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Abstract: A model of quasilinear differential equations is derived in the context of Rational Extended
Thermodynamics to investigate some non-equilibrium phenomena in nanofluids. Following the
classical Buongiorno approach, the model assumes nanofluids to be suspensions of two phases:
nanoparticles and the base fluid. The field variables are the classical ones and, in addition, the stress
tensors and the heat fluxes of both constituents. Balance laws for all field variables are assumed.
The obtained system is not closed; therefore, universal physical principles, such as Galilean Invariance
and the Entropy Principles, are invoked to close the set of field equations. The obtained model is
also written in terms of the whole nanofluid and compared with the classical Buongiorno model.
This allowed also the identifications of some parameters in terms of experimental data. The obtained
set of field equations has the advantage to recover the Buongiorno model when the phenomena are
near equilibrium. At the same time it consists of a hyperbolic set of field equations. Hyperbolicity
guarantees finite speeds of propagation and more suitable descriptions of transient regimes. The
present model can be used in order to investigate waves, shocks and other phenomena that can be
easily described in hyperbolic systems. Furthermore, as a first application and in order to show
the potential of the model, stationary 1D solutions are determined and some thermal properties of
nanofluids are studied. The solution exhibits, already in the simplest case herein considered, a more
accurate evaluation of some fields like the stress tensor components.

Keywords: Rational Extended Thermodynamics; nanofluids; suspensions of fluids

1. Introduction

Nanofluids are engineering colloids, composed of nanoparticles and a base fluid.
Material used as nanoparticles are oxides, such as alumina, titania and copper oxide,
metals, such as copper and gold and also carbon nanotubes and diamond nanoparticles.
The base fluid is water or organic fluid, such as ethanol and ethylene glycol. Nanoparticles
size is very similar to those of the base fluid, so nanofluids are usually considered as a
suspension of nanoparticles into the fluid with little gravitational settling.

The study of heat and mass transfer of nanofluids between two parallel plates in
motion has been an interesting topic due to its wide spectrum of scientific and engineering
applications such as hydrodynamical machines, micro-sized cooling systems, lubrication
system, polymer processing, chemical processing equipment and preparation and disper-
sion of fog [1].

Boungiorno in [2] introduced a model inside the Classical Thermodynamic Theory
that consists of four balance equations for two components and that is able to describe
convective transport in nanofluids. The model considers nanofluids like mixtures of a
base fluid and nanoparticles. In this paper a non-equilibrium model for nanofluids inside
Rational Extended Thermodynamic Theory (RET) [3–5] is developed starting from the
classical Buongiorno’s assumptions [2]. The main reason for the present investigation
is that RET has shown very interesting results for mixtures [6] and moreover RET is
more appropriate [3–5] than Classical Thermodynamics to the description of some non-
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equilibrium phenomena such as acceleration waves [7], shock waves [8,9], micro and
nano-flows, second sound and light scattering [5,10,11].

Rational Extended Thermodynamics considers the dissipative fluxes as additional field
variables and introduces for these new fields appropriate balance equations. For monoatomic
gasses this kind of equations are obtained directly from the Boltzmann equation [12]
while, for other materials, coherent balance equations must be assumed. In order to close
the system, universal physical principles are adopted: Galilean invariance and Entropy
Principles. The obtained set of field equations is symmetric hyperbolic. Hyperbolicity
guarantees finite speeds of propagation, while symmetric hyperbolic systems imply the
well-posedness of Cauchy problems (i.e., existence, uniqueness and continuous dependence
on the data). Hyperbolic models overcome the paradox of infinite propagation speed of
disturbances, and they are better suited to describe transient regimes.

RET was firstly formulated by Müller and Ruggeri [3] to investigate the behavior of
monatomic gases, and then it was developed to study a wider range of gases: polyatomic
gases, moderately dense gases, and gas mixtures [4,5]. For the description of non-rarefied
gases, Ruggeri and Sugyama elaborated a model that consists of two hierarchies of mo-
ments: one for mass and the other for energy. Models with more than two hierarchies of
moments have recently emerged [13].

In the last years, different studies on Extended Thermodynamics have been carried
out on heat transfer in gas mixtures, see [5] and the references therein. The ET theory was
also generalized to dense and rarefied polyatomic gases, both in the classical [14] and in the
relativistic framework [15], where results are useful in cosmology to describe some aspects
of the post-recombination era. A relativistic version of the kinetic theory for polyatomic gas
is defined in [16], and relations between the fifteen-moments model for polyatomic gases
and the fourteen-moments model for monatomic gases are revealed [17].

ET is also applied to the investigation of different materials like metal electrons [18],
quantum systems [19], and graphene [20]. Unlike the ET theory, which was recently
conceived to study the mixture of gases, it has largely developed in biological phenomena.
In [21,22], an Extended Thermodynamic model for blood flow is defined in order to study
the behavior of red blood cells in narrow vessels showing accordance between the analytical
solutions of the model and experimental data. Furthermore, RET has been also applied
to hyperbolic reaction–diffusion system biological models. See [23,24], where different
patterns are studied, and [25], where a chronic disease is investigated, providing wave
solutions that occur at finite velocity.

Remarkable studies have been carried out on heat transfer in different symmetries [26]
and gas bubbles [27].

In this paper, it is shown how it is possible to obtain a hyperbolic model for nanofluids
that generalizes the classical Buongiorno model [2]. It is shown that also in the simplest
stationary heat transfer problem, the obtained solution is more accurate than the corre-
sponding classical case, when some non-equilibrium phenomena occur.

