Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics
<p>Influence of the recovery rate <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> on the number of infected people. Figure (<b>a</b>): the solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0057</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.003</mn> </mrow> </semantics></math> = Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>. Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>. Curve 5: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0065</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Influence of the transmission rate <math display="inline"><semantics> <mi>τ</mi> </semantics></math> on the number of infected people. Figure (<b>a</b>): the solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0095</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0115</mn> </mrow> </semantics></math>. Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0105</mn> </mrow> </semantics></math>. Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0095</mn> </mrow> </semantics></math>. Curve 5: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0088</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Influence of the parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> on the number of infected people. Figure (<b>a</b>): the solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are only changes in the value of parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,999, Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,000, Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,000. Figure (<b>b</b>): the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,500. Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,500. Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 995,000. Curve 5: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 990,000.</p> "> Figure 4
<p>Influence of the recovery rate <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> on the effective reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mi>n</mi> </msub> </semantics></math> from Equation (<a href="#FD47-entropy-25-00438" class="html-disp-formula">47</a>). Figure (<b>a</b>): the relationship (<a href="#FD53-entropy-25-00438" class="html-disp-formula">53</a>) obtained on the basis of the solution (<a href="#FD49-entropy-25-00438" class="html-disp-formula">49</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0057</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the relationship (<a href="#FD62-entropy-25-00438" class="html-disp-formula">62</a>) obtained on the basis of the solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are only changes in the value of the parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0065</mn> </mrow> </semantics></math>. Curve 3: <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Influence of the transmission rate <math display="inline"><semantics> <mi>τ</mi> </semantics></math> on the effective reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mi>n</mi> </msub> </semantics></math> Equation (<a href="#FD47-entropy-25-00438" class="html-disp-formula">47</a>). Figure (<b>a</b>): the relationship (<a href="#FD53-entropy-25-00438" class="html-disp-formula">53</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0095</mn> </mrow> </semantics></math>, Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>, Curve 4: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>. Figure (<b>b</b>): the relationship (<a href="#FD62-entropy-25-00438" class="html-disp-formula">62</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other cures, there are changes only in the value of the parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0105</mn> </mrow> </semantics></math>. Curve 3: <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.0115</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Influence of the parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> on the effective reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mi>n</mi> </msub> </semantics></math> Equation (<a href="#FD47-entropy-25-00438" class="html-disp-formula">47</a>). Figure (<b>a</b>): the relationship (<a href="#FD53-entropy-25-00438" class="html-disp-formula">53</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,999, Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,000, Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,000. Figure (<b>b</b>): the relationship (<a href="#FD62-entropy-25-00438" class="html-disp-formula">62</a>). Curve 1: basic solution with parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,990, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the other curves, there are changes only in the value of the parameter <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Curve 2: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 999,500. Curve 3: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 998,500. Curve 4: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 995,000. Curve 5: <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> = 990,000.</p> "> Figure 7
