Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model
<p>Schematic diagram of the physical model.</p> "> Figure 2
<p>Grid independence test for varying step sizes.</p> "> Figure 3
<p>Comparisons between the exact solutions and numerical solutions.</p> "> Figure 4
<p>Impact of <span class="html-italic">β</span> on temperature (<b>a</b>) and concentration (<b>b</b>) when <span class="html-italic">Pr</span> = 5, <span class="html-italic">Bi</span> = <span class="html-italic">Le</span> = 1, <span class="html-italic">Nt</span> = 0.5 and <span class="html-italic">Nb</span> = 0.7.</p> "> Figure 5
<p>Impact of <span class="html-italic">Pr</span> on temperature (<b>a</b>) and concentration (<b>b</b>) for <span class="html-italic">β</span> = 0.8 and <span class="html-italic">β</span> = 1.0 when <span class="html-italic">Bi</span> = <span class="html-italic">Le</span> = 1, <span class="html-italic">Nt</span> = 0.5 and <span class="html-italic">Nb</span> = 0.7.</p> "> Figure 6
<p>Impact of <span class="html-italic">Bi</span> on temperature (<b>a</b>) and concentration (<b>b</b>) for <span class="html-italic">β</span> = 0.8 and <span class="html-italic">β</span> = 1.0 when <span class="html-italic">Pr</span> = 5, <span class="html-italic">Le</span> = 1, <span class="html-italic">Nt</span> = 0.5 and <span class="html-italic">Nb</span> = 0.7.</p> "> Figure 7
<p>Impact of <span class="html-italic">Nb</span> on temperature (<b>a</b>) and concentration (<b>b</b>) for <span class="html-italic">β</span> = 0.8 and <span class="html-italic">β</span> = 1.0 when <span class="html-italic">Pr</span> = 5, <span class="html-italic">Bi</span> = <span class="html-italic">Le</span> = 1 and <span class="html-italic">Nt</span> = 0.5.</p> "> Figure 8
<p>(<b>a</b>,<b>b</b>) Impact of <span class="html-italic">Nb</span>, <span class="html-italic">Bi</span> and <span class="html-italic">β</span> on <span class="html-italic">NuRe<sub>x</sub></span><sup>1/2</sup>.</p> "> Figure 9
<p>(<b>a</b>,<b>b</b>) Impact of <span class="html-italic">Nb</span>, <span class="html-italic">Bi</span> and <span class="html-italic">β</span> on <span class="html-italic">ShRe<sub>x</sub></span><sup>1/2</sup>.</p> ">
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Conservation Equations for Nanofluids with Fractional Calculus
2.2. Problem Statement
3. Numerical Technique
3.1. Solution Procedure
3.2. Numerical Example
4. Results and Discussion
4.1. Temperature and Concentration Profiles
4.2. Nusselt Number and Sherwood Number
5. Conclusions
- The parameter β exhibits a modest influence on temperature fluctuations. In contrast, it markedly influences concentration distributions, with pronounced effects observed in the vicinity of boundary surface.
- Intersection points appearing in the concentration curves for different values of β reflect the system’s sensitivity to historical states. As the value of β decreases, the system’s response to historical influences becomes more sensitive.
- At β = 0.8, concentrations and temperatures near the wall are lower compared to the integer-order case against the parameters Pr, Bi and Nb, respectively.
- At β = 0.8, the local Nusselt number experiences a modest increase, whereas the local Sherwood number demonstrates a significant enhancement contrast to the performance observed in the integer-order case.