The paper is organized as follows: In Section 2, the mathematical model of Buon-
giorno [2] is introduced. In Section 3, a model of quasilinear balance laws is defined in the
context of Rational Extended Thermodynamics for the description of nanofluids, regarded
as a suspension of nanoparticles in a fluid. Sections 4–6 are dedicated to the universal
physical principles, which are invoked in Rational Extended Thermodynamics, in order
to determine the constitutive variables. Section 7 is devoted to a different but equivalent
form for the whole nanofluids field equations. In Section 8, production terms of balance
equations are obtained through Maxwellian iterations at the first order and then by com-
parison with Navier–Stokes and Fourier laws and with experimental data of viscosity and
thermal conductivity [2]. In Section 9, analytical solutions in the stationary 1D case are
determined for the temperature of nanofluids, and the thermal properties of nanoparticles
are discussed. Conclusions and future research perspectives are elaborated in Section 10.



Fluids 2024, 9, 193 3 of 17

2. Classical Buongiorno’s Theory

Buongiorno in [2] described nanofluids using the following set of balance equations:

∂vk
∂xk

= 0,

∂ϕ
∂t + vk

∂ϕ
∂xk

= − 1
ρp

∂Jp
k

∂xk
,

ρ ∂vi
∂t + ρvk

∂vi
∂xk

= − ∂p
∂xi

− ∂τik
∂xk

,

ρc ∂T
∂t + ρcvk

∂T
∂xk

= − ∂qk
∂xk

− hp
∂Jp

k
∂xk

.

(1)

The first equation represents the conservation law of mass for the whole nanofluid
with the hypothesis of incompressibility; vi is the nanofluid velocity. The second equation
is the conservation law of mass for nanoparticles. In this model, the density of nanofluid ρ
is assumed to be the average between the densities of nanoparticles ρp and base fluid ρ f ,
i.e.,

ρ = ρpϕ + ρ f (1 − ϕ), (2)

with ϕ being the volumetric fraction. The vector Jp represents the diffusion flux for the
nanoparticles, which is given by

Jp = −ρpDB∇ϕ − ρpDT
∇T
T

. (3)

It is the sum of two contributions: Brownian diffusion and the thermophoresis phe-
nomenon, which is equivalent to the Soret effect for gases or liquid mixtures. In [2],
an exhaustive description of all effects is presented, and the coefficients DB and DT are
explicitly evaluated in terms of the fields.

The third Equation (1)3 represents the balance law of momentum, with p as the total
pressure and τik as the stress tensor for the whole nanofluid. The fourth equation is the
conservation law of energy, with c being the specific heat of nanofluids

ρc = ρpcpϕ + ρ f c f (1 − ϕ), (4)

T is the temperature, qi is the heat flux, and hp denotes the specific particles’ enthalpy.
The total stress tensor is expressed according to the Navier–Stokes law as

τij = −pδij + 2µ
∂v<i
∂xj>

, (5)

while the total heat flux is the sum of two contributions. The first is due to the Fourier law,
and the second is related to the mass diffusion:

qi = −k
∂T
∂xi

+ hp Jp
i . (6)

The coefficients µ and k represent, respectively, the viscosity and the heat conductivity
of the whole nanofluid. In the applications in this paper, we consider a nanofluid to be
composed of alumina and water. We use the following expressions for viscosity and thermal
conductivity as reported in [2,28]:

µ = µ f (1 + 39.11ϕ + 533.9ϕ2), (7)

k = k f (1 + 7.47ϕ) (8)

with µ f and k f being the viscosity and heat conductivity of water.
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To have a more in-depth view of the thermophysical properties of nanofluids, restricted
not only to the aluminum–water but also to the copper–water pair, one can refer to the
appendix of [2] or in [28].

3. Rational Extended Thermodynamics

In order to investigate the thermophysical behavior of a nanofluid, a quasilinear
model for its two components, the base fluid and nanoparticles, is developed. The present
model contains 13 partial differential equations for the mass, momentum, stress tensor,
and heat flux of each constituent. In fact, following the guidelines of Rational Extended
Thermodynamics [3–5], the state of each component is not only given by the density,
velocity, and temperature but also by the stress tensor and heat flux, which are regarded as
additional field variables. Then, it is necessary to associate balance equations to these new
quantities instead of assuming the classical Navier–Stokes and Fourier constitutive laws.

The set of the balance equations for the model is

∂ρα

∂t +
∂ραvα

k
∂xk

= 0,

∂ραvα
i

∂t +
∂Fα

ik
∂xk

= Pα
i + ρα fi,

∂Mα
ij

∂t +
∂Fα

ijk
∂xk

= Pα
ij + 2ραvα

(i f j),

∂Mα
ill

∂t +
∂Fα

illk
∂xk

= Pα
ill + 3Mα

(il fl),

(9)

where α indicates the generic component of nanofluids; α = 1 refers to nanoparticles, while
α = 2 corresponds to the base fluid.

In detail, Equation (9)1 represents the conservation law of mass for both components.
Equation (9)2 is the conservation law for momentum, where Fα

ij is the corresponding flux,
Pα

i is the production term that takes into account the interaction forces between the two
components, and ρα fi the external force acting on the different constituents. In (9)3, we study
the evolution of the moment Mα

ij that must be determined in terms of the field variables. We
assume that the trace of this equation represents the balance law of energy for each constituent.
The traceless part of (9)3 must furnish the balance equation for the stress tensor. Pα

ij are the
production terms associated to Mα

ij. Round brackets in the indexes indicate symmetric part.
The last Equation (9)4 must express the balance equation for heat flux when the density Mα

ill,
the flux Fα

ikll, and the production Pα
ill are expressed in terms of the field variables.