<p>COVID-19 epidemic waves in Bulgaria. X-axis: days since the beginning of the pandemic in Bulgaria (8-th of March 2020). Y-axis: registered number <span class="html-italic">I</span> of infected people per day. Wave 2 and wave 3 will be compared to the analytical results in this article.</p> "> Figure 8
<p>The second large COVID-19 wave in Bulgaria and the best fit of the 7-day-averaged data with the solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people (7-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000982</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007878</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solution (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000893</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007883</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>The second large COVID-19 wave in Bulgaria and the best fit of the 14-day-average data from the solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people (14-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000985</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007875</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solutions (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000813</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.007863</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>The third large COVID-19 wave in Bulgaria and the best fit of the 7-day-averaged data by the solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people (7-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000598</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005285</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solutions (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000599</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005296</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>The third large COVID-19 wave in Bulgaria and the best fit of the 14-day-averaged data from solutions (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>) and (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). Dots: infected people 14-day average). Solid curves: Figure (<b>a</b>): solution (<a href="#FD50-entropy-25-00438" class="html-disp-formula">50</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000676</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005326</mn> </mrow> </semantics></math>. Figure (<b>b</b>): solutions (<a href="#FD58-entropy-25-00438" class="html-disp-formula">58</a>). <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0000699</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.005299</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Simple Equations Method (SEsM)
3. SEsM and Exact Analytical Solutions for a Chain of Equations Connected to the SIR Model of Epidemics
4. Discussion of the Obtained Exact Analytical Solutions to the Studied Chain of Equations from the Point of View of Modeling of Epidemic Waves
5. Epidemic Waves Based on Some of the Obtained Solutions
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Latora, V.; Nicosia, V.; Russo, G. Complex Networks. Principles, Methods, and Applications; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-10318-4. [Google Scholar]
- Chian, A.C.-L. Complex Systems Approach to Economic Dynamics; Springer: Berlin, Germany, 2007; ISBN 978-3-540-39752-6. [Google Scholar]
- Vitanov, N.K. Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-41629-8. [Google Scholar]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models, and Simulation; Springer: Berlin, Germany, 2013; ISBN 978-3-642-32460-4. [Google Scholar]
- Kutner, R.; Ausloos, M.; Grech, D.; Di Matteo, T.; Schinckus, C.; Stanley, H.E. Manifesto for a Post-Pandemic Modeling. Physica A 2019, 516, 240–253. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.H. The Economic Consequences of Immigration; The University of Michigan Press: Ann Arbor, MI, USA, 1999; ISBN 978-0472086160. [Google Scholar]
- Dimitrova, Z.I. Flows of Substances in Networks and Network Channels: Selected Results and Applications. Entropy 2022, 24, 1485. [Google Scholar] [CrossRef]