- Decreasing the value of β results in higher local Nusselt number and Sherwood number, which highlights the enhancement in the efficiency of thermal and mass transfer processes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bahiraei, M.; Heshmatian, S. Electronics cooling with nanofluids: A critical review. Energy Convers. Manag. 2018, 172, 438–456. [Google Scholar]
- Balakin, B.V.; Stava, M.; Kosinska, A. Photothermal convection of a magnetic nanofluid in a direct absorption solar collector. Sol. Energy 2022, 239, 33–39. [Google Scholar]
- Ho, C.J.; Peng, J.K.; Yang, T.F.; Rashidi, S. On the assessment of the thermal performance of microchannel heat sink with nanofluid. Int. J. Heat Mass Transf. 2023, 201, 123572. [Google Scholar]
- Hussain, S.M.; Jamshed, W.; Safdar, R. Chemical reaction and thermal characteristics of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno’s model. Energy Environ. 2023, 34, 1409–1432. [Google Scholar]
- Sheikholeslami, M.; Khalili, Z. Simulation for impact of nanofluid spectral splitter on efficiency of concentrated solar photovoltaic thermal system. Sustain. Cities Soc. 2024, 101, 105139. [Google Scholar]
- Huminic, G.; Huminic, A. Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review. J. Mol. Liq. 2020, 302, 112533. [Google Scholar]
- Mebarek-Oudina, F.; Preeti; Sabu, A.S. Hydromagnetic flow of magnetite-water nanofluid utilizing adapted Buongiorno model. Int. J. Mod. Phys. B 2023, 38, 2450003. [Google Scholar]
- Oreyeni, T.; Akindele, A.O.; Obalalu, A.M. Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo–Christov heat flux model: Solar-powered ship application. Numer. Heat Transf. Part A Appl. 2023, 85, 1954–1972. [Google Scholar]
- Mahian, O.; Kolsi, L.; Amani, M. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48. [Google Scholar]
- Deymi-Dashtebayaz, M.; Rezapour, M.; Farahnak, M. Modeling of a novel nanofluid-based concentrated photovoltaic thermal system coupled with a heat pump cycle (CPVT-HP). Appl. Therm. Eng. 2022, 201, 117765. [Google Scholar]
- Bahiraei, M. Particle migration in nanofluids: A critical review. Int. J. Therm. Sci. 2016, 109, 90–113. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar]
- Yang, C.; Li, W.; Sano, Y.; Mochizuki, M.; Nakayama, A. On the anomalous convective heat transfer enhancement in nanofluids: A theoretical answer to the nanofluids controversy. Heat Transf. 2013, 135, 054504. [Google Scholar]
- Glässl, M.; Hilt, M.; Zimmermann, W. Convection in nanofluids with a particle-concentration-dependent thermal conductivity. Phys. Rev. E 2011, 83, 046315. [Google Scholar]
- Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 2011, 50, 1326–1332. [Google Scholar]
- Awais, M.; Hayat, T.; Irum, S.; Alsaedi, A. Heat generation/absorption effects in a boundary layer stretched flow of Maxwell nanofluid: Analytic and numeric solutions. PLoS ONE 2015, 10, 0129814. [Google Scholar]
- Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Jamnani, M.S. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl. Therm. Eng. 2011, 31, 1833–1838. [Google Scholar]
- Sheikholeslami, M.; Khalil, Z.; Scardi, P.; Ataollahi, N. Concentrated solar photovoltaic cell equipped with thermoelectric layer in presence of nanofluid flow within porous heat sink: Impact of dust accumulation. Sustain. Cities Soc. 2023, 98, 104866. [Google Scholar]
- Sheikholeslami, M.; Khalili, Z. Investigation of solar photovoltaic cell utilizing hybrid nanofluid confined jet and helical fins for improving electrical efficiency in existence of thermoelectric module. Appl. Therm. Eng. 2023, 234, 121329. [Google Scholar]