Following Buongiorno’s paper [2], also here, only a single equation for the total energy
is considered. So in the following, we will take into account only the sum in α of the
traces Mα

ll and not separate balance equations. In this way, system (9) becomes a set of
25 equations for the 25 field variables: the two densities ρα, the two velocities vα

i , the total
temperature T, the two traceless parts of the stress tensors ρα

<ij> (square brackets in the
indexes denote the traceless part of a symmetric tensor) and the two heat fluxes qα

i .
We need now to close the system by determining the unknown functions. Rational

Extended Thermodynamics establishes that constitutive functions must be local and instan-
taneous, so they must depend, at each time and at each point, on field variables at the same
time and at the same point and not on their gradients. So it must hold that:

ψ = ψ(ρα, vα
i , T, ρα

<ij>, qα
i ) (10)

for all unknown quantities, indicated with ψ, in (9). We determine these functions by
invoking some universal physical principles, such as Galilean invariance and the En-
tropy Principles.
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4. Galilean Invariance

Galilean invariance imposes that the balance laws (9) must hold in every inertial
frame, so they must be invariant under Galilean transformation. This principle yields the
decomposition of the densities, fluxes and productions into convective and non-convective
parts (see for details [3] page 35 and [29]):

Fα
ik = ρα

ik + ραvα
i vα

k ,

Fα
ijk = ρα

ijk + 2ρα
k(iv

α
j) + mα

ijv
α
k + ραvα

i vα
j vα

k ,

Fα
ijks = ρα

ijks + 3ρα
k(ijv

α
s) + mα

ijsvα
k + 3ρα

k(iv
α
j vα

s) + 3mα
(ijv

α
s)v

α
k + ραvα

i vα
j vα

s vα
k ,

Mα
ij = mα

ij + ραvα
i vα

j ,

Mα
ijk = mα

ijk + 3mα
(ijv

α
k) + ραvα

i vα
j vα

k ,

Pα
<ij> = pα

ij + 2Pα
(iv

α
j),

Pα
ill = pα

ill + 3pα
(ilv

α
l) + 3Pα

(iv
α
l vα

l) + 3
mα
(il

ρα Pα
l),

(11)

where ρα, mα, and pα are the velocity-independent parts of the corresponding fields. They
are called internal parts. Some of these quantities are related to more common thermody-
namic variables:

ρα
ill = 2qα

i

ρα
ik = ρα

<ik> + pαδik

mα
ll = 2ραeα.

(12)

where ρα
ik is the stress tensor, qα

i is the heat flux, and ραeα is the total internal energy for the
α constituent. We observe, in fact, that (11)1 is the decomposition of the flux Fα

ik into stress
tensor ρα

ik and the velocity-dependent part, while the trace of (11)4 gives the decomposition
of the moment Mα

ll into twice internal energy and twice kinetic energy.
The insertion of (11) into (9) provides the explicit form of the balance equations, in

which only the derivatives of velocities are present and not the velocities themselves, ac-
cording to the requirement of Galilean invariance. Therefore, after some simple calculations,
system (9) becomes

dαρα

dt + ρα ∂vα
k

∂xk
= 0,

ρα dαvα
i

dt +
∂ρα

ik
∂xk

= Pα
i + ρα fi,

dαmα
ij

dt +
∂ρα

ijk
∂xk

+ 2ρα
k(i

∂vα
j)

∂xk
+ mα

ij
∂vα

k
∂xk

= pα
ij,

dαmα
ill

dt +
∂ρα

ikll
∂xk

+ mα
ill

∂vα
k

∂xk
+ 2ρα

ikl
∂vα

l
∂xk

+ρα
kll

∂vα
i

∂xk
− 3

mα
(il

ρα

∂ρα
l)k

∂xk
= pα

ill ,

(13)

where dα/dt = ∂/∂t + vα
k ∂/∂xk is the material derivative appropriate to each component.

Because of the definition of a single temperature for nanofluids, we consider, as already
said, a unique equation for the total energy that is given by the sum of the balance laws of
energy for each component:

∑
α

[
dαmα

ll
dt

+
∂ρα

llk
∂xk

+ 2ρα
kl

∂vα
l

∂xk
+ mα

ll
∂vα

k
∂xk

]
= 0, (14)

while we continue to deal with two different equations for the traceless parts of the stress tensor:

dαmα
<ij>

dt
+

∂ρα
<ij>k

∂xk
+ 2ρα

k<i

∂vα
j>

∂xk
+ mα

<ij>
∂vα

k
∂xk

= pα
<ij>. (15)
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We underline that the system is closed if the constitutive variables are determined
as follows:

ρα
<ijk> = ρα

<ijk>
(
ρα, T, ρα

<ik>, qα
i
)
,

ρα
ikll = ρα

ikll
(
ρα, T, ρα

<ik>, qα
i
)
,

mα
<ij> = mα

<ij>
(
ρα, T, ρα

<ik>, qα
i
)
,

mα
ill = mα

ill
(
ρα, T, ρα

<ik>, qα
i
)
.

(16)

In the next section, we will show that Rational Extended Thermodynamics is able to
limit the generality of these relations by the exploitation of the Entropy Principle.

5. Entropy Principle

The Entropy Principle states that there exists a concave function h, the entropy density,
that satisfies the balance law

∂h
∂t

+
∂hk
∂xk

= Ψ ≥ 0 (17)

for all solutions of the field Equation (13). Here, hk is the entropy flux, and Ψ is the entropy pro-
duction.