- Drazin, P.G. Nonlinear Systems; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-40489-4. [Google Scholar]
- Dimitrova, Z.I. Numerical Investigation of Nonlinear Waves Connected to Blood Flow in an Elastic Tube with Variable Radius. J. Theor. Appl. Mech. 2015, 45, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Ganji, D.D.; Sabzehmeidani, Y.; Sedighiamiri, A. Nonlinear Systems in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812024-8. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0511755798. [Google Scholar]
- Verhulst, F. Nonlinear Differential Equations and Dynamical Systems; Springer: Berlin, Germany, 2006; ISBN 978-3-540-60934-6. [Google Scholar]
- Mills, T. Applied Time Series Analysis; Academic Press: London, UK, 2019; ISBN 978-012-813117-6. [Google Scholar]
- Grossberg, S. Nonlinear Neural Networks: Principles, Mechanisms, and Architectures. Neural Netw. 1981, 1, 17–61. [Google Scholar] [CrossRef] [Green Version]
- Hopf, E. The Partial Differential Equation: ut + uux = ϵuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Cole, J.D. On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0511623998. [Google Scholar]
- Tabor, M. Chaos and Integrability in Dynamical Systems; Wiley: New York, NY, USA, 1989; ISBN 978-0471827283. [Google Scholar]
- Carrielo, F.; Tabor, M. Similarity Reductions from Extended Painleve Expansions for Nonintegrable Evolution Equations. Physica D 1991, 53, 59–70. [Google Scholar] [CrossRef]
- Carrielo, F.; Tabor, M. Painleve Expansions for Nonintegrable Evolution Equations. Physica D 1989, 39, 77–94. [Google Scholar] [CrossRef]
- Weiss, J.; Tabor, M.; Carnevalle, G. The Painleve Property for Partial Differential Equations. J. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On Types of Nonlinear Nonintegrable Equations with Exact Solutions. Phys. Lett. A 1991, 155, 269–275. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A.; Loguinova, N.B. Extended Simplest Equation Method for Nonlinear Differential Equations. Appl. Math. Comput. 2008, 205, 361–365. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact Solitary Waves of the Fisher Equation. Phys. Lett. A 2005, 342, 99–106. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One Method for Finding Exact Solutions of Nonlinear Differential Equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A. Highly Dispersive Optical Solitons of the Generalized Nonlinear Eighth-Order Schrödinger Equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary waves of the generalized Sasa-Satsuma equation with arbitrary refractive index. Optik 2021, 232, 166540. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods. Entropy 2021, 23, 10. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM): Review and New Results. AIP Conf. Ser. 2022, 2459, 020003. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method and Non-linear Differential Equations with Non-polynomial Non-linearity. Entropy 2021, 23, 1624. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. On the Use of Composite Functions in the Simple Equations Method to Obtain Exact Solutions of Nonlinear Differential Equations. Computation 2021, 9, 104. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM): An Affective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations. Entropy 2022, 24, 1653. [Google Scholar] [CrossRef] [PubMed]
- Martinov, N.; Vitanov, N. On Some Solutions of the Two-Dimensional Sine-Gordon Equation. J. Phys. A Math. Gen. 1992, 25, L419–L426. [Google Scholar] [CrossRef]
- Vitanov, N.K. Breather and Soliton Wave Families for the Sine-Gordon Equation. Proc. R. Soc. Lond. A 1998, 454, 2409–2423. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Jordanov, I.P.; Dimitrova, Z.I. On Nonlinear Population Waves. Appl. Math. Comput. 2009, 215, 2950–2964. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Application of The Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for Two Classes of Model PDEs from Ecology and Population Dynamics. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2836–2845. [Google Scholar] [CrossRef]
- Vitanov, N.K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1176–1185. [Google Scholar] [CrossRef]
