[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
entropy-logo

Journal Browser

Journal Browser

Differential Equations and Networks for Description of Natural and Social Systems: Methodology and Applications

A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Complexity".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 23134

Special Issue Editors


E-Mail Website
Guest Editor
1. Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113 Sofia, Bulgaria
2 Climate, Atmosphere and Water Research Institute, Bulgarian Academy of Sciences, Blvd. Tzarigradsko Chaussee 66, 1784 Sofia, Bulgaria
Interests: nonlinear dynamics; nonlinear time series analysis; fluid mechanics; nonlinear partial differential equations; application of the methods of statistics and probability theory to natural, social and economic systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113 Sofia, Bulgaria
Interests: Solid state physics; Physics of complex systems; Nonlinear time series analysis and its application for extracting information from time series

Special Issue Information

Dear colleagues,

Networks are used as model of numerous complex natural and social systems. In order to study the characteristics of the processes in such networks, we often use differential equations and various quantities for network nodes or for larger segments of networks. This Special Issue intends to attract articles on the following topics:

  1. Nonlinear differential equations and methods of obtaining exact and approximate solutions of these equations;
  2. Quantities which can be used for characterization of processes in network nodes and segments containing many network nodes;
  3. Models of flows and other processes in systems which have a network structure, with special attention on models based on differential and difference equations.

As we want to contribute to increase the application of mathematical methodologies for the study of processes in social systems, we especially encourage articles which are devoted to the application of network models for the study of complex social and economic systems.

Prof. Dr. Nikolay K. Vitanov
Dr. Zlatinka I. Dimitrova
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 319 KiB  
Article
Inferred Rate of Default as a Credit Risk Indicator in the Bulgarian Bank System
by Vilislav Boutchaktchiev
Entropy 2023, 25(12), 1608; https://doi.org/10.3390/e25121608 - 30 Nov 2023
Cited by 1 | Viewed by 1097
Abstract
The inferred rate of default (IRD) was first introduced as an indicator of default risk computable from information publicly reported by the Bulgarian National Bank. We have provided a more detailed justification for the suggested methodology for forecasting the IRD on the bank-group- [...] Read more.
The inferred rate of default (IRD) was first introduced as an indicator of default risk computable from information publicly reported by the Bulgarian National Bank. We have provided a more detailed justification for the suggested methodology for forecasting the IRD on the bank-group- and bank-system-level based on macroeconomic factors. Furthermore, we supply additional empirical evidence in the time-series analysis. Additionally, we demonstrate that IRD provides a new perspective for comparing credit risk across bank groups. The estimation methods and model assumptions agree with current Bulgarian regulations and the IFRS 9 accounting standard. The suggested models could be used by practitioners in monthly forecasting the point-in-time probability of default in the context of accounting reporting and in monitoring and managing credit risk. Full article
Show Figures

Figure 1

Figure 1
<p>A comparison between inferred rates of default in Group 1 and Group 2 with the whole bank system. Left: corporate portfolio; right: retail portfolio. Adverse macroeconomic conditions affect the corporate portfolio with a delay. Group 2 banks react to corporate events with less agility.</p>
Full article ">
18 pages, 8885 KiB  
Article
Physics-Based Differentiable Rendering for Efficient and Plausible Fluid Modeling from Monocular Video
by Yunchi Cen, Qifan Zhang and Xiaohui Liang
Entropy 2023, 25(9), 1348; https://doi.org/10.3390/e25091348 - 17 Sep 2023
Viewed by 2037
Abstract
Realistic fluid models play an important role in computer graphics applications. However, efficiently reconstructing volumetric fluid flows from monocular videos remains challenging. In this work, we present a novel approach for reconstructing 3D flows from monocular inputs through a physics-based differentiable renderer coupled [...] Read more.
Realistic fluid models play an important role in computer graphics applications. However, efficiently reconstructing volumetric fluid flows from monocular videos remains challenging. In this work, we present a novel approach for reconstructing 3D flows from monocular inputs through a physics-based differentiable renderer coupled with joint density and velocity estimation. Our primary contributions include the proposed efficient differentiable rendering framework and improved coupled density and velocity estimation strategy. Rather than relying on automatic differentiation, we derive the differential form of the radiance transfer equation under single scattering. This allows the direct computation of the radiance gradient with respect to density, yielding higher efficiency compared to prior works. To improve temporal coherence in the reconstructed flows, subsequent fluid densities are estimated via a coupled strategy that enables smooth and realistic fluid motions suitable for applications that require high efficiency. Experiments on synthetic and real-world data demonstrated our method’s capacity to reconstruct plausible volumetric flows with smooth dynamics efficiently. Comparisons to prior work on fluid motion reconstruction from monocular video revealed over 50–170x speedups across multiple resolutions. Full article
Show Figures

