[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = buongiorno model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6455 KiB  
Article
Using Artificial Neural Network Analysis to Study Jeffrey Nanofluid Flow in Cone–Disk Systems
by Nasser Nammas Albaqami
Math. Comput. Appl. 2024, 29(6), 98; https://doi.org/10.3390/mca29060098 - 31 Oct 2024
Cited by 1 | Viewed by 722
Abstract
Artificial intelligence (AI) is employed in fluid flow models to enhance the simulation’s accuracy, to more effectively optimize the fluid flow models, and to realize reliable fluid flow systems with improved performance. Jeffery fluid flow through the interstice of a cone-and-disk system is [...] Read more.
Artificial intelligence (AI) is employed in fluid flow models to enhance the simulation’s accuracy, to more effectively optimize the fluid flow models, and to realize reliable fluid flow systems with improved performance. Jeffery fluid flow through the interstice of a cone-and-disk system is considered in this study. The mathematical description of this flow involves converting a partial differential system into a nonlinear ordinary differential system and solving it using a neurocomputational technique. The fluid streaming through the disk–cone gap is investigated under four contrasting frameworks, i.e., (i) passive cone and spinning disk, (ii) spinning cone and passive disk, (iii) cone and disk rotating in the same direction, and (iv) cone and disk rotating in opposite directions. Employing the recently developed technique of artificial neural networks (ANNs) can be effective for handling and optimizing fluid flow exploits. The proposed approach integrates training, testing and analysis, and authentication based on a locus dataset to address various aspects of fluid problems. The mean square error, regression plots, curve-fitting graphs, and error histograms are used to evaluate the performance of the least mean square neural network algorithm (LMS-NNA). The results show that these equations are consistently aligned, and agreement is, on average, in the order of 10−8. While the resting parameters were kept static, the transverse velocity distribution, in all four cases, exhibited an incremental decreasing behavior in the estimates of magnetic and Jeffery fluid factors. Furthermore, the results obtained were compared with those in the literature, and the close agreement confirms our results. To train the model, 80% of the data were used for LMS-NNA, with 10% used for testing and the remaining 10% for validation. The quantitative and qualitative outputs obtained from the neural network strategy and parameter variation were thoroughly examined and discussed. Full article
(This article belongs to the Special Issue Symmetry Methods for Solving Differential Equations)
Show Figures

Figure 1

Figure 1
<p>Physical interpretation of cone–disk geometry.</p>
Full article ">Figure 2
<p>(<b>a</b>) ANN structure for model problem. (<b>b</b>) ANN design for proposed LMS-NNA.</p>
Full article ">Figure 3
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> where <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>λ</mi> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>M</mi> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>λ</mi> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>M</mi> </semantics></math>.</p>
Full article ">Figure 7
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>λ</mi> </semantics></math>.</p>
Full article ">Figure 8
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> where <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>M</mi> </semantics></math>.</p>
Full article ">Figure 9
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> where <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>(<b>a</b>–<b>e</b>) The proposed fluid model <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Re</mi> </mrow> <mi>w</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>Re</mi> </mrow> <mi mathvariant="sans-serif">Ω</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> where <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> is plotted using the LMS-NNA for <math display="inline"><semantics> <mi>M</mi> </semantics></math>.</p>
Full article ">Figure 11
<p>The variation in the heat transfer rate using <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mi>b</mi> <mo>,</mo> <mi>λ</mi> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>(<b>a</b>) Disparity in <span class="html-italic">λ</span> vs. <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">λ</span> vs. AE.</p>
Full article ">Figure 13
<p>(<b>a</b>) Disparity in <span class="html-italic">λ</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">λ</span> vs. AE.</p>
Full article ">Figure 14
<p>(<b>a</b>) Disparity in <span class="html-italic">λ</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">λ</span> vs. AE.</p>
Full article ">Figure 15
<p>(<b>a</b>) Disparity in <span class="html-italic">λ</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">λ</span> vs. AE.</p>
Full article ">Figure 16
<p>(<b>a</b>) Disparity in <span class="html-italic">M</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">M</span> vs. AE.</p>
Full article ">Figure 17
<p>(<b>a</b>) Disparity in <span class="html-italic">M</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">M</span> vs. AE.</p>
Full article ">Figure 18
<p>(<b>a</b>) Disparity in <span class="html-italic">M</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">M</span> vs. AE.</p>
Full article ">Figure 19
<p>(<b>a</b>) Disparity in <span class="html-italic">M</span> &amp; <span class="html-italic">g</span>(<span class="html-italic">η</span>); (<b>b</b>) <span class="html-italic">M</span> vs. AE.</p>
Full article ">
17 pages, 417 KiB  
Article
A Rational Extended Thermodynamic Model for Nanofluids
by Elvira Barbera and Annamaria Pollino
Fluids 2024, 9(8), 193; https://doi.org/10.3390/fluids9080193 - 22 Aug 2024
Viewed by 637
Abstract
A model of quasilinear differential equations is derived in the context of Rational Extended Thermodynamics to investigate some non-equilibrium phenomena in nanofluids. Following the classical Buongiorno approach, the model assumes nanofluids to be suspensions of two phases: nanoparticles and the base fluid. The [...] Read more.
A model of quasilinear differential equations is derived in the context of Rational Extended Thermodynamics to investigate some non-equilibrium phenomena in nanofluids. Following the classical Buongiorno approach, the model assumes nanofluids to be suspensions of two phases: nanoparticles and the base fluid. The field variables are the classical ones and, in addition, the stress tensors and the heat fluxes of both constituents. Balance laws for all field variables are assumed. The obtained system is not closed; therefore, universal physical principles, such as Galilean Invariance and the Entropy Principles, are invoked to close the set of field equations. The obtained model is also written in terms of the whole nanofluid and compared with the classical Buongiorno model. This allowed also the identifications of some parameters in terms of experimental data. The obtained set of field equations has the advantage to recover the Buongiorno model when the phenomena are near equilibrium. At the same time it consists of a hyperbolic set of field equations. Hyperbolicity guarantees finite speeds of propagation and more suitable descriptions of transient regimes. The present model can be used in order to investigate waves, shocks and other phenomena that can be easily described in hyperbolic systems. Furthermore, as a first application and in order to show the potential of the model, stationary 1D solutions are determined and some thermal properties of nanofluids are studied. The solution exhibits, already in the simplest case herein considered, a more accurate evaluation of some fields like the stress tensor components. Full article
Show Figures