The requirement of validity of the Entropy Principle means that the field Equation (13)
provides some constraints for the fields that satisfy the entropy inequality. Rational Ex-
tended Thermodynamics [3] assumes the field equations to be constraints for the Entropy
Principle, and it takes into account these constraints by the introduction of Lagrange multi-
pliers [30] or main fields [31]: Λα for the conservation law of mass, Λα

i for the balance law
of momentum, Λll for the balance law of energy (in this case, we adopt a single Lagrange
multiplier for the entire system because we consider a unique energy), Λα

<ij> for the balance

law of stress tensor, and Λ̂α
i for the balance law of heat flux. So the entropy inequality can

be recast as follows:

∂h
∂t +

∂
∂xk

[hvk + ϕk]

−∑
α

Λα
[

dαρα

dt + ρα ∂vα
k

∂xk

]
−∑

α
Λα

i

[
ρα dαvα

i
dt +

∂ρα
ik

∂xk
− Pα

i − ρα fi

]
−Λll

[
∑
α

(
dαmα

ll
dt +

∂ρα
llk

∂xk
+ 2ρα

kl
∂vα

l
∂xk

+ mα
ll

∂vα
k

∂xk

)]
−∑

α
Λα

<ij>

[
dαmα

<ij>
dt +

∂ρα
<ij>k
∂xk

+ 2ρα
k<i

∂vα
j>

∂xk
+ mα

<ij>
∂vα

k
∂xk

− pα
<ij>

]
−∑

α
Λ̂α

i

[
dαmα

ill
dt +

∂ρα
ikll

∂xk
+ mα

ill
∂vα

k
∂xk

+ 2ρα
ikl

∂vα
l

∂xk

+ρα
kll

∂vα
i

∂xk
− 3

mα
(il

ρα

∂ρα
l)k

∂xk
− pα

ill

]
= Ψ ≥ 0

(18)

that must be valid for all ρα, T, vα
i , ρα

<ij> and qα
i .

The presence of Lagrange multipliers adds new unknown quantities, but it helps in
the determination of constitutive variables.

We are interested in studying thermodynamic processes not far from equilibrium,
in which non-equilibrium fluxes ρα

<ij> and qα
i vanish. With this condition, constitutive

variables can be expressed around the thermodynamic equilibrium as linear functions of
the non-equilibrium fluxes:
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mα
<ij> = γα

1 ρα
<ij>,

mα
ill = Aα

1qi,

ρα
ikll = Bα

0 δik + Bα
1 ρ<ik>,

ρα
<ijk> = 0.

(19)

The unknown functions γα
1 , Aα

1 , Bα
0 , and Bα

1 depend on the densities and the temper-
ature. In order to be coherent with all orders in (18), the entropic quantities and the
Lagrange multipliers must be expanded until terms of the second order. So the entropy
density and the entropy flux are given by

hα = hα
0 + hα

1ρα
<ij>ρα

<ij> + hα
2qα

i qα
i ,

ϕα
k = ϕα

1 qα
k + ϕα

2 ρα
<kl>qα

l

(20)

and the Lagrange multipliers become

Λα = Λα
0 + Λα

1ρα
<ij>ρα

<ij> + Λα
2qα

i qα
i ,

Λll = 3ϵ0 +
1
3 ∑α

[
ηα

2 ρα
<kl>ρα

<kl> + ηα
3 qα

l qα
l
]
,

Λα
<ij> = ηα

1 ρα
<ij> + ηα

2 ρα
<k<i>ρα

<j>k> + ηα
3 qα

<iq
α
j>,

Λ̂α
k = βα

1qα
k + βα

2ρα
<kl>qα

l .

(21)

The entropy inequality is solved by the substitution of (19)–(21) and setting the co-
efficients of all derivatives in the field variables equal to zero. A formidable set of both
algebraic and differential equations for all functions is determined in (19)–(21). For sim-
plicity, we write here only the equations that will be useful to determine the functions in
(19)–(21):

• For the coefficients related to the entropy density:

∂hα
0

∂ρα = Λα
0 + 2ϵ0

∂(ραeα)
∂ρα ,

∂hα
0

∂T = 2ϵ0
∂(ραeα)

∂T ,

hα
0 = ραΛα

0 + 2ϵ0(pα + ραeα),

(22)

∂hα
1

∂ρα = Λα
1 + ηα

1
∂γα

1
∂ρα + 2

3 ηα
2

∂(ραeα)
∂ρα ,

∂hα
1

∂T = ηα
1

∂γα
1

∂T + 2
3 ηα

2
∂(ραeα)

∂T ,

2hα
1 = ηα

1 γα
1 ,

hα
1 = ραΛα

1 + ηα
1 γα

1 +
2
3 ηα

2 ραeα,

(23)

∂hα
2

∂ρα = Λα
2 + βα

1
∂Aα

1
∂ρα + 2

3 ηα
3

∂(ραeα)
∂ρα ,

∂hα
2

∂T = βα
1

∂Aα
1

∂T + 2
3 ηα

3
∂(ραeα)

∂T ,

2hα
2 = βα

1 Aα
1 ,

hα
2 = ραΛα

2 + βα
1 Aα

1 +
4
5 βα

1 +
2
3 ηα

3 ραeα,

(24)

• For the coefficients related to the entropy flux:
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∂ϕα
1

∂ρα = βα
1

[
∂Bα

0
∂ρα − 10

3
ραeα

ρα
∂pα

∂ρα

]
,

∂ϕα
1

∂T = βα
1

[
∂Bα

0
∂T − 10

3
ραeα

ρα
∂pα

∂T

]
,

ϕα
1 = 2ϵ0,

(25)

∂ϕα
2

∂ρα = βα
1

[
∂Bα

1
∂ρα − 2

ρα γα
1

∂pα

∂ρα

]
+ βα

2

[
∂Bα

0
∂ρα − 10

3
ραeα

ρα
∂pα

∂ρα

]
,

∂ϕα
2

∂T = βα
1

[
∂Bα

1
∂T − 2

ρα γα
1

∂pα

∂T

]
+ βα

2

[
∂Bα

0
∂T − 10

3
ραeα

ρα
∂pα

∂T

]
,

ϕα
2 = 4

5 ηα
1 ,

ϕα
2 = βα

1

[
Bα

1 − 10
3

ραeα

ρα

]
(26)

• For the coefficients related to Lagrange multipliers:

ϵ0 + ∑α pαηα
1 = 0,

ηα
1 + pαηα

2 = 0,

3βα
1 + pαηα

3 = 0.