Figure 1

Figure 1
<p>Our framework consists of two primary algorithm components: the <b>differentiable rendering component</b> and the <b>coupled density and velocity estimation component</b>. In this diagram, yellow and blue arrows delineate the directional flow of data between external and internal modules, respectively. The <b>differentiable rendering component</b> is utilized to refine volumetric representations extracted from a temporal sequence of fluidic images. We note that the current density fields are associated with the temporal epoch <span class="html-italic">t</span> − 1. These outputs subsequently serve as inputs for the <b>coupled density and velocity estimation component</b>. This component initially estimates the velocity field based on the density at temporal epoch <span class="html-italic">t</span> − 1. It then advects this velocity field to the subsequent temporal epoch <span class="html-italic">t</span> while enforcing incompressibility constraints. Finally, the density field is advected in accordance with the updated velocity field. The advected density volumes, along with their corresponding input images, are inputted into the differentiable renderer for final corrections.</p>
Full article ">Figure 2
<p>This figure provides a schematic diagram overviewing the relations between our proposed algorithms and the formulas presented in each subsection (Algorithm 2: Differentiable Renderer. Algorithm 3: Density Reconstruction. Algorithm 4: Coupled Density and Velocity Estimation. Algorithm 5: Velocity Reconstruction).</p>
Full article ">Figure 3
<p>Derivative analysis of density optimization. The initial volume was configured in the shape of a rabbit, with the density field optimized to match a target smoke image. The derivative images show an increasing density in blue and decreasing density in red. This color mapping accurately captures the evolution of the derivatives throughout the entire density optimization process.</p>
Full article ">Figure 4
<p>Validation of the physical constraint. (<b>a</b>) The input image sequence used to constrain the shape from orthogonal views. (<b>b</b>) The reconstructed results without the transport constraint. (<b>c</b>) The proposed constraint. We observed that adding the transport constraint significantly improved the reconstruction quality and temporal consistency.</p>
Full article ">Figure 5
<p>Validating the velocity estimation. We compared center-slice velocities from our estimation to the ground truth at frames <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>70</mn> <mo>,</mo> <mn>110</mn> </mrow> </semantics></math>, and 147 along the front and side views. The results exhibited some bias near the base, as no specialized inflow treatment was implemented. However, overall, the estimated velocities reasonably matched the ground truth, suggesting that our method could effectively and reliably characterize the fluid flow dynamics.</p>
Full article ">Figure 6
<p>Orthogonal view (angle 0<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> and angle 90<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>) reconstruction. The results demonstrate that our approach could produce highly realistic fluid motion that matched the ground truth closely. Our comparison with Franz et al. [<a href="#B5-entropy-25-01348" class="html-bibr">5</a>]’s method revealed that our method’s reconstructed ability was comparable to theirs.</p>
Full article ">Figure 7
<p>Reconstruction from real-world data. We utilized a monocular video captured from real-world fluid flows as input into our method, reconstructing at a volumetric resolution of 64 × 96 × 64. As illustrated in (<b>b</b>), the reconstructed flows rendered via <span class="html-italic">Mitsuba 3</span> demonstrated that our proposed approach could reconstruct physically plausible fluid motions from real-world video.</p>
Full article ">
22 pages, 820 KiB  
Article
Unpredictable and Poisson Stable Oscillations of Inertial Neural Networks with Generalized Piecewise Constant Argument
by Marat Akhmet, Madina Tleubergenova and Zakhira Nugayeva
Entropy 2023, 25(4), 620; https://doi.org/10.3390/e25040620 - 6 Apr 2023
Cited by 3 | Viewed by 1364
Abstract
A new model of inertial neural networks with a generalized piecewise constant argument as well as unpredictable inputs is proposed. The model is inspired by unpredictable perturbations, which allow to study the distribution of chaotic signals in neural networks. The existence and exponential [...] Read more.
A new model of inertial neural networks with a generalized piecewise constant argument as well as unpredictable inputs is proposed. The model is inspired by unpredictable perturbations, which allow to study the distribution of chaotic signals in neural networks. The existence and exponential stability of unique unpredictable and Poisson stable motions of the neural networks are proved. Due to the generalized piecewise constant argument, solutions are continuous functions with discontinuous derivatives, and, accordingly, Poisson stability and unpredictability are studied by considering the characteristics of continuity intervals. That is, the piecewise constant argument requires a specific component, the Poisson triple. The B-topology is used for the analysis of Poisson stability for the discontinuous functions. The results are demonstrated by examples and simulations. Full article
Show Figures