Figure 1

Figure 1
<p>Dependence of dimensionless values of temperature for the whole nanofluid on the <span class="html-italic">x</span> one-dimensional direction. Temperature presents a linear behavior plus boundary layers.</p>
Full article ">Figure 2
<p>Dependence of dimensionless heat fluxes for base fluid (blue line) and for nanoparticles (orange line) on the <span class="html-italic">x</span> one-dimensional direction.</p>
Full article ">Figure 3
<p>Dependence of dimensionless values of stress tensor (<b>a</b>) and pressure (<b>b</b>) for base fluid (blue line) and nanoparticles (orange line) on the <span class="html-italic">x</span> one-dimensional direction.</p>
Full article ">
15 pages, 4863 KiB  
Article
Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model
by Ming Shen, Yihong Liu, Qingan Yin, Hongmei Zhang and Hui Chen
Fractal Fract. 2024, 8(8), 491; https://doi.org/10.3390/fractalfract8080491 - 21 Aug 2024
Viewed by 961
Abstract
This paper introduces fractional Brownian motion into the study of Maxwell nanofluids over a stretching surface. Nonlinear coupled spatial fractional-order energy and mass equations are established and solved numerically by the finite difference method with Newton’s iterative technique. The quantities of physical interest [...] Read more.
This paper introduces fractional Brownian motion into the study of Maxwell nanofluids over a stretching surface. Nonlinear coupled spatial fractional-order energy and mass equations are established and solved numerically by the finite difference method with Newton’s iterative technique. The quantities of physical interest are graphically presented and discussed in detail. It is found that the modified model with fractional Brownian motion is more capable of explaining the thermal conductivity enhancement. The results indicate that a reduction in the fractional parameter leads to thinner thermal and concentration boundary layers, accompanied by higher local Nusselt and Sherwood numbers. Consequently, the introduction of a fractional Brownian model not only enriches our comprehension of the thermal conductivity enhancement phenomenon but also amplifies the efficacy of heat and mass transfer within Maxwell nanofluids. This achievement demonstrates practical application potential in optimizing the efficiency of fluid heating and cooling processes, underscoring its importance in the realm of thermal management and energy conservation. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of the physical model.</p>
Full article ">Figure 2
<p>Grid independence test for varying step sizes.</p>
Full article ">Figure 3
<p>Comparisons between the exact solutions and numerical solutions.</p>
Full article ">Figure 4
<p>Impact of <span class="html-italic">β</span> on temperature (<b>a</b>) and concentration (<b>b</b>) when <span class="html-italic">Pr</span> = 5, <span class="html-italic">Bi</span> = <span class="html-italic">Le</span> = 1, <span class="html-italic">Nt</span> = 0.5 and <span class="html-italic">Nb</span> = 0.7.</p>
Full article ">Figure 5
<p>Impact of <span class="html-italic">Pr</span> on temperature (<b>a</b>) and concentration (<b>b</b>) for <span class="html-italic">β</span> = 0.8 and <span class="html-italic">β</span> = 1.0 when <span class="html-italic">Bi</span> = <span class="html-italic">Le</span> = 1, <span class="html-italic">Nt</span> = 0.5 and <span class="html-italic">Nb</span> = 0.7.</p>
Full article ">Figure 6
<p>Impact of <span class="html-italic">Bi</span> on temperature (<b>a</b>) and concentration (<b>b</b>) for <span class="html-italic">β</span> = 0.8 and <span class="html-italic">β</span> = 1.0 when <span class="html-italic">Pr</span> = 5, <span class="html-italic">Le</span> = 1, <span class="html-italic">Nt</span> = 0.5 and <span class="html-italic">Nb</span> = 0.7.</p>
Full article ">Figure 7
<p>Impact of <span class="html-italic">Nb</span> on temperature (<b>a</b>) and concentration (<b>b</b>) for <span class="html-italic">β</span> = 0.8 and <span class="html-italic">β</span> = 1.0 when <span class="html-italic">Pr</span> = 5, <span class="html-italic">Bi</span> = <span class="html-italic">Le</span> = 1 and <span class="html-italic">Nt</span> = 0.5.</p>
Full article ">Figure 8
<p>(<b>a</b>,<b>b</b>) Impact of <span class="html-italic">Nb</span>, <span class="html-italic">Bi</span> and <span class="html-italic">β</span> on <span class="html-italic">NuRe<sub>x</sub></span><sup>1/2</sup>.</p>
Full article ">Figure 9
<p>(<b>a</b>,<b>b</b>) Impact of <span class="html-italic">Nb</span>, <span class="html-italic">Bi</span> and <span class="html-italic">β</span> on <span class="html-italic">ShRe<sub>x</sub></span><sup>1/2</sup>.</p>
Full article ">
12 pages, 3348 KiB  
Proceeding Paper
Evaluation of Combined Effect of Zero Flux and Convective Boundary Conditions on Magnetohydrodynamic Boundary-Layer Flow of Nanofluid over Moving Surface Using Buongiorno’s Model
by Purnima Rai and Upendra Mishra
Eng. Proc. 2023, 59(1), 245; https://doi.org/10.3390/engproc2023059245 - 10 Apr 2024
Cited by 1 | Viewed by 793
Abstract
This study explores the synergistic impact of zero flux and convective boundary conditions on the magnetohydrodynamic (MHD) boundary-layer slip flow of nanofluid over a moving surface, utilizing Buongiorno’s model. In a landscape of expanding nanofluid applications, understanding boundary condition interactions is crucial. Employing [...] Read more.
This study explores the synergistic impact of zero flux and convective boundary conditions on the magnetohydrodynamic (MHD) boundary-layer slip flow of nanofluid over a moving surface, utilizing Buongiorno’s model. In a landscape of expanding nanofluid applications, understanding boundary condition interactions is crucial. Employing a systematic approach, we varied key parameters, including surface velocity, thermophoresis, Brownian motion, Eckert number, Prandtl number, and Lewis number, systematically investigating their effects on flow and heat transfer. Numerical simulations focused on critical metrics such as skin friction coefficients; Nusselt and Sherwood numbers; and temperature, concentration, and velocity profiles. Noteworthy findings include the amplifying effect of a magnetic field and viscous dissipation on temperature profiles and the dual impact of heightened velocity slip on temperature and velocity profiles, which result in a thicker concentration boundary layer. Beyond academia, we envision our research having practical applications in optimizing high-temperature processes, bio-sensors, paints, pharmaceuticals, coatings, cosmetics, and space technology. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

