scholar 

  41. D. Yao, C. Li, M.S.R. Rajoka, Z. He, J. Huang, J. Wang, J. Zhang, P21-Activated kinase 1: emerging biological functions and potential therapeutic targets in cancer. Theranostics 10, 9741 (2020)

    Article  CAS  Google Scholar 

  42. E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401 (2012)

    Article  Google Scholar 

  43. Y. Dang, Y. Guo, X. Ma, X. Chao, F. Wang, L. Cai, Z. Yan, L. Xie, X. Guo, Systemic analysis of the expression and prognostic significance of PAKs in breast cancer. Genomics 112, 2433 (2020)

    Article  CAS  Google Scholar 

  44. J.J. Crawford, K.P. Hoeflich, J. Rudolph, p21-Activated kinase inhibitors: a patent review. Expert Opin Ther Pat 22, 293 (2012)

    Article  CAS  Google Scholar 

  45. R.I. Martinez-De Luna, R.Y. Ku, Y. Lyou, M.E. Zuber, Maturin is a novel protein required for differentiation during primary neurogenesis. Dev Biol 384, 26 (2013)

  46. M. Santra, S. Santra, B. Buller, K. Santra, A. Nallani, M. Chopp, Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci 102, 1350 (2011)

    Article  CAS  Google Scholar 

  47. A. Narayanan, F. Gagliardi, A.L. Gallotti, S. Mazzoleni, M. Cominelli, L. Fagnocchi, M. Pala, I.S. Piras, P. Zordan, N. Moretta, E. Tratta, G. Brugnara, L. Altabella, G. Bozzuto, P. Gorombei, A. Molinari, R.-A. Padua, A. Bulfone, L.S. Politi, A. Falini, A. Castellano, P. Mortini, A. Zippo, P.L. Poliani, R. Galli, The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death Differ 26, 1813 (2019)

    Article  CAS  Google Scholar 

  48. J. Piccand, A. Meunier, C. Merle, Z. Jia, J.-V. Barnier, G. Gradwohl, Pak3 promotes cell cycle exit and differentiation of β-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice. Diabetes 63, 203 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank OncoNeuroTek for sharing data and samples from their banks. We are also grateful to C. Levasseur for assistance in mice inoculation and to A. Bonilla, C. Dubois and C. Rousseau for animal care. We also acknowledge the technical support from the ICM facility iGenSeq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Vianney Barnier.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magne, N., Rousseau, V., Duarte, K. et al. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth. Cell Oncol. 44, 1257–1271 (2021). https://doi.org/10.1007/s13402-021-00635-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00635-8

Keywords

Navigation