- Hasan, H.A.; Togun, H.; Abed, A.M.; Qasem, N.A.A.; Abderrahmane, A.; Guedri, K. Numerical investigation on cooling cylindrical lithium-ion-battery by using different types of nanofluids in an innovative cooling system. Case Stud. Therm. Eng. 2023, 49, 103097. [Google Scholar]
- Zhang, H.; Liu, F.; Chen, S.; Anh, V.; Chen, J. Fast numerical simulation of a new time-space fractional option pricing model governing European call option. Appl. Math. Comput. 2018, 339, 186–198. [Google Scholar]
- Zhang, M.; Shen, M.; Chen, H. An implicit numerical method for the Riemann-Liouville distributed-order space fractional diffusion equation. Fractal Fract. 2023, 7, 382. [Google Scholar] [CrossRef]
- Baleanu, D.; Shekari, P.; Torkzadeh, L.; Ranjbar, H.; Jajarmi, A.; Nouri, K. Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study. Chaos Solitons Fractals 2023, 166, 112990. [Google Scholar]
- Wang, T.; Song, F.; Wang, H.; Karniadakis, G.E. Fractional Gray–Scott model: Well-posedness, discretization, and simulations. Comput. Methods Appl. Mech. Eng. 2019, 347, 1030–1049. [Google Scholar]
- Li, X.; Mao, Z.; Wang, N.; Song, F.; Wang, H.; Karniadakis, G.E. A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation. Comput. Methods Appl. Mech. Eng. 2022, 366, 113053. [Google Scholar]
- Yalçınkaya, İ.; Ahmad, H.; Tasbozan, O.; Kurt, A. Soliton solutions for time fractional ocean engineering models with Beta derivative. J. Ocean Eng. Sci. 2022, 7, 444–448. [Google Scholar]
- Sun, H.; Jiang, L.; Xia, Y. LBM simulation of non-Newtonian fluid seepage based on fractional-derivative constitutive model. J. Pet. Sci. Eng. 2022, 213, 110378. [Google Scholar]
- Chen, X.; Ye, Y.; Zhang, X.; Zheng, L. Lie-group similarity solution and analysis for fractional viscoelastic MHD fluid over a stretching sheet. Comput. Math. Appl. 2018, 75, 3002–3011. [Google Scholar]
- Zhang, K.; Shah, N.A.; Vieru, D.; El-Zahar, E.R. Memory effects on conjugate buoyant convective transport of nanofluids in annular geometry: A generalized Cattaneo law of thermal flux. Int. Commun. Heat Mass Transf. 2022, 135, 106138. [Google Scholar]
- Asifa; Anwar, T.; Kumam, P.; Muhammad, S. New fractional model to analyze impacts of Newtonian heating, shape factor and ramped flow function on MgO-SiO2-Kerosene oil hybrid nanofluid. Case Stud. Therm. Eng. 2022, 38, 102361. [Google Scholar]
- Khan, N.; Ali, F.; Ahmad, Z.; Murtaza, S.; Ganie, A.H.; Khan, I.; Eldin, S.M. A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Sci. Rep. 2013, 13, 4428. [Google Scholar]
- Asjad, M.I.; Usman, M.; Kaleem, M.M.; Akgül, A. Numerical solutions of fractional Oldroyd-B hybrid nanofluid through a porous medium for a vertical surface. Waves Random Complex Media 2022, 2128233, 1–21. [Google Scholar]
- Pan, M.; Zheng, L.; Liu, C. A stochastic model for thermal transport of nanofluid in porous media: Derivation and applications. Comput. Math. Appl. 2018, 75, 1226–1236. [Google Scholar]
- Shen, M.; Chen, L.; Zhang, M.; Liu, F. A renovated Buongiorno’s model for unsteady Sisko nanofluid with fractional Cattaneo heat flux. Int. J. Heat Mass Transf. 2018, 126, 277–286. [Google Scholar]
- Shen, M.; Chen, S.; Liu, F. Unsteady MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid with Cattaneo heat flux and different particle shapes. Chin. J. Phys. 2018, 56, 1199–1211. [Google Scholar]