Figure 1
<p>Practical manifestation of the problem.</p>
Full article ">Figure 2
<p>Temperature profiles, <span class="html-italic">θ</span>(<span class="html-italic">η</span>), with different values of <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Concentration profiles, <span class="html-italic">ϕ</span>(<span class="html-italic">η</span>), with different values of <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>..</p>
Full article ">Figure 4
<p>Concentration profiles, <span class="html-italic">ϕ</span>(<span class="html-italic">η</span>), with different values of <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Temperature profiles, <span class="html-italic">θ</span>(<span class="html-italic">η</span>), with different values of <span class="html-italic">M</span>.</p>
Full article ">Figure 6
<p>Temperature profiles, <span class="html-italic">θ</span>(<span class="html-italic">η</span>), with different values of <span class="html-italic">Ec</span>.</p>
Full article ">Figure 7
<p>Concentration profiles, <span class="html-italic">ϕ</span>(<span class="html-italic">η</span>), with different values of Ec.</p>
Full article ">Figure 8
<p>Temperature profiles, <span class="html-italic">θ</span>(<span class="html-italic">η</span>), with different values of <span class="html-italic">Pr</span>.</p>
Full article ">Figure 9
<p>Temperature profiles, <span class="html-italic">θ</span>(<span class="html-italic">η</span>), with different values of <math display="inline"><semantics> <mi>ε</mi> </semantics></math>.</p>
Full article ">Figure 10
<p>Concentration profile, <span class="html-italic">ϕ</span>(<span class="html-italic">η</span>), with different values of <math display="inline"><semantics> <mi>ε</mi> </semantics></math>.</p>
Full article ">
16 pages, 4659 KiB  
Article
Studying Alumina–Water Nanofluid Two-Phase Heat Transfer in a Novel E-Shaped Porous Cavity via Introducing New Thermal Conductivity Correlation
by Taher Armaghani, Mojtaba Sepehrnia, Maysam Molana, Manasik M. Nour and Amir Safari
Symmetry 2023, 15(11), 2057; https://doi.org/10.3390/sym15112057 - 13 Nov 2023
Cited by 1 | Viewed by 1089
Abstract
Investigating natural convection heat transfer of nanofluids in various geometries has garnered significant attention due to its potential applications across several disciplines. This study presents a numerical simulation of the natural convection heat transfer and entropy generation process in an E-shaped porous cavity [...] Read more.
Investigating natural convection heat transfer of nanofluids in various geometries has garnered significant attention due to its potential applications across several disciplines. This study presents a numerical simulation of the natural convection heat transfer and entropy generation process in an E-shaped porous cavity filled with nanofluids, implementing Buongiorno’s simulation model. Analyzing the behavior of individual nanoparticles, or even the entire nanofluid system at the molecular level, can be extremely computationally intensive. Symmetry is a fundamental concept in science that can help reduce this computational burden considerably. In this study, nanofluids are frequently conceived of as a combination of water and Al2O3 nanoparticles at a concentration of up to 4% by volume. A unique correlation was proposed to model the effective thermal conductivity of nanofluids. The average Nusselt number, entropy production, and Rayleigh number have been illustrated to exhibit a decreasing trend when the volume concentration of nanoparticles inside the porous cavity rises; the 4% vol. water–alumina NFs yield 17.35% less average Nu number compared to the base water. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Figure 1
<p>The problem geometry. The blue and red lines show the cold and hot walls.</p>
Full article ">Figure 2
<p>The experimental versus forecasted effective thermal conductivity by the presented correlation [<a href="#B42-symmetry-15-02057" class="html-bibr">42</a>].</p>
Full article ">Figure 3
<p>The comparison of the obtained results with reference [<a href="#B43-symmetry-15-02057" class="html-bibr">43</a>].</p>
Full article ">Figure 4
<p>The temperature distribution of the 0% vol. NFs (base fluid).</p>
Full article ">Figure 5
<p>The streamlines of the 0% vol. NFs (base fluid).</p>
Full article ">Figure 6
<p>Entropy generation contour of the base fluid.</p>
Full article ">Figure 7
<p>Streamlines of the water–alumina NFs in natural convection for different nanoparticle volume concentrations (<b>a</b>) 0%, (<b>b</b>) 1%, (<b>c</b>) 2%, (<b>d</b>) 3%, and (<b>e</b>) 4%.</p>
Full article ">Figure 8
<p>The entropy generation contours of the water–alumina NFs for different nanoparticle volume concentrations (<b>a</b>) 0%, (<b>b</b>) 1%, (<b>c</b>) 2%, (<b>d</b>) 3%, and (<b>e</b>) 4%.</p>
Full article ">Figure 9
<p>Entropy generation of water–alumina NFs with a mean diameter of 33 nm versus the nanoparticle volume concentration.</p>
Full article ">Figure 10
<p>Average Nusselt number versus nanoparticle volume concentration for two different cases.</p>
Full article ">
21 pages, 7035 KiB  
Article
Melting Heat Transfer Rheology in Bioconvection Cross Nanofluid Flow Confined by a Symmetrical Cylindrical Channel with Thermal Conductivity and Swimming Microbes
by Fuad A. Awwad, Emad A. A. Ismail, Taza Gul, Waris Khan and Ishtiaq Ali
Symmetry 2023, 15(9), 1647; https://doi.org/10.3390/sym15091647 - 25 Aug 2023
Cited by 4 | Viewed by 1159
Abstract
Nonlinear thermal transport of non-Newtonian polymer flows is an increasingly important area in materials engineering. Motivated by new developments in this area which entail more refined and more mathematical frameworks, the present analysis investigates the boundary-layer approximation and heat transfer persuaded by a [...] Read more.
Nonlinear thermal transport of non-Newtonian polymer flows is an increasingly important area in materials engineering. Motivated by new developments in this area which entail more refined and more mathematical frameworks, the present analysis investigates the boundary-layer approximation and heat transfer persuaded by a symmetrical cylindrical surface positioned horizontally. To simulate thermal relaxation impacts, the bioconvection Cross nanofluid flow Buongiorno model is deployed. The study examines the magnetic field effect applied to the nanofluid using the heat generated, as well as the melting phenomenon. The nonlinear effect of thermosolutal buoyant forces is incorporated into the proposed model. The novel mathematical equations include thermophoresis and Brownian diffusion effects. Via robust transformation techniques, the primitive resulting partial equations for momentum, energy, concentration, and motile living microorganisms are rendered into nonlinear ordinary equations with convective boundary postulates. An explicit and efficient numerical solver procedure in the Mathematica 11.0 programming platform is developed to engage the nonlinear equations. The effects of multiple governing parameters on dimensionless fluid profiles is examined using plotted visuals and tables. Finally, outcomes related to the surface drag force, heat, and mass transfer coefficients for different influential parameters are presented using 3D visuals. Full article
(This article belongs to the Special Issue Symmetry in System Theory, Control and Computing)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Physical configuration and coordinates; (<b>b</b>) computational flow chart.</p>
Full article ">Figure 2
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>u</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>α</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>u</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>λ</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>u</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>M</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>N</mi> <mi>c</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>u</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>W</mi> <mi>e</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <msub> <mi>θ</mi> <mi>w</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>i</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>ε</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>α</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>Pr</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>λ</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>h</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>h</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <msub> <mo>∈</mo> <mn>1</mn> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>(<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>h</mi> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>α</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>(<b>a</b>,<b>b</b>) Υ<math display="inline"><semantics> <mrow> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mrow> <mo> </mo> <mi mathvariant="normal">P</mi> </mrow> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>(<b>a</b>,<b>b</b>) Υ<math display="inline"><semantics> <mrow> <mfenced> <mi>ς</mi> </mfenced> </mrow> </semantics></math> impacts for various <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mo> </mo> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo> </mo> <mi>α</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Skin friction estimation via <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>N</mi> <mi>r</mi> <mo>,</mo> <mi>N</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> parameters.</p>
Full article ">Figure 16
<p>Skin friction estimation via <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>M</mi> <mi>a</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> parameters.</p>
Full article ">Figure 17
<p>Heat transfer estimation via <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>M</mi> <mi>a</mi> <mo>,</mo> <mi>P</mi> <mi>r</mi> <mo>,</mo> <mi>N</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> parameters.</p>
Full article ">Figure 18
<p>Heat transfer estimation via different physical parameters <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mi>t</mi> <mo>,</mo> <mi>R</mi> <mi>d</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Mass flow rate estimation via different physical parameters <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>L</mi> <mi>e</mi> <mo>,</mo> <mi>Pr</mi> <mo>,</mo> <mi>N</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Mass flow rate estimation via different physical parameters <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>N</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Microorganism estimation via different physical parameters <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>M</mi> <mi>a</mi> <mo>,</mo> <mi>L</mi> <mi>b</mi> <mo>,</mo> <mi>P</mi> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p>
Full article ">
8 pages, 1982 KiB  
Proceeding Paper
Numerical Simulations on Heat Transfer Enhancement of Nanofluids in Microchannel Using Vortex Generator
by Yong-Bin Lee and Chuan-Chieh Liao
Eng. Proc. 2023, 38(1), 68; https://doi.org/10.3390/engproc2023038068 - 29 Jun 2023
Cited by 1 | Viewed by 941
Abstract
Vortex-induced vibration (VIV) is the periodic motion of a bluff body caused by fluid flow and is widely discussed in the engineering field. With the advancement of science and technology, miniaturization and integration have become the mainstream trends in biomedical chips and electronic [...] Read more.
Vortex-induced vibration (VIV) is the periodic motion of a bluff body caused by fluid flow and is widely discussed in the engineering field. With the advancement of science and technology, miniaturization and integration have become the mainstream trends in biomedical chips and electronic systems, resulting in higher heat dissipation requirements per unit area. Therefore, the improvement of the heat dissipation effect of movable structures in the flow channel has been widely discussed. Among them, adding VIV motion in the microchannel generates a vortex structure, which improves heat transfer efficiency. Different from the direct displacement method of active vibration, the passive displacement of VIV is a multi-physics problem. It needs to integrate the flow field and the spring-mass system of the object for fluid–solid coupling, which greatly increases the difficulty of analysis. In this study, the Immersed-boundary method (IBM) combined with the equation of motion is used to numerically study a vortex generator that is elastically installed in a microfluidic channel and is then used to enhance the convective heat transfer of nanofluids in the channel. Unlike the common body-fitted mesh, IBM greatly reduces the computational resources required for mesh regeneration when simulating the problem of object movement in fluid–structure interaction. In addition, Buongiorno’s two-phase mixing model is used to simulate the convective heat transfer of nanofluids in microchannels by considering the Brownian motion and thermophoretic diffusion of nanoparticles in the carrier liquid. By changing the important parameters such as nanofluid concentration, Reynolds number, mass ratio, and Ur, the influence of the response characteristics of vortex-induced vibration on the heat flow field in the microfluidic channel is discussed, and the key factors for enhancing heat transfer are found out. Full article
Show Figures