- Vitanov, N.K. On Modified Method of Simplest Equation for Obtaining Exact and Approximate Solutions of Nonlinear PDEs: The Role of the Simplest Equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4215–4231. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions of Nonlinear Partial Differential Equations: Further Development of the Methodology with Applications. Appl. Math. Comput. 2015, 269, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.K.; Dimitrova, Z.I. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation. J. Theor. Appl. Mech., Sofia 2018, 48, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.K. Simple Equations Method (SEsM) and Its Connection with the Inverse Scattering Transform Method. AIP Conf. Proc. 2021, 2321, 030035. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method (SEsM) and Its Particular Cases: Hirota Method. AIP Conf. Proc. 2021, 2321, 030036. [Google Scholar] [CrossRef]
- Brauer, F.; Castillo-Chavez, C.; Feng, Z. Mathematcal Models in Epidemiology; Springer: New York, NY, USA, 2019; ISBN 978-1-4939-9828-9. [Google Scholar]
- Diekmann, O.; Heesterbeek, H.; Britton, T. Mathematical Tools for Understanding Infectious Disease Dynamics; Princeton University Press: Princeton, NJ, USA, 2012; ISBN 978-0-6911-5539-5. [Google Scholar]
- Martcheva, M. An Introduction to Mathematical Epidemiology; Springer: New York, NY, USA, 2015; ISBN 978-14899-7612-3. [Google Scholar]
- Li, M.I. An Introduction to Mathematical Modeling of Infectious Diseases; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-72122-4. [Google Scholar]
- Brauer, F. Mathematical Epidemiology: Past, Present and Future. Infect. Dis. Model. 2017, 2, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Britton, T. Stochastic Epidemic Models: A Survey. Math. Biosci. 2010, 225, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Hethcote, H.W. A Thousand and One Epidemic Models. In Frontiers in Mathematical Biology; Levin, S.A., Ed.; Springer: Berlin, Germany, 1994; pp. 504–515. ISBN 978-3-642-50126-5. [Google Scholar]
- Keeling, M.J.; Eames, K.T. Networks and Epidemic Models. J. R. Soc. Interface 2005, 2, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capasso, V.; Serio, G. A Generalization of the Kermack- McKendrick Deterministic Epidemic Model. Math. Biosci. 1978, 42, 43–61. [Google Scholar] [CrossRef]
- Teng, P.S. A Comparison of Simulation Approaches to Epidemic Modeling. Annu. Rev. Phytopathol. 1985, 23, 351–379. [Google Scholar] [CrossRef]
- Hethcote, H.W. The Mathematics of Infectious Diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Tang, M.; Stanley, H.E.; Braunstein, L.A. Unification of Theoretical Approaches for Epidemic Spreading on Complex Networks. Rep. Prog. Phys. 2017, 80, 036603. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J.; Faura-Martínez, U.; Lafuente-Lechuga, M. Mathematical Modeling and the Use of Network Models as Epidemiological Tools. Mathematics 2022, 10, 3347. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Asteris, P.G.; Chen, F. Analysis and Prediction of COVID-19 Using SIR, SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases. Information 2021, 12, 109. [Google Scholar] [CrossRef]
- Cui, Q.; Qiu, Z.; Liu, W.; Hu, Z. Complex Dynamics of an SIR Epidemic Model with Nonlinear Saturate Incidence and Recovery Rate. Entropy 2017, 19, 305. [Google Scholar] [CrossRef]
- Trawicki, M.B. Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity. Mathematics 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Kozioł, K.; Stanislawski, R.; Bialic, G. Fractional-Order SIR Epidemic Model for Transmission Prediction of COVID-19 Disease. Appl. Sci. 2020, 10, 8316. [Google Scholar] [CrossRef]
- Godio, A.; Pace, F.; Vergnano, A. SEIR Modeling of the Italian Epidemic of SARS-CoV-2 Using Computational Swarm Intelligence. Int. J. Environ. Res. Public Health 2020, 17, 3535. [Google Scholar] [CrossRef]
- Frank, T.D. COVID-19 Epidemiology and Virus Dynamics; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-97178-6. [Google Scholar]
- Vitanov, N.K.; Ausloos, M.R. Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion. In Models of Science Dynamics; Scharnhorst, A., Boerner, K., Besselaar, P., Eds.; Springer: Berlin, Germany, 2010; pp. 69–125. ISBN 978-3-642-23068-4. [Google Scholar]
- Al-Shbeil, I.; Djenina, N.; Jaradat, A.; Al-Husban, A.; Ouannas, A.; Grassi, G. A New COVID-19 Pandemic Model including the Compartment of Vaccinated Individuals: Global Stability of the Disease-Free Fixed Point. Mathematics 2023, 11, 576. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.E.; Kim, J.-O.; Kim, G.B. Two-Way Contact Network Modeling for Identifying the Route of COVID-19 Community Transmission. Informatics 2021, 8, 22. [Google Scholar] [CrossRef]
- Harjule, P.; Poonia, R.C.; Agrawal, B.; Saudagar, A.K.J.; Altameem, A.; Alkhathami, M.; Khan, M.B.; Hasanat, M.H.A.; Malik, K.M. An Effective Strategy and Mathematical Model to Predict the Sustainable Evolution of the Impact of the Pandemic Lockdown. Healthcare 2022, 10, 759. [Google Scholar] [CrossRef]
- Etxeberria-Etxaniz, M.; Alonso-Quesada, S.; De la Sen, M. On an SEIR Epidemic Model with Vaccination of Newborns and Periodic Impulsive Vaccination with Eventual On-Line Adapted Vaccination Strategies to the Varying Levels of the Susceptible Subpopulation. Appl. Sci. 2020, 10, 8296. [Google Scholar] [CrossRef]
- Nkague Nkamba, L.; Manga, T.T. Modelling and Prediction of the Spread of COVID-19 in Cameroon and Assessing the Governmental Measures (March–September 2020). COVID 2021, 1, 622–644. [Google Scholar] [CrossRef]
- Almeshal, A.M.; Almazrouee, A.I.; Alenizi, M.R.; Alhajeri, S.N. Forecasting the Spread of COVID-19 in Kuwait Using Compartmental and Logistic Regression Models. Appl. Sci. 2020, 10, 3402. [Google Scholar] [CrossRef]
- Chen, J.; Yin, T. Transmission Mechanism of Post-COVID-19 Emergency Supply Chain Based on Complex Network: An Improved SIR Model. Sustainability 2023, 15, 3059. [Google Scholar] [CrossRef]
- Batool, H.; Li, W.; Sun, Z. Extinction and Ergodic Stationary Distribution of COVID-19 Epidemic Model with Vaccination Effects. Symmetry 2023, 15, 285. [Google Scholar] [CrossRef]
- Khorev, V.; Kazantsev, V.; Hramov, A. Effect of Infection Hubs in District-Based Network Epidemic Spread Model. Appl. Sci. 2023, 13, 1194. [Google Scholar] [CrossRef]
- Jitsinchayakul, S.; Humphries, U.W.; Khan, A. The SQEIRP Mathematical Model for the COVID-19 Epidemic in Thailand. Axioms 2023, 12, 75. [Google Scholar] [CrossRef]
- Ni, G.; Wang, Y.; Gong, L.; Ban, J.; Li, Z. Parameters Sensitivity Analysis of COVID-19 Based on the SCEIR Prediction Model. COVID 2022, 2, 1787–1805. [Google Scholar] [CrossRef]
- Wang, W.; Xia, Z. Study of COVID-19 Epidemic Control Capability and Emergency Management Strategy Based on Optimized SEIR Model. Mathematics 2023, 11, 323. [Google Scholar] [CrossRef]
- Leonov, A.; Nagornov, O.; Tyuflin, S. Modeling of Mechanisms of Wave Formation for COVID-19 Epidemic. Mathematics 2023, 11, 167. [Google Scholar] [CrossRef]
- Margenov, S.; Popivanov, N.; Ugrinova, I.; Hristov, T. Mathematical Modeling and Short-Term Forecasting of the COVID-19 Epidemic in Bulgaria: SEIRS Model with Vaccination. Mathematics 2022, 10, 2570. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Liu, C.-T. A Stochastic Multi-Strain SIR Model with Two-Dose Vaccination Rate. Mathematics 2022, 10, 1804. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Micula, S. Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection. Mathematics 2021, 9, 1031. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Micula, S.; Nieto, J.J. A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library. Mathematics 2021, 9, 1321. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Chmykhov, M.A.; Vigdorowitsch, M. Analytical Features of the SIR Model and their Applications to COVID-19. Appl. Math. Model. 2021, 90, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Harko, T.; Lobo, F.S.N.; Mak, M.K. Exact Analytical Solutions of the Susceptible-Infected-Recovered (SIR) Epidemic Model and of the SIR Model with Equal Death and Birth Rates. Appl. Math. Comput. 2014, 236, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, Z.I. Relation Between G’/G-expansion Method and the Modified Method of Simplest Equation. C. R. L’Acad. Bulg. Des Sci. 2012, 65, 1513–1520. [Google Scholar]
- Dimitrova, Z. On Traveling Waves in Lattices: The Case of Riccati Lattices. J. Theor. Appl. Mech. 2012, 42, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, Z.I. Several Examples of Application of the Simple Equations Method (SEsM) for Obtaining Exact Solutions of Nonlinear PDEs. AIP Conf. Proc. 2022, 2459, 030005. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-521-83660-3. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitanov, N.K.; Vitanov, K.N. Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics. Entropy 2023, 25, 438. https://doi.org/10.3390/e25030438
Vitanov NK, Vitanov KN. Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics. Entropy. 2023; 25(3):438. https://doi.org/10.3390/e25030438
Chicago/Turabian StyleVitanov, Nikolay K., and Kaloyan N. Vitanov. 2023. "Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics" Entropy 25, no. 3: 438. https://doi.org/10.3390/e25030438
APA StyleVitanov, N. K., & Vitanov, K. N. (2023). Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics. Entropy, 25(3), 438. https://doi.org/10.3390/e25030438