(27)

By combining and solving all these relations, we are able to determine the coefficients
in (19)–(21) by which we have represented the entropy density and flux, the Lagrange
multipliers, and in particular the constitutive variables, whose knowledge is essential to
close the system.

It should be noted that, by vanishing the derivatives, what remains of entropic in-
equality is the residual inequality

Ψ = ∑
α

[
Λα

ij p
α
ij + Λ̂α

i pα
ill

]
≥ 0 (28)

that entails linear relations between the production terms pα
ij and pα

ill and the Lagrange multipli-

ers Λα
ij and Λ̂α

i . The sign of the residual inequality must be verified once the unknown functions
are determined, and it provides the validity of solutions that are physically acceptable.

6. Evaluation of the Coefficients near Equilibrium

First of all, the equilibrium terms associated to the entropy density are determined: By
(22)1,2, the following relation is recovered,

dh0 = ∑
α

[
Λα

0 + 2ϵ0
∂(ραeα)

∂ρα

]
dρα + 2ϵ0 ∑

α

∂(ραeα)

∂T
dT, (29)

that can be compared with the Gibbs equation of equilibrium thermodynamics:

d
(

hα

ρα

)
=

1
T

(
deα − pα

ρ2
α

dρα

)
. (30)

This comparison yields the determination of the coefficients

ϵ0 = 1
2T , Λα

0 = − gα

T , (31)

where gα = − h0
ρα T + pα

ρα + eα is the chemical potential or Gibbs free energy. So the expression
of the equilibrium coefficient of the entropy density is

h0 = ∑
α

hα
0 = ∑

α

[
−ραgα

T
+

1
T
(pα + ραeα)

]
. (32)

From these results, and together with relations (23)–(27), we obtain, after some long
but simple computations, the final expressions of the constitutive relations:
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• The constitutive variables

ραeα = ραcα
V T,

mα
<ij> = 2

3
cα

V ραT
pα ρα

<ij>,

mα
ill =

4
3

cα
V ραT
pα qα

i ,

ρα
ikll =

10
3 cα

V pαTδik +
14
3 cα

V Tρα
<ik>

(33)

• The entropy density and entropy flux

hα = hα
0 −

cV ρα

6pα2 ρα
<ij>ρα

<ij> − ρα

5pα2T qα
i qα

i ,

ϕα
k = 1

T qα
k −

2
5

1
pαT ρα

<kl>qα
l ,

(34)

• The Lagrange multipliers

Λα = − gα

T − cα
V

6pα2 ρα
<ij>ρα

<ij> − 2
5pα2T qα

i qα
i ,

Λα
ll =

3
2T + ∑α

[
1

6pα2T ρα
<kl>ρα

<lk> + 3
10cα

V pα2T2 qα
l qα

l

]
Λα

<ij> = − 1
2pαT ρα

<ij> + 1
2pα2T ρα

<k<i>ρα
<j>k> + 9

10cα
V pα2T2 qα

<iq
α
j>,

Λ̂α
k = − 3

10cα
V pαT2 qα

k +
27

50cα
V pα2T2 ρα

<kl>qα
l ,

(35)

In conclusion, from (13) a system of 25 balance laws for the 25 unknown fields
ρα, T, vα

i , ρα
<ij>, and qα

i is determined. It is closed except for the production terms. The
system consists of the two conservations laws of mass (13)1, the two balance laws for the
momentum (13)2, the conservation law for the total energy (14), the two balance equations
for the traceless parts of the two stress tensors (15) and the two balance equations for the
heat fluxes (13)4. The left-hand side of these equations is completely explicit in terms of the
field variables through relations (33).

For the production terms, linear productions are considered. In particular, inside the
BGK assumption [32], we assume that the productions are proportional to the correspond-
ing densities minus their equilibrium values. With this assumption and by substituting the
constitutive relations (33) into the field equation corresponding to the α phase (13)1,2,4, (14),
and (15), we obtain

dαρα

dt + ρα ∂vα
k

∂xk
= 0,

ρα dαvα
i

dt +
∂ρα

<ik>
∂xk

+ ∂pα

∂xi
= − Jα

i
τα ,

∑α

[
dα(ραcα

V T)
dt +

∂qα
k

∂xk
+ ρα

<kl>
∂vα

l
∂xk

+ [pα + ραeα]
∂vα

k
∂xk

]
= 0,

dα
dt

[
2
3

ραcα
V Tρα

<ij>
pα

]
+ 4

5
∂qα

<i
∂xj>

+ 2ρα
k<i

∂vα
j>

∂xk
+ 2pα ∂vα

<i
∂xj>

+ 2
3

ραcα
V Tρα

<ij>
pα

∂vα
k

∂xk
= −

ρα
<ij>
τα

ρ
,

dα
dt

[
4
3

ραcα
V Tqα

i
pα

]
+ ∂

∂xk

[
14
3 cα

V Tρα
<ik>

]
+ 10

3 cα
V pα ∂T

∂xi
+
[

4
5 + 4

3
cα

V ραT
pα

]
qα

i
∂vα

k
∂xk

+ 14
5 qα

k
∂vα

i
∂xk

+ 4
5 qα

l
∂vα

l
∂xi

− cα
V T

3pα ρα
<il>

∂pα

∂xl
− 10

3 cα
V T ∂ρα

<ik>
∂xk

= − qα
i

τα
q

.

(36)

In the last equations, Jα
i = ρα

(
vα

i − vi
)

is the diffusion flux, and τα, τα
ρ and τα

q are the
relaxation times that will be evaluated with the Maxwellian iterations in Section 8. First,
in order to compare this model with the classical theory, we have to introduce the field
equations for the whole nanofluid, an alternative form that will be useful in Section 8.
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7. Field Equations for the Whole Nanofluid

In the previous sections, we studied separately the field equations for the two different
constituents of the nanofluid. The interaction between these two constituents was taken
into account in the production terms. We proceed now to obtain the balance equations for
the whole nanofluid from the balance equation for both constituents:

First of all, we define densities and fluxes for the whole nanofluid as the sum of the
corresponding terms related to the two phases α = 1, 2 in the following form:

ρ = ∑α ρα,

ρvk = ∑α ραvα
k , Fik = ∑α Fα

ik,

Mij = ∑α Mα
ij, Fijk = ∑α Fα

ijk,

Mill = ∑α Mα
ill , Fillk = ∑α Fα

illk,

(37)

and for the production terms

∑α Pα
i = 0, P<ij> = ∑α Pα

ij , Pill = ∑α Pα
ill . (38)

We observe that the baricentric velocity vi coincides with the velocity of the nanofluid
considered a single fluid. Furthermore, the whole production Pi must vanish since it refers
to the production terms of the conservation law for the total momentum, which must be a
conservation law. The same holds for the trace of the third equation for the conservation
law of the whole energy.

Then, the sum of (9) with α = 1, 2, yields the thirteen-moments model:

∂ρ
∂t +

∂ρvk
∂xk

= 0,

∂ρvi
∂t + ∂Fik

∂xk
= ρ fi,

∂Mij
∂t +

∂Fijk
∂xk

= 2ρv(i f j) + Pij,

∂Mill
∂t + ∂Fillk

∂xk
= 3M(il fl) + Pill ,

(39)

which is the equivalent set of (9), but it corresponds to the whole nanofluid.
Using the constitutive relations for the two constituents (11), (33), (37), and (38), it is

possible to recover the explicit form of the field equations. First of all, Equation (39) can be
written in terms of the diffusion velocity uα

i and the diffusion flux Jα
i , defined as

uα
i = vα

i − vi, Jα
i = ραuα

i . (40)

Indeed, by the use of these quantities and by the substitution of relations (11) into
(37) and (38), it is possible to obtain the decomposition of the quantities F, M and P in
terms of the convective and non-convective parts:

Fik = ρik + ρvivk,

Fijk = ρijk + 2ρk(ivj) + mijvk + ρvivjvk,

Mll = mll + ρvlvl ,

Mijk = mijk + 3m(ijvk) + ρvivjvk,

P<ij> = pij,

Pill = pill + 3p(ilvl).

(41)
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Clearly, these relations coincide with the consequence of the Galilean principle applied
to the whole nanofluid. Furthermore, the whole internal moments ρ, m and p depend on
the internal moment of the two components by relations

ρik = ∑α ρα
ik,

ρijk = ∑α

[
ρα

ijk + 2ρα
k(iu

α
j) + mα

iju
α
k

]
,

ρijks = ∑α

[
ρα

ijks + 3ρα
k(iju

α
s) + mα

ijsuα
k

]
,

mij = ∑α mα
ij,

mijk = ∑α

[
mα

ijk + 3mα
(iju

α
k)

]
,

p<ij> = ∑α pα
<ij>,

pill = ∑α

[
pα

ill + 3
mα
(il

ρα Pα
l)

]
.

(42)

In terms of these variables, it is possible to write Equation (39) in the explicit form

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂ρik

∂xk
= ρ fi,

dmll
dt + ∂ρkll

∂xk
+ 2ρkl

∂vl
∂xk

+ mll
∂vk
∂xk

= 0,

dm<ij>
dt +

∂ρ<ij>k
∂xk

+ 2ρk<i
∂vj>
∂xk

+ m<ij>
∂vk
∂xk

= p<ij>,

dmill
dt + ∂ρikll

∂xk
+ mill

∂vk
∂xk

+ 2ρikl
∂vl
∂xk

+ρkll
∂vi
∂xk

− 3
m(il

ρ

∂ρl)k
∂xk

= pill ,

(43)

that is equivalent to Equation (13) with the difference that this set corresponds to the whole
nanofluid. These equations are expressed in terms of the fields by use of (33) and (42).

It is then possible to note that Equation (43)1 coincides with the conservation law of the
whole mass of the nanofluid, Equation (43)2 is the conservation law of the total momentum,
and Equation (43)3 is the conservation law for the total energy, which coincides with the
sum (14). The two remaining Equations (43)4,5 are the balance equations for the total stress
tensor and the total heat flux.

In conclusion, it is equivalent to deal with the 25 fields equations appropriate to both
constituents (36) with α = 1, 2, or to take into account the equations corresponding to one
constituent (let us say (36) α = 1) and the equations for the whole nanofluid.

As it will be shown in the next section, this second form, introduced in this chapter, is
more indicative of the comparison with the classical Buongiono model.

8. Comparison with the Classical Model

In this section, we compare the obtained field equations with the classical Buon-
giorno model.

Assuming that the whole fluid is incompressible and setting the ρ constant in the
conservation law of mass (43)1, this last equation coincides with the first classical Equa-
tion (1)1. Instead, inserting ρ1 = ρpϕ with the ρp constant in the conservation law of mass
for the first constituent (36)1 and taking into account the definitions (40), the balance law
(1)2 is obtained.