Figure 1

Figure 1
<p>Schemes follow the same formatting.</p>
Full article ">Figure 2
<p>(<b>A</b>) Compared with the data in Soti [<a href="#B13-engproc-38-00068" class="html-bibr">13</a>], the Strouhal number (<math display="inline"><semantics><mrow><mi>S</mi><mi>t</mi></mrow></semantics></math>) with the stationary circular cylinder of diameter (<math display="inline"><semantics><mi>D</mi></semantics></math>) kept inside a channel of height (<math display="inline"><semantics><mi>H</mi></semantics></math>) at <math display="inline"><semantics><mrow><mi>Re</mi><mo>=</mo><mn>100</mn></mrow></semantics></math>. (<b>B</b>) compared with the data in Kumar [<a href="#B5-engproc-38-00068" class="html-bibr">5</a>], <math display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math> with <math display="inline"><semantics><mrow><mi>U</mi><mi>r</mi></mrow></semantics></math> at <math display="inline"><semantics><mrow><mi>Re</mi><mo>=</mo><mn>100</mn></mrow></semantics></math>.</p>
Full article ">Figure 3
<p>Mesh independence study for Ur = 4. Effect of elements on (<b>A</b>) maximum amplitude <math display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math> and (<b>B</b>) frequency ratio <math display="inline"><semantics><mrow><msub><mi>f</mi><mi>v</mi></msub><mo>/</mo><msub><mi>f</mi><mi>n</mi></msub></mrow></semantics></math>.</p>
Full article ">Figure 4
<p>(<b>A</b>) mean position (moving upward), (<b>B</b>) upper extreme, (<b>C</b>) mean position (moving downward), and (<b>D</b>) lower extreme positions of the cylinder vorticity plot and isotherm plot. The legend “vorticity” is used for the upper plot, and the legend “T” is used for the lower plot.</p>
Full article ">Figure 5
<p>(<b>A</b>) the <math display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math> curve of different <math display="inline"><semantics><mrow><mi>U</mi><mi>r</mi></mrow></semantics></math> and <math display="inline"><semantics><mi>φ</mi></semantics></math>. (<b>B</b>) the <math display="inline"><semantics><mrow><mi>N</mi><mi>u</mi><mo>/</mo><mi>N</mi><msub><mi>u</mi><mrow><mi>s</mi><mi>t</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>a</mi><mi>r</mi><mi>y</mi></mrow></msub></mrow></semantics></math> curve of different <math display="inline"><semantics><mi>φ</mi></semantics></math>s.</p>
Full article ">
26 pages, 12128 KiB  
Article
Cubic Chemical Autocatalysis and Oblique Magneto Dipole Effectiveness on Cross Nanofluid Flow via a Symmetric Stretchable Wedge
by Nor Ain Azeany Mohd Nasir, Tanveer Sajid, Wasim Jamshed, Gilder Cieza Altamirano, Mohamed R. Eid and Fayza Abdel Aziz ElSeabee
Symmetry 2023, 15(6), 1145; https://doi.org/10.3390/sym15061145 - 24 May 2023
Cited by 12 | Viewed by 1772
Abstract
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model [...] Read more.
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model along with its chemical processes via auto catalysts, inclined magnetic field phenomena, heat generation, Brownian movement, and thermophoresis phenomena over a symmetric shrinking (stretching) wedge. The transport of heat via nonuniform heat sources/sinks, the impact of thermophoretic diffusion, and Brownian motion are considered. The Buongiorno nanofluid model is used to investigate the impact of nanofluids on fluid flow. Modeled PDEs are transformed into ODEs by utilizing similarity variables and handling dimensionless ODEs numerically with the adoption of MATLAB’s developed bvp4c technique. This software performs a finite difference method that uses the collocation method with a three-stage LobattoIIIA strategy. Obtained outcomes are strictly for the case of a symmetric wedge. The velocity field lessens due to amplification in the magneto field variable. Fluid temperature is amplified through the enhancement of Brownian diffusion and the concentration field improves under magnification in a homogeneous reaction effect. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
Show Figures