Figure 1

Figure 1
<p>The coordinates of function <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> exponentially approaches the unpredictable solution <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. For the special part <math display="inline"><semantics> <msub> <mi>z</mi> <mn>3</mn> </msub> </semantics></math> between 105 and 140, it is zoomed to demonstrate the appearance of non-smooth or discontinuous derivatives, with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>π</mi> <mi>i</mi> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mi mathvariant="double-struck">Z</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The coordinates of function <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>π</mi> <mi>i</mi> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0.1</mn> <mi>i</mi> <mo>,</mo> <mn>0.1</mn> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mi mathvariant="double-struck">Z</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The coordinates of function <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, when <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>π</mi> <mi>i</mi> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0.05</mn> <mi>i</mi> <mo>,</mo> <mn>0.05</mn> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mi mathvariant="double-struck">Z</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The trajectory of function <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
29 pages, 2619 KiB  
Article
Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics
by Nikolay K. Vitanov and Kaloyan N. Vitanov
Entropy 2023, 25(3), 438; https://doi.org/10.3390/e25030438 - 1 Mar 2023
Cited by 8 | Viewed by 5704
Abstract
The SIR model of epidemic spreading can be reduced to a nonlinear differential equation with an exponential nonlinearity. This differential equation can be approximated by a sequence of nonlinear differential equations with polynomial nonlinearities. The equations from the obtained sequence are treated by [...] Read more.
The SIR model of epidemic spreading can be reduced to a nonlinear differential equation with an exponential nonlinearity. This differential equation can be approximated by a sequence of nonlinear differential equations with polynomial nonlinearities. The equations from the obtained sequence are treated by the Simple Equations Method (SEsM). This allows us to obtain exact solutions to some of these equations. We discuss several of these solutions. Some (but not all) of the obtained exact solutions can be used for the description of the evolution of epidemic waves. We discuss this connection. In addition, we use two of the obtained solutions to study the evolution of two of the COVID-19 epidemic waves in Bulgaria by a comparison of the solutions with the available data for the infected individuals. Full article
Show Figures