The conservation laws for the momentum and energy for the whole nanofluid (43)2,3
coincide with Equation (1)3,4, when the same symbols are used.
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The difference between the two theories lies in the remaining equations. In fact, as
already said, classical thermodynamics assumes Fick (3), Navier–Stokes (5), and Fourier (6)
laws in order to express the diffusion flux, the stress tensor, and the heat flux in terms of the
fields. In this section, we will show that these three laws can be obtained from the balance
laws for the momentum, the stress tensor, and the heat flux relative to the two constituents
using the so-called Maxwellian iterations (MI). With this procedure, it will be possible to
evaluate the relaxation times τ from the parameters that were evaluated by Buongiorno.

We proceed with the first MI, that is, we assume that the non-equilibrium quantities
on the left-hand side of the Equation (36)2,4,5 must vanish. This assumption is verified
since we assume that the relaxation times τ are small; therefore, on the left-hand side of the
corresponding equations, the non-equilibrium variables can be neglected in comparison
with the equilibrium quantities. So, in the first approximation, we recover from (36)2,4,5

∂pα

∂xi
= − Jα

i
τα ,

2pα ∂vα
<i

∂xj>
= −

ρα
<ij>
τα

ρ
,

10
3 cα

V pα ∂T
∂xi

= − qα
i

τα
q

.

(44)

These relations coincide with the Fick, Navier–Stokes, and Fourier laws for each
constituent with appropriate diffusion coefficients, viscosities and heat conductivities.
As already said, these relations are usually used in Classical Thermodynamics in order
to express the diffusion flux, the stress tensor, and the heat flux in terms of the gradient
of the density, velocity, and temperature. We can compare in details these relations with
the classical Buongiorno model. Comparing (44)1 with (3) and taking into account that in
Buongiorno ρ1 = ρpϕ, we have

τ1 ∂p1

∂ϕ = ρpDB,

τ1 ∂p1

∂T = ρp
DT
T .

(45)

The value of the diffusion coefficients DB, which is due to the Brownian diffusion, is
given by the Einstein–Stokes’ equation [2]

DB =
kBT

3πµdp
, (46)

where kB is the Boltzmann’s constant, µ is the viscosity of the fluid, and dp the nanopar-
ticle diameter. The second coefficient DB that takes into account the thermophoretic or
thermodiffusion effect is expressed by [2]

DT =
βµ

ρ
ϕ, (47)

where [33] β = 0.26 k
2k+kP

is a proportional factor, and k and kP are the thermal conductivi-
ties of the fluid and of the nanoparticles, respectively.

From the expression of the Navier–Stokes laws (44)2, it is possible to evaluate the
relaxations times τα

ρ in terms of the two viscosities, that is,

2p1τ1
ρ = µp and 2p2τ2

ρ = µ f . (48)

Instead, comparing the Fourier laws (44)3, it is possible to evaluate the two relaxation
times τα

q in terms of the two thermal conductivities:

10
3 c1

V p1τ1
q = kp and 10

3 c2
V p2τ2

q = k f . (49)
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Once the stress tensors and the heat fluxes of both constituents are identified, it is
possible to recover the whole stress tensor and the whole heat flux from (42)1,2, respectively.

ρik = ∑α ρα
ik =

(
p1 + p2)δik + 2

(
µp + µ f

)
∂v<i
∂xj>

,

1
2 ρill = qi = ∑α

[
−
(

kp + k f

)
∂T
∂xi

+
(

pα

ρα + eα
)

Jα
i

]
.

(50)

and these relations recover exactly the assumptions (5) and (6) in Buongiorno’s theory.
In this way, the whole viscosity µ = µ f + µp and the heat conductivity is the sum k = k f +
kp, so by (7) and (8), it is possible to evaluate the particles viscosity and heat conductivity
in terms of the viscosity and heat conductivity of the fluid and ϕ for the particular case of
alumina and water. Other kind of nanofluids can be evaluated in the same way.

9. Stationary 1D Solution

We propose as an application of the herein obtained model the stationary heat transfer
problem along the one-dimensional direction: x = x1. For the sake of simplicity, we set
σα = ρα

<11> and qα = qα
1 . We linearize the field equations around the constant state T0

and pα
0 , expressing every unknown function as the sum of a constant equilibrium value

and a linear perturbation in the non-equilibrium variables that vanishes at equilibrium.
Therefore, assuming that all fields in (36) depend only on the x-coordinate and neglecting
all terms of the second order, we obtain

dσα

dx + dpα

dx = 0,
d

dx
[
q1 + q2] = 0,

8
15

dqα

dx = − σα

τα
ρ0

,

4
3 cα

V T0
dσα

dx + 10
3 cα

V pα
0

dT
dx = − qα

τα
q0

.

(51)

In terms of the dimensionless variables

x̂ = x
L0

, T̂ = T
T0

, p̂α = pα

p0
, σ̂α = σα

p0
, q̂α = qα

p0
√

cα
V T0

, (52)

where L0 is the length of the 1D domain, p0 = p1
0 + p2

0, and with the expressions of the
dimensionless relaxation times

τ̂α
ρ0 =

τα
ρ0
√

cα
V T0

L0
, τ̂α

q0 =
τα

q0
√

cα
V T0

L0
, (53)

the model can be recast in the following form:

dσ̂α

dx̂ + dp̂α

dx̂ = 0,

d
dx̂

[√
cs

V

c f
V

q̂s + q̂ f
]
= 0,

8
15

dq̂α

dx̂ = − p̂α
0

σ̂α

τ̂α
ρ0

,

4
3

dσ̂α

dx̂ + 10
3 p̂α

0
dT̂
dx̂ = − q̂α

τ̂α
q0

.