- Zhang, M.; Shen, M.; Liu, F.; Zhang, H. A new time and spatial fractional heat conduction model for Maxwell nanofluid in porous medium. Comput. Math. Appl. 2019, 78, 1621–1636. [Google Scholar]
- Hashimoto, S.; Yamaguchi, S.; Harada, M.; Nakajima, K.; Kikuchi, T.; Ohishi, K. Anomalous behavior of liquid molecules near solid nanoparticles: Novel interpretation on thermal conductivity enhancement in nanofluids. J. Colloid Interface Sci. 2023, 638, 475–486. [Google Scholar]
- Metzler, R.; Jeon, J.-H.; Cherstvy, A.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [Google Scholar]
- Fuliński, A. Fractional Brownian motions: Memory, diffusion velocity, and correlation functions. J. Phys. A Math. Theor. 2017, 50, 054002. [Google Scholar]
- Ha, S.N. A nonlinear shooting method for two-point boundary value problems. Comput. Math. Appl. 2001, 42, 1411–1420. [Google Scholar]
Present | Muhammad Awais et al. [17] | Present | Muhammad Awais et al. [17] | |
---|---|---|---|---|
1 | 0.1482 | 0.1476 | 1.6841 | 1.6914 |
10 | 0.1557 | 0.1549 | 1.7046 | 1.7122 |
100 | 0.1564 | 0.1557 | 1.7067 | 1.7144 |
0.1565 | 0.1557 | 1.7070 | 1.7146 |
Δy | ϕ | |
---|---|---|
L∞ Error | L∞ Error | |
0.0100 | 5.06216 × 10−4 | 4.68095 × 10−4 |
0.0050 | 2.62164 × 10−4 | 2.34746 × 10−4 |
0.0025 | 1.33385 × 10−4 | 1.17656 × 10−4 |
0.0010 | 5.39142 × 10−5 | 4.71596 × 10−5 |
β | Bi | Pr | Nb | NuRex1/2 (Actual) | NuRex1/2 (Fitting) | ShRex1/2 (Actual) | ShRex1/2 (Fitting) |
---|---|---|---|---|---|---|---|
0.80 | 1 | 10 | 0.5 | 0.65486 | 0.65679 | 9.81537 | 9.84340 |
0.85 | 1 | 10 | 0.5 | 0.64924 | 0.64891 | 7.87356 | 7.87671 |
0.90 | 1 | 10 | 0.5 | 0.64230 | 0.64102 | 5.91359 | 5.91003 |
0.95 | 1 | 10 | 0.5 | 0.63369 | 0.63314 | 3.93860 | 3.94334 |
1.00 | 1 | 10 | 0.5 | 0.62298 | 0.62526 | 1.95130 | 1.97666 |
0.9 | 0.8 | 10 | 0.5 | 0.55484 | 0.56000 | 5.96766 | 5.95982 |
0.9 | 0.9 | 10 | 0.5 | 0.60031 | 0.60051 | 5.93946 | 5.93492 |
0.9 | 1.0 | 10 | 0.5 | 0.64230 | 0.64102 | 5.91359 | 5.91003 |
0.9 | 1.1 | 10 | 0.5 | 0.68116 | 0.68154 | 5.88979 | 5.88513 |
0.9 | 1.2 | 10 | 0.5 | 0.71722 | 0.72205 | 5.86784 | 5.86024 |
0.9 | 1 | 8 | 0.5 | 0.61279 | 0.61431 | 5.65584 | 5.66084 |
0.9 | 1 | 8.5 | 0.5 | 0.62094 | 0.62099 | 5.72303 | 5.72314 |
0.9 | 1 | 9 | 0.5 | 0.62854 | 0.62767 | 5.78829 | 5.78543 |
0.9 | 1 | 9.5 | 0.5 | 0.63564 | 0.63435 | 5.85177 | 5.84773 |
0.9 | 1 | 10 | 0.5 | 0.64230 | 0.64102 | 5.91359 | 5.91003 |
0.9 | 1 | 10 | 0.40 | 0.64996 | 0.64878 | 5.79001 | 5.80835 |
0.9 | 1 | 10 | 0.45 | 0.64615 | 0.64490 | 5.85863 | 5.85919 |
0.9 | 1 | 10 | 0.50 | 0.64230 | 0.64102 | 5.91359 | 5.91003 |
0.9 | 1 | 10 | 0.55 | 0.63840 | 0.63715 | 5.95862 | 5.96087 |
0.9 | 1 | 10 | 0.60 | 0.63446 | 0.63327 | 5.99621 | 6.01171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Liu, Y.; Yin, Q.; Zhang, H.; Chen, H. Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model. Fractal Fract. 2024, 8, 491. https://doi.org/10.3390/fractalfract8080491
Shen M, Liu Y, Yin Q, Zhang H, Chen H. Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model. Fractal and Fractional. 2024; 8(8):491. https://doi.org/10.3390/fractalfract8080491
Chicago/Turabian StyleShen, Ming, Yihong Liu, Qingan Yin, Hongmei Zhang, and Hui Chen. 2024. "Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model" Fractal and Fractional 8, no. 8: 491. https://doi.org/10.3390/fractalfract8080491
APA StyleShen, M., Liu, Y., Yin, Q., Zhang, H., & Chen, H. (2024). Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model. Fractal and Fractional, 8(8), 491. https://doi.org/10.3390/fractalfract8080491