Figure 1

Figure 1
<p>Influence of the recovery rate <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> on the number of infected people. Figure (<b>a</b>): the solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0057</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.003</mn> </mrow> </semantics></math> = Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>. Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>. Curve 5: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0065</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Influence of the transmission rate <math display="inline"><semantics> <mi>τ</mi> </semantics></math> on the number of infected people. Figure (<b>a</b>): the solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0095</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0115</mn> </mrow> </semantics></math>. Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0105</mn> </mrow> </semantics></math>. Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0095</mn> </mrow> </semantics></math>. Curve 5: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0088</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Influence of the parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> on the number of infected people. Figure (<b>a</b>): the solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are only changes in the value of parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,999, Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,000, Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,000. Figure (<b>b</b>): the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,500. Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,500. Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 995,000. Curve 5: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 990,000.</p>
Full article ">Figure 4
<p>Influence of the recovery rate <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> on the effective reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mi>n</mi> </msub> </semantics></math> from Equation (<a href="#FD47-entropy-25-00438" class="html-disp-formula">47</a>). Figure (<b>a</b>): the relationship (<a href="#FD53-entropy-25-00438" class="html-disp-formula">53</a>) obtained on the basis of the solution (<a href="#FD49-entropy-25-00438" class="html-disp-formula">49</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0057</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the relationship (<a href="#FD62-entropy-25-00438" class="html-disp-formula">62</a>) obtained on the basis of the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are only changes in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0065</mn> </mrow> </semantics></math>. Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Influence of the transmission rate <math display="inline"><semantics> <mi>τ</mi> </semantics></math> on the effective reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mi>n</mi> </msub> </semantics></math> Equation (<a href="#FD47-entropy-25-00438" class="html-disp-formula">47</a>). Figure (<b>a</b>): the relationship (<a href="#FD53-entropy-25-00438" class="html-disp-formula">53</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0095</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the relationship (<a href="#FD62-entropy-25-00438" class="html-disp-formula">62</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other cures, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0105</mn> </mrow> </semantics></math>. Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0115</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Influence of the parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> on the effective reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mi>n</mi> </msub> </semantics></math> Equation (<a href="#FD47-entropy-25-00438" class="html-disp-formula">47</a>). Figure (<b>a</b>): the relationship (<a href="#FD53-entropy-25-00438" class="html-disp-formula">53</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,999, Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,000, Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,000. Figure (<b>b</b>): the relationship (<a href="#FD62-entropy-25-00438" class="html-disp-formula">62</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,500. Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,500. Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 995,000. Curve 5: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 990,000.</p>
Full article ">Figure 7
<p>COVID-19 epidemic waves in Bulgaria. X-axis: days since the beginning of the pandemic in Bulgaria (8-th of March 2020). Y-axis: registered number <span class="html-italic">I</span> of infected people per day. Wave 2 and wave 3 will be compared to the analytical results in this article.</p>
Full article ">Figure 8
<p>The second large COVID-19 wave in Bulgaria and the best fit of the 7-day-averaged data with the solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people (7-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000982</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007878</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000893</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007883</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>The second large COVID-19 wave in Bulgaria and the best fit of the 14-day-average data from the solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people (14-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000985</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007875</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solutions (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000813</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007863</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>The third large COVID-19 wave in Bulgaria and the best fit of the 7-day-averaged data by the solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people (7-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000598</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005285</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solutions (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000599</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005296</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>The third large COVID-19 wave in Bulgaria and the best fit of the 14-day-averaged data from solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people 14-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000676</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005326</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solutions (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000699</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005299</mn> </mrow> </semantics></math>.</p>
Full article ">
16 pages, 562 KiB  
Article
Influence of Information Blocking on the Spread of Virus in Multilayer Networks
by Paulina Wątroba and Piotr Bródka
Entropy 2023, 25(2), 231; https://doi.org/10.3390/e25020231 - 27 Jan 2023
Cited by 3 | Viewed by 1492
Abstract
In this paper, we present the model of the interaction between the spread of disease and the spread of information about the disease in multilayer networks. Next, based on the characteristics of the SARS-CoV-2 virus pandemic, we evaluated the influence of information blocking [...] Read more.
In this paper, we present the model of the interaction between the spread of disease and the spread of information about the disease in multilayer networks. Next, based on the characteristics of the SARS-CoV-2 virus pandemic, we evaluated the influence of information blocking on the virus spread. Our results show that blocking the spread of information affects the speed at which the epidemic peak appears in our society, and affects the number of infected individuals. Full article
Show Figures

Figure 1

Figure 1
<p>An example of multilayer networks.</p>
Full article ">Figure 2
<p>State changes in <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>R</mi> </mrow> </semantics></math> model.</p>
Full article ">Figure 3
<p>State changes for <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>S</mi> </mrow> </semantics></math> model.</p>
Full article ">Figure 4
<p>The results for different scenarios; our baseline is <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>R</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>A</mi> <mi>U</mi> </mrow> </semantics></math> to which we compare two other processes. Each bar represents how much faster the peak day was or how many more nodes became infected (until the peak day or until day 150) compared to <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>R</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>A</mi> <mi>U</mi> </mrow> </semantics></math>, that is, the scenario where both the virus and the information start to spread at the same time.</p>
Full article ">Figure 5
<p>The results for different delay times (the baseline is <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>R</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>A</mi> <mi>U</mi> </mrow> </semantics></math> with 21 days delay) to which we compare two other delay periods. Each bar represents how much sooner or later (in case of negative values) the peak day was, or how many more or fewer (in the case of negative values) nodes became infected till peak day or till day 150.</p>
Full article ">
26 pages, 718 KiB  
Article
Exact Travelling-Wave Solutions of the Extended Fifth-Order Korteweg-de Vries Equation via Simple Equations Method (SEsM): The Case of Two Simple Equations
by Elena V. Nikolova
Entropy 2022, 24(9), 1288; https://doi.org/10.3390/e24091288 - 13 Sep 2022
Cited by 4 | Viewed by 1519
Abstract
We apply the Simple Equations Method (SEsM) for obtaining exact travelling-wave solutions of the extended fifth-order Korteweg-de Vries (KdV) equation. We present the solution of this equation as a composite function of two functions of two independent variables. The two composing functions are [...] Read more.
We apply the Simple Equations Method (SEsM) for obtaining exact travelling-wave solutions of the extended fifth-order Korteweg-de Vries (KdV) equation. We present the solution of this equation as a composite function of two functions of two independent variables. The two composing functions are constructed as finite series of the solutions of two simple equations. For our convenience, we express these solutions by special functions V, which are solutions of appropriate ordinary differential equations, containing polynomial non-linearity. Various specific cases of the use of the special functions V are presented depending on the highest degrees of the polynomials of the used simple equations. We choose the simple equations used for this study to be ordinary differential equations of first order. Based on this choice, we obtain various travelling-wave solutions of the studied equation based on the solutions of appropriate ordinary differential equations, such as the Bernoulli equation, the Abel equation of first kind, the Riccati equation, the extended tanh-function equation and the linear equation. Full article
Show Figures

Figure 1

Figure 1
<p>Numerical simulation of Equation (<xref ref-type="disp-formula" rid="FD36-entropy-24-01288">36</xref>) for <inline-formula><mml:math id="mm268"><mml:semantics><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>ν</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.001</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.02</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>ω</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.6</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 2
<p>Numerical simulation of Equation (<xref ref-type="disp-formula" rid="FD36-entropy-24-01288">36</xref>) for <inline-formula><mml:math id="mm269"><mml:semantics><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>ν</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.001</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.02</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>ω</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p>Numerical simulation of Equation (<xref ref-type="disp-formula" rid="FD36-entropy-24-01288">36</xref>) for <inline-formula><mml:math id="mm270"><mml:semantics><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>ν</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.001</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.02</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>ω</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">

Review

Jump to: Research

55 pages, 714 KiB  
Review
Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations
by Nikolay K. Vitanov
Entropy 2022, 24(11), 1653; https://doi.org/10.3390/e24111653 - 14 Nov 2022
Cited by 17 | Viewed by 6625
Abstract
Exact solutions of nonlinear differential equations are of great importance to the theory and practice of complex systems. The main point of this review article is to discuss a specific methodology for obtaining such exact solutions. The methodology is called the SEsM, or [...] Read more.
Exact solutions of nonlinear differential equations are of great importance to the theory and practice of complex systems. The main point of this review article is to discuss a specific methodology for obtaining such exact solutions. The methodology is called the SEsM, or the Simple Equations Method. The article begins with a short overview of the literature connected to the methodology for obtaining exact solutions of nonlinear differential equations. This overview includes research on nonlinear waves, research on the methodology of the Inverse Scattering Transform method, and the method of Hirota, as well as some of the nonlinear equations studied by these methods. The overview continues with articles devoted to the phenomena described by the exact solutions of the nonlinear differential equations and articles about mathematical results connected to the methodology for obtaining such exact solutions. Several articles devoted to the numerical study of nonlinear waves are mentioned. Then, the approach to the SEsM is described starting from the Hopf–Cole transformation, the research of Kudryashov on the Method of the Simplest Equation, the approach to the Modified Method of the Simplest Equation, and the development of this methodology towards the SEsM. The description of the algorithm of the SEsM begins with the transformations that convert the nonlinearity of the solved complicated equation into a treatable kind of nonlinearity. Next, we discuss the use of composite functions in the steps of the algorithms. Special attention is given to the role of the simple equation in the SEsM. The connection of the methodology with other methods for obtaining exact multisoliton solutions of nonlinear differential equations is discussed. These methods are the Inverse Scattering Transform method and the Hirota method. Numerous examples of the application of the SEsM for obtaining exact solutions of nonlinear differential equations are demonstrated. One of the examples is connected to the exact solution of an equation that occurs in the SIR model of epidemic spreading. The solution of this equation can be used for modeling epidemic waves, for example, COVID-19 epidemic waves. Other examples of the application of the SEsM methodology are connected to the use of the differential equation of Bernoulli and Riccati as simple equations for obtaining exact solutions of more complicated nonlinear differential equations. The SEsM leads to a definition of a specific special function through a simple equation containing polynomial nonlinearities. The special function contains specific cases of numerous well-known functions such as the trigonometric and hyperbolic functions and the elliptic functions of Jacobi, Weierstrass, etc. Among the examples are the solutions of the differential equations of Fisher, equation of Burgers–Huxley, generalized equation of Camassa–Holm, generalized equation of Swift–Hohenberg, generalized Rayleigh equation, etc. Finally, we discuss the connection between the SEsM and the other methods for obtaining exact solutions of nonintegrable nonlinear differential equations. We present a conjecture about the relationship of the SEsM with these methods. Full article
30 pages, 491 KiB  
Review
Flows of Substances in Networks and Network Channels: Selected Results and Applications
by Zlatinka I. Dimitrova
Entropy 2022, 24(10), 1485; https://doi.org/10.3390/e24101485 - 18 Oct 2022
Cited by 5 | Viewed by 2525
Abstract
This review paper is devoted to a brief overview of results and models concerning flows in networks and channels of networks. First of all, we conduct a survey of the literature in several areas of research connected to these flows. Then, we mention [...] Read more.
This review paper is devoted to a brief overview of results and models concerning flows in networks and channels of networks. First of all, we conduct a survey of the literature in several areas of research connected to these flows. Then, we mention certain basic mathematical models of flows in networks that are based on differential equations. We give special attention to several models for flows of substances in channels of networks. For stationary cases of these flows, we present probability distributions connected to the substance in the nodes of the channel for two basic models: the model of a channel with many arms modeled by differential equations and the model of a simple channel with flows of substances modeled by difference equations. The probability distributions obtained contain as specific cases any probability distribution of a discrete random variable that takes values of 0,1,. We also mention applications of the considered models, such as applications for modeling migration flows. Special attention is given to the connection of the theory of stationary flows in channels of networks and the theory of the growth of random networks. Full article
Show Figures

Figure 1

Figure 1
<p>The network and the channel. Solid lines denote nodes and edges that belong to the channel. Dashed lines denote the other nodes and edges of the network.</p>
Full article ">Figure 2
<p>Numbering of the nodes of the channel. The lower two indexes of the numbers of the nodes are shown.</p>
Full article ">Figure 3
<p>Flows connected with the <span class="html-italic">i</span>-th node of the channel. Nodes 0 and <span class="html-italic">N</span> exchange substances with only one of the other nodes of the channel. There is a possibility for an exchange of substances among flows between the nodes and (i) the network (arrows with dashed lines) or (ii) the environment of the network (arrows with dot-dashed lines).</p>
Full article ">
Back to TopTop