[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana

Abstract

Plants can defend themselves against a wide array of enemies, from microbes to large animals, yet there is great variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack1. A second explanation comes from an evolutionary ‘tug of war’, in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion2,3,4,5. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best explained by costs incurred from constitutive defences in a pest-free environment6,7,8,9,10,11. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6)12,13, underpins marked pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its marked impact on growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a natural ACD6 allele affecting growth and defence traits.
Figure 2: Effects of a natural ACD6 allele on leaf biomass, pathogen susceptibility and metabolite content.
Figure 3: Effects of a natural ACD6 allele on pathogen susceptibility.
Figure 4: ACD6 sequence diversity in Arabidopsis.
Figure 5: Correlation between late-onset necrosis, growth and defence traits.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

DNA sequences have been deposited in GenBank under accession numbers HM053468 and HM053469 and HM214805 to HM214897.

References

  1. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005)

    Article  CAS  Google Scholar 

  2. Holub, E. B. The arms race is ancient history in Arabidopsis, the wildflower. Nature Rev. Genet. 2, 516–527 (2001)

    Article  CAS  Google Scholar 

  3. Holub, E. B. Natural variation in innate immunity of a pioneer species. Curr. Opin. Plant Biol. 10, 415–424 (2007)

    Article  CAS  Google Scholar 

  4. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Bent, A. F. & Mackey, D. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45, 399–436 (2007)

    Article  CAS  Google Scholar 

  6. Heil, M. & Baldwin, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002)

    Article  CAS  Google Scholar 

  7. Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana . Am. Nat. 151, 20–28 (1998)

    CAS  PubMed  Google Scholar 

  8. Heil, M., Hilpert, A., Kaiser, W. & Linsenmair, K. E. Reduced growth and seed set following chemical induction of pathogen defence: Does Systemic Acquired Resistance (SAR) incur allocation costs? J. Ecol. 88, 645–654 (2000)

    Article  CAS  Google Scholar 

  9. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana . Nature 423, 74–77 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Zavala, J. A. & Baldwin, I. T. Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked. BMC Ecol. 4, 11 (2004)

    Article  Google Scholar 

  11. Korves, T. A novel cost of R gene resistance in the presence of disease. Am. Nat. 163, 489–504 (2004)

    Article  Google Scholar 

  12. Lu, H., Rate, D. N., Song, J. T. & Greenberg, J. T. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15, 2408–2420 (2003)

    Article  CAS  Google Scholar 

  13. Lu, H., Liu, Y. & Greenberg, J. T. Structure-function analysis of the plasma membrane-localized Arabidopsis defense component ACD6. Plant J. 44, 798–809 (2005)

    Article  CAS  Google Scholar 

  14. Balasubramanian, S. et al. QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS ONE 4, e4318 (2009)

    Article  ADS  Google Scholar 

  15. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis . Plant Cell 18, 1121–1133 (2006)

    Article  CAS  Google Scholar 

  16. Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S. & Greenberg, J. T. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11, 1695–1708 (1999)

    Article  CAS  Google Scholar 

  17. Lorrain, S., Vailleau, F., Balague, C. & Roby, D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263–271 (2003)

    Article  CAS  Google Scholar 

  18. Greenberg, J. T. & Yao, N. The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol. 6, 201–211 (2004)

    Article  CAS  Google Scholar 

  19. Yu, I. C., Parker, J. & Bent, A. F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl Acad. Sci. USA 95, 7819–7824 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Gaffney, T. et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Lu, H. et al. Genetic analysis of acd6–1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis . Plant J. 58, 401–412 (2009)

    Article  CAS  Google Scholar 

  22. Abreu, M. E. & Munné-Bosch, S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana . J. Exp. Bot. 60, 1261–1271 (2009)

    Article  CAS  Google Scholar 

  23. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana . PLoS Biol. 3, e196 (2005)

    Article  Google Scholar 

  24. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 10.1038/nature08800 (24 March 2010)

  25. Bomblies, K. et al. Local-scale patterns of genetic variability, outcrossing and spatial structure in natural stands of Arabidopsis thaliana . PLoS Genet. 6, e1000890 (2010)

    Article  Google Scholar 

  26. Traw, M. B., Kniskern, J. M. & Bergelson, J. SAR increases fitness of Arabidopsis thaliana in the presence of natural bacterial pathogens. Evolution 61, 2444–2449 (2007)

    Article  Google Scholar 

  27. Van der Hoorn, R. A., De Wit, P. J. & Joosten, M. H. Balancing selection favors guarding resistance proteins. Trends Plant Sci. 7, 67–71 (2002)

    Article  CAS  Google Scholar 

  28. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana . Science 301, 653–657 (2003)

    Article  ADS  Google Scholar 

  29. Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003)