(54)

This set of field equations can be easily analytically integrated. So, if we suppose that
the initial values of the pressure for the two phase are identical, we compute the following
solutions for the temperature field of the whole suspension and for each phase heat flux,
stress tensor and pressure,
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T̂(x̂) = 3
5

√
A
B

(
32
45

τ̂
f

ρ0B
A − 1

τ̂
f

q0

)(
c1 cosh

√
B
A x̂ + c2 sinh

√
B
A x̂
)
+

− 3
5

c0

Bτ̂
f

q0τ̂s
q0

x̂ + 3
5 c3,

q̂ f (x̂) = c0
Bτ̂s

q0
+ c2 cosh

√
B
A x̂ + c1 sinh

√
B
A x̂,

q̂s(x̂) = −q̂ f (x̂)

√
c f

V
cs

V
,

σ̂f (x̂) = − 8
15 τ̂

f
σ0

dq̂ f
dx̂ ,

σ̂s(x̂) = 8
15 τ̂s

σ0
dq̂ f
dx̂

√
c f

V
cs

V
,

P̂ f (x̂) = −σ̂ f (x̂) + c4,

P̂s(x̂) = −σ̂s(x̂) + c5,

(55)

where the constants A and B are given by

A =
P̂s

0

P̂ f
0

τ̂
f

σ0 +

√
c f

V
cs

V
τ̂s

σ0, B =
P̂s

0

P̂ f
0 τ̂

f
q0

+

√
c f

V
cs

V

1
τ̂s

q0
(56)

while c0–c5 are the integration constants that are determined by imposing boundary condi-
tions. We suppose that temperature assumes the following boundary values at x̂ = ±0.5:
T̂(−0.5) = 0.9 and T̂(0.5) = 1.1. Furthermore, since we deal with a linearized set of field
equations, we assume a skew-symmetric profile for the temperature field, so T̂(0) = 1 must
be verified. In this way, the solution for the temperature field is completely explicit, and it
is shown in Figure 1. We observe that the temperature fields assume the expected behavior
that is the sum of the classical linear behavior plus boundary layers due to the contribution
of the hyperbolic sine in (55)1.

Figure 1. Dependence of dimensionless values of temperature for the whole nanofluid on the x
one-dimensional direction. Temperature presents a linear behavior plus boundary layers.

The corresponding heat fluxes are represented in Figure 2. We observe that the heat
flux relative to the base fluid is negative, in accordance with the temperature behavior in
Figure 1, while the heat flux for the nanoparticles has the opposite sign.

In Figure 3, the components of the deviatoric parts of the stress tensor and the pressures
both relative to the base fluid and nanoparticles are represented. It is deduced from (54)1
that the total sum of the stress tensor and pressure for each component is constant.
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Figure 2. Dependence of dimensionless heat fluxes for base fluid (blue line) and for nanoparticles
(orange line) on the x one-dimensional direction.

(a) (b)

Figure 3. Dependence of dimensionless values of stress tensor (a) and pressure (b) for base fluid
(blue line) and nanoparticles (orange line) on the x one-dimensional direction.

10. Conclusions and Final Remarks

In conclusion, we make the following remarks:

• A quasilinear model for nanofluilds, considered a suspension of nanoparticles in a
fluid, is introduced in the context of Rational Extended Thermodynamics. It con-
sists of 13 partial differential equations for the mass, momentum, stress tensor, and
heat flux appropriate to both components. Constitutive variables are determined
through universal physical principles, and production terms are computed through
Maxwellian iterations.

• The model is linearized and solved in the stationary and one-dimensional space in
order to investigate some heat properties of nanofluids. Assuming nanofluid to be
a suspension of water and alumina, it is shown that the behavior of the temperature
field has a linear increase in the domain with boundary layers, which are more realistic
than the only linear result, but they cannot be obtained inside the classical theory.
Furthermore, the solution of the heat flux is depicted for both components, showing
the behavior of the base fluid and the nanoparticles. An interesting result is the
obtained solutions for the stress tensor components that do not identically vanish
although the nanofluid is at rest, so a more accurate evaluation of the stress tensor in
the whole nanofluid and in its constituents is carried out than the classical NS results.
In fact, Extended Thermodynamics is able to recover this kind of solution as in the
case of mixtures (see [6] and the references therein).

• In this study, all the unknown fields are determined and represented for each com-
ponent of the nanofluid in order to provide a complete description of the heat prob-
lem. Furthermore, the set of field equations of the entire nanofluid is determined.
The model presented here has the disadvantage that it contains many more equations
than in classical thermodynamics and therefore, the determination of the solution is
more complicated. On the contrary, the present model provides more accurate results.
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The integration of the model in the non-linear case is not at all simple and requires a
thorough numerical integration, which we hope to carry out in future work. Also, the
stationary solutions in the 1D domain in the presence of a flow could be an interesting
study, with the comparison of the results with the corresponding solutions in the
classical case.

• Moreover, the time-dependent behavior of the present model should be interesting.
For hyperbolic models, as in this case, they have a wide range of applications. It
could be interesting to study the acceleration and shock waves together with the shock
structure and its evolution with time. Finally, we aim to study in future papers some
different technical applications that deal also with nanofluids in the presence of a
magnetic field. This study will be very interesting for technical applications, and the
solution to the heat flux could be very interesting.
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Nomenclature
α = f fluid or p for nanoparticles
vi nanofluid velocity
ψ volumetric fraction
Jp
k diffusion flux

ρ density of nanofluid
pα pressure
ρα

ik = −τα
ik stress tensor

c specific heat of nanofluid
T temperature of nanofluid
qα

k heat flux
hp enthalpy
µ viscosity of nanofluid
k heat conductivity of nanofluid

Abbreviations
RET Rational Extended Thermodynamics
ET Extended Thermodynamics
BGK Bhatnagar–Gross–Krook
MI Maxwellian Iteration
NS Navier–Stokes equations
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