Figure 1

Figure 1
<p>Geometrical representation of flow model for (<b>a</b>) stretching wedge <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mi>w</mi> </msub> <mfenced> <mi>x</mi> </mfenced> <mo>&gt;</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math> and (<b>b</b>) shrinking wedge <math display="inline"><semantics> <mrow> <mfenced> <mrow> <msub> <mi>u</mi> <mi>w</mi> </msub> <mfenced> <mi>x</mi> </mfenced> <mo>&lt;</mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math> with suction/injection (<math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>w</mi> </msub> <mfenced> <mi>x</mi> </mfenced> </mrow> </semantics></math>), temperature of the flow (<math display="inline"><semantics> <mi>T</mi> </semantics></math>), magnetic field <math display="inline"><semantics> <mrow> <mi>B</mi> <mfenced> <mi>x</mi> </mfenced> </mrow> </semantics></math>, angle of inclined for magnetic field <math display="inline"><semantics> <mrow> <mfenced> <mi>ω</mi> </mfenced> </mrow> </semantics></math>, and angle between two surfaces <math display="inline"><semantics> <mrow> <mfenced> <mi mathvariant="sans-serif">Ω</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Flow chart procedure of BVP4C scheme.</p>
Full article ">Figure 3
<p>Velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increasing for shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and increasing in the case of stretching wedge <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>W</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mn>2.5</mn> </mrow> </semantics></math>. The arrow direction points to the increase and decrease in <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>W</mi> <mi>e</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 4
<p>Velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increasing for shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and increasing in the case of stretching wedge <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <mn>0.7</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> </mrow> </semantics></math>. The arrow direction points to the increase and decrease in <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 5
<p>Velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increasing for shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and increasing in the case of stretching wedge <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by improving viscosity indicator <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow points to increments as well as decrements in <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 6
<p>Velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increasing for shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and increasing in the case of stretching wedge <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising suction/injection effect <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>w</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <mn>0.7</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> </mrow> </semantics></math>. The arrow direction points to the increase and decrease in <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>w</mi> </msub> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 7
<p>Temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increase for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising Brownian diffusion parameter <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mn>2.5</mn> </mrow> </semantics></math>. The arrow direction points upward which reflects an increment in <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 8
<p>Temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increase for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising Brownian diffusion parameter <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow direction points upward which reflects an increment in <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 9
<p>Temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> decrease for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising Prandtl number <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mn>3.5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> </mrow> </semantics></math>. The arrow direction points downward which reflects a decrement in <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 10
<p>Temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increase for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising heat generation <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> </mrow> </semantics></math>. The arrow direction points upward which reflects an increment in <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 11
<p>Concentration profile <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increase for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow direction points upward which reflects an increment in <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 12
<p>Concentration profile <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> decrease for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow direction points downward which reflects a decrement in <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 13
<p>Concentration profile <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> decrease for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> </mrow> </semantics></math>. The arrow direction points downward which reflects a decrement in <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 14
<p>Concentration profile <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> increase for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow direction points upward which reflects an increment in <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>η</mi> </mfenced> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 15
<p>Influence of <math display="inline"><semantics> <mi>n</mi> </semantics></math> on skin friction.</p>
Full article ">Figure 16
<p>Influence of <math display="inline"><semantics> <mi>M</mi> </semantics></math> on skin friction.</p>
Full article ">Figure 17
<p>Impact of We on the drag friction coefficient.</p>
Full article ">Figure 18
<p>Impact of <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math> on the Nusselt number.</p>
Full article ">Figure 19
<p>Investigation of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on the Nusselt number.</p>
Full article ">Figure 20
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on the Sherwood number.</p>
Full article ">Figure 21
<p>Entropy profile <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> </mrow> </semantics></math> decreases for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising wedge parameter <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> </mrow> </semantics></math>. The arrow direction is downward which reflects a decrement in <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 22
<p>Entropy profile <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> </mrow> </semantics></math> decreases for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising magnetic parameter <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow direction is downward which reflects a decrement in <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 23
<p>Entropy profile <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> </mrow> </semantics></math> increases for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising Reynold’s number <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>. The arrow direction is upward which reflects a magnification in <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 24
<p>Entropy profile <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> </mrow> </semantics></math> amplifies for both shrinking wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and stretching wedge case <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> by rising Brinkman number <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> </mrow> </semantics></math>. The arrow direction is upward which reflects an amplification in <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>g</mi> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 25
<p>Display of grid independence test for the case of the velocity field.</p>
Full article ">Figure 26
<p>Display of grid independence test for the case of temperature field.</p>
Full article ">Figure 27
<p>Sketch of grid independence test for the case of concentration field.</p>
Full article ">
15 pages, 3494 KiB  
Article
Heat and Mass Transport in Casson Nanofluid Flow over a 3-D Riga Plate with Cattaneo-Christov Double Flux: A Computational Modeling through Analytical Method
by Karuppusamy Loganathan, S. Eswaramoorthi, P. Chinnasamy, Reema Jain, Ramkumar Sivasakthivel, Rifaqat Ali and N. Nithya Devi
Symmetry 2023, 15(3), 725; https://doi.org/10.3390/sym15030725 - 14 Mar 2023
Cited by 9 | Viewed by 1629
Abstract
This work examines the non-Newtonian Cassonnanofluid’s three-dimensional flow and heat and mass transmission properties over a Riga plate. The Buongiorno nanofluid model, which is included in the present model, includes thermo-migration and random movement of nanoparticles. It also took into account the Cattaneo–Christov [...] Read more.
This work examines the non-Newtonian Cassonnanofluid’s three-dimensional flow and heat and mass transmission properties over a Riga plate. The Buongiorno nanofluid model, which is included in the present model, includes thermo-migration and random movement of nanoparticles. It also took into account the Cattaneo–Christov double flux processes in the mass and heat equations. The non-Newtonian Casson fluid model and the boundary layer approximation are included in the modeling of nonlinear partial differential systems. The homotopy technique was used to analytically solve the system’s governing equations. To examine the impact of dimensionless parameters on velocities, concentrations, temperatures, local Nusselt number, skin friction, and local Sherwood number, a parametric analysis was carried out. The velocity profile is augmented in this study as the size of the modified Hartmann number increases. The greater thermal radiative enhances the heat transport rate. When the mass relaxation parameter is used, the mass flux values start to decrease. Full article
(This article belongs to the Special Issue Symmetry in System Theory, Control and Computing)
Show Figures

Figure 1

Figure 1
<p>Physical geometry.</p>
Full article ">Figure 2
<p>Flow chart of HAM.</p>
Full article ">Figure 3
<p>The <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>−</mo> </mrow> </semantics></math> curves of (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mrow> <mo>″</mo> </mrow> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>g</mi> <mrow> <mo>″</mo> </mrow> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>ϕ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The <math display="inline"><semantics> <mi>x</mi> </semantics></math>-direction (<b>a</b>,<b>c</b>) and <math display="inline"><semantics> <mi>y</mi> </semantics></math>-direction (<b>b</b>,<b>d</b>) velocity for various values of <math display="inline"><semantics> <mi>β</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> for porous and non-porous RP.</p>
Full article ">Figure 5
<p>The variations of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for various values of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>i</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) over RP and SP (<b>a</b>), porous and non-porous RP (<b>b</b>), <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) for convective heating (<b>c</b>) and cooling (<b>d</b>) RP and SP, <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> (<b>e</b>) for heat generating and absorption and <math display="inline"><semantics> <mo>Γ</mo> </semantics></math> (<b>f</b>) for convective heating and cooling RP.</p>
Full article ">Figure 5 Cont.
<p>The variations of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for various values of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>i</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) over RP and SP (<b>a</b>), porous and non-porous RP (<b>b</b>), <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) for convective heating (<b>c</b>) and cooling (<b>d</b>) RP and SP, <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> (<b>e</b>) for heat generating and absorption and <math display="inline"><semantics> <mo>Γ</mo> </semantics></math> (<b>f</b>) for convective heating and cooling RP.</p>
Full article ">Figure 6
<p>The variations of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for different values of <span class="html-italic">Bi</span> (<b>a</b>,<b>b</b>) for SP and RP(<b>a</b>), porous and non-porous RP (<b>b</b>), <span class="html-italic">Hg</span> (<b>c</b>,<b>d</b>) for convective heating RP and SP (<b>c</b>) and convective cooling RP and SP (<b>d</b>), <span class="html-italic">Nb</span> (<b>e</b>,<b>f</b>) for convective heating with heat generation and absorption (<b>e</b>) and convective cooling with heat generation and absorption (<b>f</b>).</p>
Full article ">Figure 7
<p>The Skin friction in <math display="inline"><semantics> <mi>x</mi> </semantics></math>-direction (<b>a</b>) and <math display="inline"><semantics> <mi>y</mi> </semantics></math>-direction (<b>b</b>) with different values of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> for both fluids.</p>
Full article ">Figure 8
<p>The <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> </semantics></math> variations <span class="html-italic">Ha</span>&amp;<math display="inline"><semantics> <mrow> <mi>λ</mi> <mo> </mo> <mrow> <mo>(</mo> <mstyle mathvariant="bold"> <mi>a</mi> </mstyle> <mo>)</mo> </mrow> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>g</mi> <mo>&amp;</mo> <mi>N</mi> <mi>t</mi> <mrow> <mo>(</mo> <mstyle mathvariant="bold"> <mi>b</mi> </mstyle> <mo>)</mo> </mrow> <mrow> <mtext> </mtext> <mi>for</mi> <mtext> </mtext> <mi>both</mi> <mtext> </mtext> <mi>fluids</mi> <mtext> </mtext> <mi>and</mi> </mrow> <mo> </mo> <mi>P</mi> <mi>r</mi> <mo>&amp;</mo> <mo>Γ</mo> <mrow> <mo>(</mo> <mrow> <mstyle mathvariant="bold"> <mi>c</mi> </mstyle> <mo>,</mo> <mstyle mathvariant="bold"> <mi>d</mi> </mstyle> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for Casson nanofluid (<b>c</b>) and viscous nanoluid (<b>d</b>).</p>
Full article ">Figure 9
<p>The <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> <mi>h</mi> </mrow> <mi>x</mi> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>&amp;</mo> <mi>H</mi> <mi>a</mi> <mo> </mo> <mrow> <mo>(</mo> <mstyle mathvariant="bold"> <mi>a</mi> </mstyle> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo>&amp;</mo> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>b</b>) for both fluids and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> <mo>&amp;</mo> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>i</mi> <mo>=</mo> <mn>0.5</mn> <mtext> </mtext> <mrow> <mo>(</mo> <mstyle mathvariant="bold"> <mi>c</mi> </mstyle> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>i</mi> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mtext> </mtext> <mrow> <mo>(</mo> <mstyle mathvariant="bold"> <mi>d</mi> </mstyle> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> <mo>&amp;</mo> <msub> <mo>Γ</mo> <mi>C</mi> </msub> </mrow> </semantics></math> for Casson nanofluid (<b>e</b>) and viscous nanofluid (<b>f</b>).</p>
Full article ">
15 pages, 4692 KiB  
Article
Non-Unique Solutions of Magnetohydrodynamic Stagnation Flow of a Nanofluid towards a Shrinking Sheet Using the Solar Radiation Effect
by Sumayyah Alabdulhadi, Anuar Ishak, Iskandar Waini and Sameh E. Ahmed
Micromachines 2023, 14(3), 565; https://doi.org/10.3390/mi14030565 - 27 Feb 2023
Viewed by 1278
Abstract
This study aims to investigate the magnetohydrodynamic flow induced by a moving surface in a nanofluid and the occurrence of suction and solar radiation effects using the Buongiorno model. The numerical findings are obtained using MATLAB software. The effects of various governing parameters [...] Read more.
This study aims to investigate the magnetohydrodynamic flow induced by a moving surface in a nanofluid and the occurrence of suction and solar radiation effects using the Buongiorno model. The numerical findings are obtained using MATLAB software. The effects of various governing parameters on the rates of heat and mass transfer along with the nanoparticles concentration and temperature profiles are elucidated graphically. Non-unique solutions are discovered for a specific variation of the shrinking strength. The temporal stability analysis shows that only one of them is stable as time passes. Furthermore, raising the Brownian motion parameter reduces both the local Sherwood number and the local Nusselt number for both solutions. It is also observed that increasing the thermophoresis parameter reduces the rate of heat transfer, whereas the opposite trend is observed for the rate of mass transfer. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Figure 1

Figure 1
<p>Diagram of the present study.</p>
Full article ">Figure 2
<p>Local Nusselt number <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> <mi>R</mi> <msubsup> <mi>e</mi> <mi>x</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math> against <math display="inline"><semantics> <mi>ε</mi> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Local Sherwood number <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>h</mi> <mi>x</mi> </msub> <mi>R</mi> <msubsup> <mi>e</mi> <mi>x</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math> against <math display="inline"><semantics> <mi>ε</mi> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Local Nusselt number <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> <mi>R</mi> <msubsup> <mi>e</mi> <mi>x</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math> against <math display="inline"><semantics> <mi>ε</mi> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Local Sherwood number <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>h</mi> <mi>x</mi> </msub> <mi>R</mi> <msubsup> <mi>e</mi> <mi>x</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math> against <math display="inline"><semantics> <mi>ε</mi> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The concentration profile <math display="inline"><semantics> <mrow> <mi>φ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>The concentration profile <math display="inline"><semantics> <mrow> <mi>φ</mi> <mfenced> <mi>η</mi> </mfenced> </mrow> </semantics></math> for diverse values of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Smallest eigenvalues <math display="inline"><semantics> <mi>γ</mi> </semantics></math> for different values of <math display="inline"><semantics> <mi>ε</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mo>=</mo> <mn>6.2</mn> <mo>,</mo> <mtext> </mtext> <mi>N</mi> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mtext> </mtext> <mi>N</mi> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mtext> </mtext> <mi>R</mi> <mi>d</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mtext> </mtext> <msub> <mi>θ</mi> <mi>w</mi> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mtext> </mtext> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mtext> </mtext> <mi>B</mi> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mtext> </mtext> <mi>M</mi> <mo>=</mo> <mn>0.1</mn> <mrow> <mtext> </mtext> <mi>and</mi> <mtext> </mtext> </mrow> <mi>s</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 7929 KiB  
Article
Thermal Onsets of Viscous Dissipation for Radiative Mixed Convective Flow of Jeffery Nanofluid across a Wedge
by Yogesh Dadhich, Nazek Alessa, Reema Jain, Abdul Razak Kaladgi, Karuppusamy Loganathan and V. Radhika Devi
Symmetry 2023, 15(2), 385; https://doi.org/10.3390/sym15020385 - 1 Feb 2023
Cited by 3 | Viewed by 1778
Abstract
The current analysis discusses Jeffery nanofluid’s thermally radiative flow with convection over a stretching wedge. It takes into account the Brownian movement and thermophoresis of the Buongiorno nanofluid model. The guiding partial differential equations (PDEs) are modified by introducing the symmetry variables, leading [...] Read more.
The current analysis discusses Jeffery nanofluid’s thermally radiative flow with convection over a stretching wedge. It takes into account the Brownian movement and thermophoresis of the Buongiorno nanofluid model. The guiding partial differential equations (PDEs) are modified by introducing the symmetry variables, leading to non-dimensional ordinary differential equations (ODEs). To solve the generated ODEs, the MATLAB function bvp4c is implemented. Examined are the impacts of different flow variables on the rate of transmission of heat transfer (HT), temperature, mass, velocity, and nanoparticle concentration (NC). It has been noted that the velocity and mass transfer were increased by the pressure gradient factor. Additionally, the thermal boundary layer (TBL) and nanoparticle concentration are reduced by the mixed convection (MC) factor. In order to validate the present research, the derived numerical results were compared to previous findings from the literature while taking into account the specific circumstances. It was found that there was good agreement in both sets of data. Full article
(This article belongs to the Special Issue Recent Advances in Conjugate Heat Transfer)
Show Figures

Figure 1

Figure 1
<p>Mathematical model for the current analysis.</p>
Full article ">Figure 2
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, (<b>b</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, and (<b>c</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 2 Cont.
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, (<b>b</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, and (<b>c</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mi>M</mi> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math> vs. <math display="inline"><semantics> <mi>M</mi> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mi>Φ</mi> </semantics></math> vs.<math display="inline"><semantics> <mrow> <mo> </mo> <mi>M</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mi>M</mi> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math> vs. <math display="inline"><semantics> <mi>M</mi> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mi>Φ</mi> </semantics></math> vs.<math display="inline"><semantics> <mrow> <mo> </mo> <mi>M</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mo>,</mo> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mi>Φ</mi> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 4 Cont.
<p>(<b>a</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mo>,</mo> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mi>Φ</mi> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> <mo>,</mo> </mrow> </semantics></math> (<b>b</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> <mo>,</mo> </mrow> </semantics></math> and (<b>c</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>Φ</mi> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) θ vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> </mrow> </semantics></math>, and (<b>c</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>(<b>a</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mi>δ</mi> </semantics></math>, (<b>b</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mi>δ</mi> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mi>δ</mi> </semantics></math>.</p>
Full article ">Figure 8
<p>(<b>a</b>) <span class="html-italic">f′</span> vs. <span class="html-italic">N</span>, (<b>b</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mi>N</mi> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mi>Φ</mi> </semantics></math> vs. <math display="inline"><semantics> <mi>N</mi> </semantics></math>.</p>
Full article ">Figure 8 Cont.
<p>(<b>a</b>) <span class="html-italic">f′</span> vs. <span class="html-italic">N</span>, (<b>b</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mi>N</mi> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mi>Φ</mi> </semantics></math> vs. <math display="inline"><semantics> <mi>N</mi> </semantics></math>.</p>
Full article ">Figure 9
<p>(<b>a</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) θ vs. <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> </mrow> </semantics></math>, and (<b>c</b>) <span class="html-italic">f′</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) <span class="html-italic">θ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>, and (<b>c</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>(<b>a</b>) <span class="html-italic">θ</span> vs. <span class="html-italic">R</span>, (<b>b</b>) <span class="html-italic">Φ</span> vs. <math display="inline"><semantics> <mi>R</mi> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>(<b>a</b>) <span class="html-italic">f′</span> vs. <span class="html-italic">λ</span>, (<b>b</b>) <span class="html-italic">θ</span> vs. <span class="html-italic">λ</span>, and (<b>c</b>) <span class="html-italic">Φ</span> vs. <span class="html-italic">λ</span>.</p>
Full article ">Figure 12 Cont.
<p>(<b>a</b>) <span class="html-italic">f′</span> vs. <span class="html-italic">λ</span>, (<b>b</b>) <span class="html-italic">θ</span> vs. <span class="html-italic">λ</span>, and (<b>c</b>) <span class="html-italic">Φ</span> vs. <span class="html-italic">λ</span>.</p>
Full article ">Figure 13
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> </mrow> </semantics></math> vs. ????, (<b>b</b>) θ vs. ????, and (<b>c</b>) <span class="html-italic">Φ</span> vs. ????.</p>
Full article ">
23 pages, 9090 KiB  
Article
Analysis of Motile Gyrotactic Micro-Organisms for the Bioconvection Peristaltic Flow of Carreau–Yasuda Bionanomaterials
by Zahid Nisar and Humaira Yasmin
Coatings 2023, 13(2), 314; https://doi.org/10.3390/coatings13020314 - 31 Jan 2023
Cited by 30 | Viewed by 2212
Abstract
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the [...] Read more.
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the examination of the thermodynamic and mass transfer of a Carreau–Yasuda magnetic bionanomaterial with gyrotactic micro-organisms, which is facilitated by radiative peristaltic transport. A compliant/elastic symmetric channel subject to partial slip constraints was chosen. The features of viscous dissipation and ohmic heating were incorporated into thermal transport. We use the Brownian and thermophoretic movement characteristics of the Buongiorno nanofluid model in this study. A set of nonlinear ordinary differential equations are created from the partial differential equations that control fluid flow. The governing system of differential equations is solved numerically via the shooting technique. The results of pertinent parameters are examined through velocity, temperature, motile micro-organisms, concentration, and heat transfer rate. Full article
Show Figures

Figure 1

Figure 1
<p>Effect of <span class="html-italic">β</span><sub>1</sub> on <span class="html-italic">u</span>.</p>
Full article ">Figure 2
<p>Effect of <span class="html-italic">Gr</span> on <span class="html-italic">u</span>.</p>
Full article ">Figure 3
<p>Effect of <span class="html-italic">Gf</span> on <span class="html-italic">u</span>.</p>
Full article ">Figure 4
<p>Effect of <span class="html-italic">Gc</span> on <span class="html-italic">u</span>.</p>
Full article ">Figure 5
<p>Effect of <span class="html-italic">M</span> on <span class="html-italic">u</span>.</p>
Full article ">Figure 6
<p>Effect of <span class="html-italic">Pe</span> on <span class="html-italic">u</span>.</p>
Full article ">Figure 7
<p>Effect of <span class="html-italic">We</span> on <span class="html-italic">u</span>.</p>
Full article ">Figure 8
<p>Effects of <span class="html-italic">E</span><sub>1</sub>, <span class="html-italic">E</span><sub>2</sub> and <span class="html-italic">E</span><sub>3</sub> on <span class="html-italic">u</span>.</p>
Full article ">Figure 9
<p>Effect of <span class="html-italic">Gf</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 10
<p>Effect of <span class="html-italic">Gr</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 11
<p>Effect of <span class="html-italic">Nb</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 12
<p>Effect of <span class="html-italic">Rn</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 13
<p>Effect of <span class="html-italic">Br</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 14
<p>Effect of <span class="html-italic">β</span><sub>2</sub> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 15
<p>Effect of <span class="html-italic">Gc</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 16
<p>Effect of <span class="html-italic">We</span> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 17
<p>Effects of <span class="html-italic">E</span><sub>1</sub>, <span class="html-italic">E</span><sub>2</sub> and <span class="html-italic">E</span><sub>3</sub> on <span class="html-italic">θ</span>.</p>
Full article ">Figure 18
<p>Effect of <span class="html-italic">Pe</span> on <span class="html-italic">χ</span>.</p>
Full article ">Figure 19
<p>Effect of <span class="html-italic">ξ</span> on <span class="html-italic">χ</span>.</p>
Full article ">Figure 20
<p>Effect of <span class="html-italic">Nt</span> on <span class="html-italic">χ</span>.</p>
Full article ">Figure 21
<p>Effect of <span class="html-italic">Gf</span> on <span class="html-italic">χ</span>.</p>
Full article ">Figure 22
<p>Effect of <span class="html-italic">We</span> on <span class="html-italic">χ</span>.</p>
Full article ">Figure 23
<p><span class="html-italic">ψ</span> variation when (<b>a</b>) <span class="html-italic">We</span> = 0.1 and (<b>b</b>) <span class="html-italic">We</span> = 0.2.</p>
Full article ">Figure 23 Cont.
<p><span class="html-italic">ψ</span> variation when (<b>a</b>) <span class="html-italic">We</span> = 0.1 and (<b>b</b>) <span class="html-italic">We</span> = 0.2.</p>
Full article ">Figure 24
<p><span class="html-italic">ψ</span> variation when (<b>a</b>) <span class="html-italic">M</span> = 0.3 and (<b>b</b>) <span class="html-italic">M</span> = 0.7.</p>
Full article ">Figure 24 Cont.
<p><span class="html-italic">ψ</span> variation when (<b>a</b>) <span class="html-italic">M</span> = 0.3 and (<b>b</b>) <span class="html-italic">M</span> = 0.7.</p>
Full article ">
14 pages, 978 KiB  
Article
The Flow of a Thermo Nanofluid Thin Film Inside an Unsteady Stretching Sheet with a Heat Flux Effect
by Mohammed Alrehili
Energies 2023, 16(3), 1160; https://doi.org/10.3390/en16031160 - 20 Jan 2023
Cited by 3 | Viewed by 1226
Abstract
This research investigated the flow and heat mass transmission of a thermal Buongiorno nanofluid film caused by an unsteady stretched sheet. The movement of the nanoparticles through the thin film layer is caused by the strength of the heat flow and the stretching [...] Read more.
This research investigated the flow and heat mass transmission of a thermal Buongiorno nanofluid film caused by an unsteady stretched sheet. The movement of the nanoparticles through the thin film layer is caused by the strength of the heat flow and the stretching force of the sheet working together. The thermal thin-film flow and heat mechanism, and the properties of mass transfer along the film layer, were comprehensively investigated. The consequences of the heat generation, magnetic field, and dissipation phenomenon were also thoroughly examined. Using appropriate dimensionless variables, the fundamental time-dependent equations of thin film nanofluid flow and heat mass transfer were modeled and converted to the ordinary differential equations system. Mathematica version 12 is the software that was used to build the numerical code here. Next, the shooting technique was applied to numerically solve the transformed equations. The elegance of the shooting technique and evidence of the consistency, dependability, and precision of our acquired results is that the results are more effective than those for the thin film nanofluid equations that are now available. There is a significant degree of consistency between the recently calculated results and the results that have been published for a limiting condition. Investigations were conducted into the effects of a variety of parameters on the flow of nanoliquid films, including the Nusselt number, skin friction, and Sherwood number. In addition, a detailed overview of the physical embedded parameters is provided through graphs and tables. However, the important features of the most relevant outcomes are the effects of higher porous and unsteadiness parameters on minimizing the thickness of the thin film; and the viscoelastic parameter has the reverse effect. Additionally, it is seen that the temperature profile improves as a result of higher thermophoresis and Brownian motion parameter values. Full article
Show Figures

Figure 1

Figure 1
<p>Physical sketch of the suggested model.</p>
Full article ">Figure 2
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for assorted <span class="html-italic">S</span>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <span class="html-italic">S</span>.</p>
Full article ">Figure 3
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>α</mi> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>λ</mi> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>λ</mi> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>α</mi> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>λ</mi> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mi>ε</mi> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <span class="html-italic">R</span>.</p>
Full article ">Figure 7
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for assorted <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 22777 KiB  
Article
Analysis of Nonlinear Convection–Radiation in Chemically Reactive Oldroyd-B Nanoliquid Configured by a Stretching Surface with Robin Conditions: Applications in Nano-Coating Manufacturing
by Muhammad Nasir, Muhammad Waqas, O. Anwar Bég, Hawzhen Fateh M. Ameen, Nurnadiah Zamri, Kamel Guedri and Sayed M Eldin
Micromachines 2022, 13(12), 2196; https://doi.org/10.3390/mi13122196 - 11 Dec 2022
Cited by 14 | Viewed by 1733
Abstract
Motivated by emerging high-temperature manufacturing processes deploying nano-polymeric coatings, the present study investigates nonlinear thermally radiative Oldroyd-B viscoelastic nanoliquid stagnant-point flow from a heated vertical stretching permeable surface. Robin (mixed derivative) conditions were utilized in order to better represent coating fabrication conditions. The [...] Read more.
Motivated by emerging high-temperature manufacturing processes deploying nano-polymeric coatings, the present study investigates nonlinear thermally radiative Oldroyd-B viscoelastic nanoliquid stagnant-point flow from a heated vertical stretching permeable surface. Robin (mixed derivative) conditions were utilized in order to better represent coating fabrication conditions. The nanoliquid analysis was based on Buongiorno’s two-component model, which features Brownian movement and thermophoretic attributes. Nonlinear buoyancy force and thermal radiation formulations are included. Chemical reactions (constructive and destructive) were also considered since coating synthesis often features reactive transport phenomena. An ordinary differential equation model was derived from the primitive partial differential boundary value problem using a similarity approach. The analytical solutions were achieved by employing a homotopy analysis scheme. The influence of the emerging dimensionless quantities on the transport characteristics was comprehensively explained using appropriate data. The obtained analytical outcomes were compared with the literature and good correlation was achieved. The computations show that the velocity profile was diminished with an increasing relaxation parameter, whereas it was enhanced when the retardation parameter was increased. A larger thermophoresis parameter induces an increase in temperature and concentration. The heat and mass transfer rates at the wall were increased with incremental increases in the temperature ratio and first order chemical reaction parameters, whereas contrary effects were observed for larger thermophoresis, fluid relaxation and Brownian motion parameters. The simulations can be applied to the stagnated nano-polymeric coating of micromachines, robotic components and sensors. Full article
(This article belongs to the Special Issue Heat and Mass Transfer in Micro/Nanoscale)
Show Figures

Figure 1

Figure 1
<p>Flow model of Oldroyd-B nanoliquid.</p>
Full article ">Figure 2
<p>The <math display="inline"><semantics> <mo>ℏ</mo> </semantics></math> -curves against <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mrow> <mo> </mo> <mi>and</mi> <mo> </mo> </mrow> <mi>ϕ</mi> <mo>’</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Against <math display="inline"><semantics> <mrow> <mi>A</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Against <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Against <math display="inline"><semantics> <mrow> <mi>N</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Against <math display="inline"><semantics> <mrow> <mi>S</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Against <math display="inline"><semantics> <mrow> <mi>Pr</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Against <math display="inline"><semantics> <mrow> <mi>R</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>R</mi> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>1</mn> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Against <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Against <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>2</mn> </msub> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Against <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo> </mo> </mrow> </semantics></math>.</p>
Full article ">
23 pages, 21093 KiB  
Article
Effects of Hall Current and Viscous Dissipation on Bioconvection Transport of Nanofluid over a Rotating Disk with Motile Microorganisms
by Abdullah K. Alzahrani
Nanomaterials 2022, 12(22), 4027; https://doi.org/10.3390/nano12224027 - 16 Nov 2022
Cited by 6 | Viewed by 1414
Abstract
The study of rotating-disk heat-flow problems is relevant to computer storage devices, rotating machineries, heat-storage devices, MHD rotators, lubrication, and food-processing devices. Therefore, this study investigated the effects of a Hall current and motile microorganisms on nanofluid flow generated by the spinning of [...] Read more.
The study of rotating-disk heat-flow problems is relevant to computer storage devices, rotating machineries, heat-storage devices, MHD rotators, lubrication, and food-processing devices. Therefore, this study investigated the effects of a Hall current and motile microorganisms on nanofluid flow generated by the spinning of a disk under multiple slip and thermal radiation conditions. The Buongiorno model of a nonhomogeneous nanofluid under Brownian diffusion and thermophoresis was applied. Using the Taylor series, the effect of Resseland radiation was linearized and included in the energy equation. By implementing the appropriate transformations, the governing partial differential equations (PDEs) were simplified into a two-point ordinary boundary value problem. The classical Runge–Kutta dependent shooting method was used to find the numerical solutions, which were validated using the data available in the literature. The velocity, motile microorganism distribution, temperature, and concentration of nanoparticles were plotted and comprehensively analyzed. Moreover, the density number, Sherwood number, shear stresses, and Nusselt number were calculated. The radial and tangential velocity declined with varying values of magnetic numbers, while the concentration of nanoparticles, motile microorganism distribution, and temperature increased. There was a significant reduction in heat transfer, velocities, and motile microorganism distribution under the multiple slip conditions. The Hall current magnified the velocities and reduced the heat transfer. Thermal radiation improved the Nusselt number, while the thermal slip conditions reduced the Nusselt number. Full article
(This article belongs to the Special Issue Theory and Computational Model of Nanofluids)
Show Figures

Figure 1

Figure 1
<p>Physical configuration of the problem.</p>
Full article ">Figure 2
<p>Impact of M on <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>′</mo> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Impact of M on <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Impact of m on <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>′</mo> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Impact of m on <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Impact of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>′</mo> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Impact of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>g</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Impact of <math display="inline"><semantics> <mi>M</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Impact of <math display="inline"><semantics> <mi>m</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Impact of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Impact of <math display="inline"><semantics> <mi>R</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Impact of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Impact of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>Impact of <math display="inline"><semantics> <mi>M</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Impact of <math display="inline"><semantics> <mi>m</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Impact of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>3</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Impact of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>Impact of <math display="inline"><semantics> <mi>M</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ψ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 23
<p>Impact of <math display="inline"><semantics> <mi>m</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ψ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 24
<p>Impact of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ψ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 25
<p>Impact of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>4</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ψ</mi> <mfenced> <mi>ξ</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 26
<p>Impact of <math display="inline"><semantics> <mrow> <mi>M</mi> <mo> </mo> <mi>and</mi> <mo> </mo> <mi>m</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Re</mi> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 27
<p>Impact of <math display="inline"><semantics> <mrow> <mi>M</mi> <mo> </mo> <mi>and</mi> <mo> </mo> <mi>m</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Re</mi> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mi>g</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 28
<p>Impact of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> <mo> </mo> <mi>and</mi> <mo> </mo> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Re</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 29
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> <mo> </mo> <mi>and</mi> <mo> </mo> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Re</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 30
<p>Impact of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> <mo> </mo> <mi>and</mi> <mo> </mo> <msub> <mi>α</mi> <mn>3</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Re</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>S</mi> <mi>h</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 31
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> <mo> </mo> <mi>and</mi> <mo> </mo> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Re</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>S</mi> <mi>h</mi> </mrow> </semantics></math>.</p>
Full article ">
Back to TopTop