    Article  CAS  Google Scholar 

  30. Tuinstra, M., Ejeta, G. & Goldsbrough, P. Heterogenous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95, 1005–1011 (1997)

    Article  CAS  Google Scholar 

  31. Warthmann, N., Fitz, J. & Weigel, D. MSQT for choosing SNP assays from multiple DNA alignments. Bioinformatics 23, 2784–2787 (2007)

    Article  CAS  Google Scholar 

  32. Koch, E. & Slusarenko, A. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2, 437–445 (1990)

    Article  CAS  Google Scholar 

  33. Ossowski, S., Schwab, R. & Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–690 (2008)

    Article  CAS  Google Scholar 

  34. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)

    Article  CAS  Google Scholar 

  35. Weigel, D. & Glazebrook, J. Arabidopsis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2002)

    Google Scholar 

  36. Lempe, J. et al. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 1, e6 (2005)

    Article  Google Scholar 

  37. Platt, A. et al. The scale of population structure in Arabidopsis thaliana . PLoS Genet. 6, e1000843 (2010)

    Article  Google Scholar 

  38. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  CAS  Google Scholar 

  39. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006)

    Article  CAS  Google Scholar 

  40. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  Google Scholar 

  41. Thornton, K. libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 19, 2325–2327 (2003)

    Article  CAS  Google Scholar 

  42. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007)

    Article  CAS  Google Scholar 

  43. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004)

    Article  CAS  Google Scholar 

  44. Hirata, T. & Takamatsu, S. Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 37, 283–288 (1996)

    Article  Google Scholar 

  45. Adam, L. & Somerville, S. C. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana . Plant J. 9, 341–356 (1996)

    Article  CAS  Google Scholar 

  46. Vogel, J. & Somerville, S. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc. Natl Acad. Sci. USA 97, 1897–1902 (2000)

    Article  ADS  CAS  Google Scholar 

  47. Holt, B. F. III et al. An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev. Cell 2, 807–817 (2002)

    Article  Google Scholar 

  48. Kaminaka, H. et al. bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J. 25, 4400–4411 (2006)

    Article  CAS  Google Scholar 

  49. King, E. O., Ward, M. K. & Raney, D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301–307 (1954)

    CAS  PubMed  Google Scholar 

  50. Jakob, K. et al. Pseudomonas viridiflava and P. syringae–natural pathogens of Arabidopsis thaliana . Mol. Plant Microbe Interact. 15, 1195–1203 (2002)

    Article  CAS  Google Scholar 

  51. Segarra, G., Jauregui, O., Casanova, E. & Trillas, I. Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry 67, 395–401 (2006)

    Article  CAS  Google Scholar 

  52. Dewdney, J. et al. Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J. 24, 205–218 (2000)

    Article  CAS  Google Scholar 

  53. Konieczny, A. & Ausubel, F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403–410 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.-W. Park and D. Klessig for the nahG clone; J. Greenberg, the NSF-supported Arabidopsis Biological Resource Centre (ABRC) and the European Arabidopsis Stock Centre (NASC) for seeds; and S. Atwell, K. Broman and Y.-L. Guo for advice. We are grateful to K. Bomblies and L. Yant for establishing the Tübingen A. thaliana collection. This work was supported by NIH NRSA fellowship F23-GM65032-1 (C.S.), an EMBO Long-Term Fellowship (S.B.), NIH grants GM62932 (J.C. and D.W.), GM057171 (J.L.D.), GM057994 (J.B.) and GM073822 (J.O.B.), NSF grants DEB-0519961 (J.B. and M.N.) and NSF MCB0603515 (J.B.), HFSPO grant RGP0057/2007-C (J.L.D. and D.W.), DFG grant LI 1317/2-1 (V.L.), the Gatsby Foundation (V.L.), the Dropkin Foundation (J.B.), the Howard Hughes Medical Institute (J.C.), Marie Curie RTN SY-STEM (D.W.), ERA-PG (BMBF) grant ARABRAS (D.W.), FP6 IP AGRON-OMICS (contract LSHG-CT-2006-037704, D.W.), a Gottfried Wilhelm Leibniz Award of the DFG (D.W.), and the Max Planck Society (D.W.).

Author information

Authors and Affiliations

Authors

Contributions

M.T., S.B., J.C., V.L., J.O.B., J.L.D., J.B., M.N. and D.W. conceived the study; M.T., S.B., M.B.T., M.H., P.E., C.K., S.S., C.S., C.L. and R.A.E.L. performed the experiments; M.T., S.B., T.T.H., M.B.T., Y.H., J.B., M.N. and D.W. analysed the data; and M.T., S.B. and D.W. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Detlef Weigel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, References, Supplementary Tables 1-9 and Supplementary Figures 1-13 with legends. (PDF 1805 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todesco, M., Balasubramanian, S., Hu, T. et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465, 632–636 (2010). https://doi.org/10.1038/nature09083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09083

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing