[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Persistent growth of CO2 emissions and implications for reaching climate targets

Abstract

Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global CO2 emissions and decomposition into GDP and carbon intensity.
Figure 2: Regional CO2 emissions and decomposition into GDP and carbon intensity.
Figure 3: Consequences of current emissions and projected near-term trends.
Figure 4: Comparison of trends in the IPCC AR5 WGIII scenario database and projected near-term trends.

Similar content being viewed by others

References

  1. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Google Scholar 

  2. Matthews, H., Gillett, N., Stott, P. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Google Scholar 

  3. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458, 1158–1162 (2009).

    Article  Google Scholar 

  4. Raupach, M. R. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings. Earth Syst. Dynam. 4, 31–49 (2013).

    Google Scholar 

  5. Raupach, M. R. et al. The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system. Tellus B 63, 145–164 (2011).

    Google Scholar 

  6. Zickfeld, K., Eby, M., Matthews, H. & Weaver, A. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Google Scholar 

  7. Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).

    Google Scholar 

  8. van Vuuren, D. P. et al. Temperature increase of 21st century mitigation scenarios. Proc. Natl Acad. Sci. USA 105, 15258–15262 (2008).

    Google Scholar 

  9. Matthews, H. D., Solomon, S. & Pierrehumbert, R. Cumulative carbon as a policy framework for achieving climate stabilization. Phil. Trans. R. Soc. A 370, 4365–4379 (2012).

    Google Scholar 

  10. Zickfeld, K., Arora, V. K. & Gillett, N. P. Is the climate response to CO2 emissions path dependent? Geophys. Res. Lett. 39, L05703 (2012).

    Google Scholar 

  11. Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Google Scholar 

  12. IPCC in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) 1–29 (Cambridge Univ. Press, 2013).

  13. Maier-Reimer, E. & Hasselmann, K. Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Clim. Dynam. 2, 63–90 (1987).

    Google Scholar 

  14. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Google Scholar 

  15. Caldeira, K. & Kasting, J. F. Insensitivity of global warming potentials to carbon-dioxide emission scenarios. Nature 366, 251–253 (1993).

    Google Scholar 

  16. Collins, M. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) Ch. 12, 1029–1136 (Cambridge Univ. Press, 2013).

    Google Scholar 

  17. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) Ch. 6, 465–570 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  18. Knutti, R. & Hegerl, G. The equilibrium sensitivity of the Earth's temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

    Google Scholar 

  19. Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Google Scholar 

  20. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) Ch. 8, 659–740 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  21. Bowerman, N. H. A. et al. The role of short-lived climate pollutants in meeting temperature goals. Nature Clim. Change 3, 1021–1024 (2013).

    Google Scholar 

  22. Smith, S. M. et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nature Clim. Change 2, 535–538 (2012).

    Google Scholar 

  23. Pierrehumbert, R. T. Short-lived climate pollution. Annu. Rev. Earth Planet Sci. 42, 341–379 (2014).

    Google Scholar 

  24. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  25. Rogelj, J. et al. Air-pollution emission ranges consistent with the representative concentration pathways. Nature Clim. Change 4, 446–450 (2014).

    Google Scholar 

  26. Collins, M. et al. in Climate Change 2013 The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12, 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  27. Anderson, K., Bows, A. & Mander, S. From long-term targets to cumulative emission pathways: Reframing UK climate policy. Energy Policy 36, 3714–3722 (2008).

    Google Scholar 

  28. Anderson, K. & Bows, A. Beyond 'dangerous' climate change: emission scenarios for a new world. Phil. Trans. R. Soc. A 369, 20–44 (2011).

    Google Scholar 

  29. Allen, M. R. & Stocker, T. F. Impact of delay in reducing carbon dioxide emissions. Nature Clim. Change 4, 23–26 (2014).

    Google Scholar 

  30. Stocker, T. F. The closing door of climate targets. Science 339, 280–282 (2013).

    Google Scholar 

  31. Andres, R. J. et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871 (2012).

    Google Scholar 

  32. Andres, R. J., Boden, T. A. & Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66, 23616 (2014).

    Google Scholar 

  33. Francey, R. J. et al. Atmospheric verification of anthropogenic CO2 emission trends. Nature Clim. Change 3, 520–524 (2013).

    Google Scholar 

  34. Raupach, M. R., Quéré, C. L., Peters, G. P. & Canadell, J. G. Anthropogenic CO2 emissions. Nature Clim. Change 3, 603–604 (2013).

    Google Scholar 

  35. Francey, R. J. et al. Reply to 'Anthropogenic CO2 emissions'. Nature Clim. Change 3, 604–604 (2013).

    Google Scholar 

  36. Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    Google Scholar 

  37. Pielke R. Jr The Climate Fix (Basic Books, 2010).

    Google Scholar 

  38. Le Quéré, C . et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Google Scholar 

  39. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    Google Scholar 

  40. Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Clim. Change 2, 2–4 (2012).

    Google Scholar 

  41. Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013).

    Google Scholar 

  42. Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).

    Google Scholar 

  43. Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    Google Scholar 

  44. Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

    Google Scholar 

  45. http://www.eia.gov/todayinenergy/detail.cfm?id=14571

  46. World Economic Outlook: Recovery Strengthens, Remains Uneven (IMF, 2014); http://www.imf.org/external/ns/cs.aspx?id=29

  47. World Economic Outlook Update: An Uneven Global Recovery Continues (IMF, 2014); http://www.imf.org/external/pubs/ft/weo/2014/update/02

  48. Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Google Scholar 

  49. Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data Discuss. 10.5194/essdd-7-521-2014 (2014).

  50. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Google Scholar 

  51. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nature Clim. Change 2, 775–779 (2012).

    Google Scholar 

  52. Tebaldi, C. & Friedlingstein, P. Delayed detection of climate mitigation benefits due to climate inertia and variability. Proc. Natl Acad. Sci. USA 110, 17229–17234 (2013).

    Google Scholar 

  53. Ricke, K. L. & Caldeira, K. Natural climate variability and future climate policy. Nature Clim. Change 4, 333–338 (2014).

    Google Scholar 

  54. van Vuuren, D. P. et al. RCP3-PD: Exploring the possibilities to limit global mean temperature change to less than 2 °C. Climatic Change 109, 95–116 (2011).

    Google Scholar 

  55. Azar, C., Lindgren, K., Larson, E. & Mollersten, K. Carbon capture and storage from fossil fuels and biomass - Costs and potential role in stabilizing the atmosphere. Climatic Change 74, 47–79 (2006).

    Google Scholar 

  56. Azar, C. et al. The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Climatic Change 100, 195–202 (2010).

    Google Scholar 

  57. Tavoni, M. & Socolow, R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Climatic Change 118, 1–14 (2013).

    Google Scholar 

  58. van Vuuren, D. P. & Riahi, K. The relationship between short-term emissions and long-term concentration targets. Climatic Change 104, 793–801 (2011).

    Google Scholar 

  59. Boucher, O. et al. Reversibility in an Earth System model in response to CO2 concentration changes. Environ. Res. Lett. 7, 024013 (2012).

    Google Scholar 

  60. Vichi, M., Navarra, A. & Fogli, P. G. Adjustment of the natural ocean carbon cycle to negative emission rates. Climatic Change 118, 105–118 (2013).

    Google Scholar 

  61. Long, C. & Ken, C. Atmospheric carbon dioxide removal: long-term consequences and commitment. Environ. Res. Lett. 5, 024011 (2010).

    Google Scholar 

  62. Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G. & Klein, D. Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change 118, 45–57 (2013).

    Google Scholar 

  63. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on technology and climate policy strategies. Climatic Change 123, 353–367 (2013).

    Google Scholar 

  64. Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

    Google Scholar 

  65. Riahi, K. et al. in Global Energy Assessment — Toward a Sustainable Future Ch. 17, 1203–1306 (Cambridge Univ. Press and IIASA, 2012).

    Google Scholar 

  66. Riahi, K. et al. Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecas. Soc. Change http://dx.doi.org/10.1016/j.techfore.2013.09.016 (2013).

  67. Rogelj, J., McCollum, D. L., O'Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nature Clim. Change 3, 405–412 (2013).

    Google Scholar 

  68. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013).

    Google Scholar 

  69. van Vliet, J. et al. Copenhagen Accord Pledges imply higher costs for staying below 2 °C warming. Climatic Change 113, 551–561 (2012).

    Google Scholar 

  70. World Energy Investment Outlook (IEA, 2014).

  71. Annual Energy Outlook (EIA, 2014).

  72. Höhne, N. et al. National GHG emissions reduction pledges and 2 °C: comparison of studies. Climate Policy 12, 356–377 (2012).

    Google Scholar 

  73. The Emissions Gap Report 2012 (UNEP, 2012).

  74. The Emissions Gap Report 2013 64 (UNEP, 2013).

  75. Kriegler, E. et al. Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technol. Forecas. Soc. Change http://dx.doi.org/10.1016/j.techfore.2013.09.021 (2014).

  76. Kriegler, E. et al. What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 4, 1340008 (2013).

    Google Scholar 

  77. Schaeffer, M. et al. Mid- and long-term climate projections for fragmented and delayed-action scenarios. Technol. Forecas. Soc. Change http://dx.doi.org/10.1016/j.techfore.2013.09.013 (2013).

  78. Johnson, N. et al. Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants. Technol. Forecas. Soc. Change http://dx.doi.org/10.1016/j.techfore.2014.02.028 (2014).

  79. Luderer, G., Bertram, C., Calvin, K., De Cian, E. & Kriegler, E. Implications of weak near-term climate policies on long-term mitigation pathways. Climatic Change http://dx.doi.org/10.1007/s10584-013-0899-9 (2013).

  80. Lenton, T. M. et al. Tipping elements in the Earth's climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Google Scholar 

  81. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

    Google Scholar 

  82. Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nature Clim. Change http://dx.doi.org/10.1038/nclimate2384 (2014).

  83. Boden, T. A., Marland, G. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO2 Emissions in Trends (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2013); http://cdiac.ornl.gov/trends/emis/em_cont.html

  84. Statistical Review of World Energy June 2013 (BP, 2013).

  85. CO2 emissions from fuel combustion 2013 (IEA, 2013).

  86. AR5 Scenario Database (IIASA, 2014); https://secure.iiasa.ac.at/web-apps/ene/AR5DB/

Download references

Acknowledgements

P.F. was supported by the European Commission's 7th Framework Programme (EU/FP7) under Grant Agreements 282672 (EMBRACE) and 603864 (HELIX). G.P.P. and R.M.A. were supported by the Norwegian Research Council (236296). J.G.C. acknowledges the support from the Australian Climate Change Science Program. C.L.Q. was supported by the UK Natural Environment Research Council (NERC)'s International Opportunities Fund (project NE/103002X/1) and EU/FP7 project 283080 (GEOCarbon). This work is a collaborative effort of the Global Carbon Project (http://www.globalcarbonproject.org).

Author information

Authors and Affiliations

Authors

Contributions

P.F., G.P.P., J.G.C., J.R. and C.L.Q. designed the study. P.F. coordinated the conception and writing of the paper. R.M.A. and G.P.P. provided data and analysis on historical and near-term projections of emissions, GDP and carbon intensity. M.S. provided all data on cumulative emission budgets compatible with warming levels from the IPCC WGII scenarios database. J.R. and G.L. coordinated the assessment of trade-offs in delayed action scenarios. R.M.A. produced Figs 1 and 2. J.R. produced Figs 3 and 4. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to P. Friedlingstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Cumulative budgets and uncertainty (PDF 1162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedlingstein, P., Andrew, R., Rogelj, J. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci 7, 709–715 (2014). https://doi.org/10.1038/ngeo2248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing