Effects of Aqueous Extracts of Lantana camara L. on Germination of Setaria viridis (L.) P.Beauv. Seeds with Different Degrees of Dormancy
<p>Effects of <span class="html-italic">L. camara</span> aqueous extracts on the germination rate of <span class="html-italic">S. viridis</span> seeds. (<b>a</b>) 12 dph seeds; (<b>b</b>) 110 dph seeds. Values are represented as means and the bars represent the standard deviation. Different letters indicate values that differ significantly at <span class="html-italic">p <</span> 0.05, according to One-way ANOVA, followed by the Holm-Sidak test.</p> "> Figure 2
<p>Effects of <span class="html-italic">L. camara</span> aqueous extracts on germination speed index—GSI: (<b>a</b>) 12 dph seeds; (<b>b</b>) 110 dph seeds. Different letters indicate values that differ significantly at <span class="html-italic">p</span> < 0.05, according to One-way ANOVA, followed by the Holm–Sidak test.</p> "> Figure 3
<p>Effects of <span class="html-italic">L. camara</span> aqueous extract on root length. (<b>a</b>) 12 dph seeds; (<b>b</b>) 110 dph seeds. Different letters indicate values that differ significantly at <span class="html-italic">p</span> ≤ 0.05, according to One-way ANOVA, followed by the Holm–Sidak test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Harvesting and Aqueous Extracts Obtaining
2.2. Chemical Characterization of the Extracts
2.3. Germination and Initial Growth of S. viridis
2.3.1. Germination Percentage (GP)
2.3.2. Germination Speed Index (GSI)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Effects of L. camara Extracts on S. viridis Germination and Initial Growth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Shiba, M.; Sato, R.; Fukuda, T. A comparison of mechanical characteristics among Setaria viridis var. minor, Setaria italica, and Setaria × pycnocoma species of the family Poaceae. Plant Species Biol. 2024, 39, 51–58. [Google Scholar] [CrossRef]
- Cathcart, R.J.; Swanton, C.J. Nitrogen and green foxtail (Setaria viridis) competition effects on corn growth and development. Weed Sci. 2004, 52, 1039–1049. [Google Scholar] [CrossRef]
- Peng, G.; Byer, K.N.; Bailey, K.L. Pyricularia Setariae: A potential bioherbicide agent for control of green foxtail (Setaria viridis). Weed Sci. 2004, 52, 105–114. [Google Scholar] [CrossRef]
- Cathcart, R.J.; Swanton, C.J. Nitrogen management will influence threshold values of green foxtail (Setaria viridis) in corn. Weed Sci. 2003, 51, 975–986. [Google Scholar] [CrossRef]
- Peterson, D.E.; Nalewaja, J.D. Environment influences green foxtail (Setaria viridis) competition with wheat (Triticum aestivum). Weed Technol. 1992, 6, 607–610. [Google Scholar] [CrossRef]
- Harris, T.C.; Ritter, R.L. Giant green foxtail (Setaria viridis var. major) and fall panicum (Panicum dichotomiflorum) competition in soybeans (Glycine max). Weed Sci. 1987, 35, 663–668. [Google Scholar] [CrossRef]
- O’Donovan, J.T. Green foxtail (Setaria viridis) and pale smartweed (Polygonum lapathifolium) interference in field crops. Weed Technol. 1994, 8, 311–316. [Google Scholar] [CrossRef]
- Boydston, R.A. Soil water content affects the activity of four herbicides on green foxtail (Setaria viridis). Weed Sci. 1990, 38, 578–582. [Google Scholar] [CrossRef]
- Casella, F.; Charudattan, R.; Vurro, M. Effectiveness and technological feasibility of bioherbicide candidates for biocontrol of green foxtail (Setaria viridis). Biocontrol Sci. Technol. 2010, 20, 1027–1045. [Google Scholar] [CrossRef]
- Wei, D.; Xin-yue, C.; Zhuo, C.; Peng, C. Dormência de sementes e resposta fisiológica de plântulas ao topramezone em green foxtail (Setaria viridis). |EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/gcd:174782130?sid=ebsco:plink:crawler&id=ebsco:gcd:174782130 (accessed on 21 November 2024).
- Yu, Z.; He, X.; Qi, P.; Wang, Z.; Liu, L.; Han, L.; Huang, Z.; Wang, C. A static laser weeding device and system based on fiber laser: Development, experimentation, and evaluation. Agronomy 2024, 14, 1426. [Google Scholar] [CrossRef]
- Majrashi, A.A. Preliminary assessment of weed population in vegetable and fruit farms of taif, Saudi Arabia. Braz. J. Biol. 2022, 82, e255816. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, Q.; Patterson, E.; Sayer, C.; Powles, S. Dinitroaniline herbicide resistance and mechanisms in weeds. Front. Plant Sci. 2021, 12, e255816. [Google Scholar] [CrossRef] [PubMed]
- Brutnell, T.P.; Wang, L.; Swartwood, K.; Goldschmidt, A.; Jackson, D.; Zhu, X.-G.; Kellogg, E.; Van Eck, J. Setaria viridis: A model for C4 photosynthesis. Plant Cell 2010, 22, 2537–2544. [Google Scholar] [CrossRef]
- Neve, P.; Barney, J.N.; Buckley, Y.; Cousens, R.D.; Graham, S.; Jordan, N.R.; Lawton-Rauh, A.; Liebman, M.; Mesgaran, M.B.; Schut, M.; et al. Reviewing research priorities in weed ecology, evolution and management: A horizon scan. Weed Res. 2018, 58, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Thill, D.C.; Lish, J.M.; Callihan, R.H.; Bechinski, E.J. Integrated weed management–a component of integrated pest management: A critical review. Weed Technol. 1991, 5, 648–656. [Google Scholar] [CrossRef]
- Sebastian, J.; Wong, M.K.; Tang, E.; Dinneny, J.R. Methods to promote germination of dormant Setaria viridis seeds. PLoS ONE 2014, 9, e95109. [Google Scholar] [CrossRef]
- Dekker, J. The foxtail (Setaria) species-group. Weed Sci. 2003, 51, 641–656. [Google Scholar] [CrossRef]
- Relationship Between Foxtail (Setaria spp.) Primary Dormancy at Seed Abscission and Subsequent Seedling Emergence. Available online: https://dr.lib.iastate.edu/entities/publication/c611898c-77f2-41b6-90b2-ed9c05019e1c (accessed on 1 December 2024).
- Born, W.H.V. Green foxtail: Seed dormancy, germination and growth. Can. J. Plant Sci. 1971, 51, 53–59. [Google Scholar] [CrossRef]
- Vivian, R.; Silva, A.A.; Gimenes, J.; Fagan, E.B.; Ruiz, S.T.; Labonia, V. Dormência em sementes de plantas daninhas como mecanismo de sobrevivência: Breve revisão. Planta Daninha 2008, 26, 695–706. [Google Scholar] [CrossRef]
- Kostina-Bednarz, M.; Płonka, J.; Barchanska, H. Allelopathy as a source of bioherbicides: Challenges and prospects for sustainable agriculture. Rev. Environ. Sci. Biotechnol. 2023, 22, 471–504. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy of Lantana camara as an invasive plant. Plants 2021, 10, 1028. [Google Scholar] [CrossRef]
- Ntaila, Y.W.; Mbeya, R.A. Allelopathic effects of Lantana camara extract on weeds and cultivated crops: A systematic review. J. Agric. Food Environ. Anim. Sci. 2023, 4, 243–258. [Google Scholar]
- Gebreyohannes, L.; Egigu, M.C.; Manikandan, M.; Sasikumar, J.M. Allelopathic potential of Lantana camara L. leaf extracts and soils invaded by it on the growth performance of Lepidium Sativum L. Sci. World J. 2023, 2023, 1–6. [Google Scholar] [CrossRef]
- Nair, A.G.; Anjana, A. Allelopathic effect of Lantana camara L. and Tectona grandis L. F. leaf extracts on seed germination of Amaranthus spinosus L. J. Adv. Sci. Res. 2020, 11, 198–200. [Google Scholar]
- Bezerra, A.C.M.; Valença, D.d.C.; Junqueira, N.E.d.G.; Hüther, C.M.; Borella, J.; de Pinho, C.F.; Ferreira, M.A.; Medici, L.O.; Ortiz-Silva, B.; Reinert, F. Potassium supply promotes the mitigation of Nacl-induced effects on leaf photochemistry, metabolism and morphology of Setaria viridis. Plant Physiol. Biochem. 2021, 160, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Valença, D.d.C.; de Lelis, D.C.C.; de Pinho, C.F.; Bezerra, A.C.M.; Ferreira, M.A.; Junqueira, N.E.G.; Macrae, A.; Medici, L.O.; Reinert, F.; da Silva, B.O. Changes in leaf blade morphology and anatomy caused by clomazone and saflufenacil in Setaria viridis, a model c4 plant. South Afr. J. Bot. 2020, 135, 365–376. [Google Scholar] [CrossRef]
- Junqueira, N.E.G.; Ortiz-Silva, B.; Leal-Costa, M.V.; Alves-Ferreira, M.; Dickinson, H.G.; Langdale, J.A.; Reinert, F. Anatomy and ultrastructure of embryonic leaves of the c4 species Setaria viridis. Ann. Bot. 2018, 121, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.-B.; He, F.; Gu, B.; Liang, L.; Smith, J.C. Time-dependent density functional theory assessment of UV absorption of benzoic acid derivatives. J. Phys. Chem. A 2012, 116, 11870–11879. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, K.; Zhong, M.; Guo, J.; Wang, W.; Zhu, R. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Singh, M.; Dezman, D.J. Qualitative and quantitative characterization of phenolic compounds from Lantana (Lantana camara) leaves. Weed Sci. 1989, 37, 302–307. [Google Scholar] [CrossRef]
- Gaikwad, O.; Malekar, S.; Kumbhar, O.; Chauhan, L. Allelopathic effect of aqueous extracts of Lantana camara on germination of peanut seeds. Int. J. Res. Eng. Sci. Manag. 2023, 6, 63–67. [Google Scholar]
- Junqueira, N.; Bezerra, A.; Cattem, M.; Medici, L.; Alves-Ferreira, M.; Macrae, A.; Ortiz, B.; Reinert, F. Phenology of the genetic model Setaria viridis (Poaceae) according to the BBCH-scale of development. Bot. J. Linn. Soc. 2020, 192, 224–241. [Google Scholar] [CrossRef]
- Alemayehu, Y.; Chimdesa, M.; Yusuf, Z. Allelopathic effects of Lantana camara L. leaf aqueous extracts on germination and seedling growth of Capsicum Annuum L. and Daucus Carota L. Scientifica 2024, 2024, 9557081. [Google Scholar] [CrossRef] [PubMed]
- Sartain, B.T.; Harms, N.E.; Coomes, A.B. Influence of shade and cold stratification on germination success of vegetative propagules from multiple Butomus umbellatus genotypes. Aquat. Bot. 2024, 193, 103774. [Google Scholar] [CrossRef]
- Lario, L.D.; Gonzalez, C.; Meini, M.R.; Pillaca-Pullo, O.S.; Zuricaray, D.; Español, L.; Scandiani, M.M.; Luque, A.; Casati, P.; Spampinato, C.P. Exploring soybean cultivar susceptibility to sudden death syndrome: Insights into isoflavone responses and biocontrol potential. Plant Sci. 2024, 339, 111951. [Google Scholar] [CrossRef] [PubMed]
- Nongpiur, R.C.; Rawat, N.; Singla-Pareek, S.L.; Pareek, A. OsRR26, a Type-b response regulator, modulates salinity tolerance in rice via phytohormone-mediated ROS accumulation in roots and influencing reproductive development. Planta 2024, 259, 96. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Tamma, R.V.; Nigg, H.N. HPLC identification of allelopathic compounds from Lantana camara. J. Chem. Ecol. 1989, 15, 81–89. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Ren, C.; Dou, P.; Miao, Z.; Liu, X.; Huang, D.; Wang, K. Aqueous extracts of three herbs allelopathically inhibit lettuce germination but promote seedling growth at low concentrations. Plants 2022, 11, 486. [Google Scholar] [CrossRef] [PubMed]
- Mato, M.C.; Méndez, J.; Vázquez, A. Polypheolic auxin protectors in buds of juvenile and adult chestnut. Physiol. Plant. 1994, 91, 23–26. [Google Scholar] [CrossRef]
- Cvikrova, M.; Hrubcova, M.; Eder, J.; Binarova, P. Changes in the levels of endogenous phenolics, aromatic monoamines, phenylalanine ammonia-lyase, peroxidase, and auxin oxidase activities during initiation of alfalfa embryogenic and non-embryogenic calli. Plant Physiol. Biochem. 1996, 34, 853–861. [Google Scholar]
- Muscolo, A.; Panuccio, M.R.; Sidari, M. The effect of phenols on respiratory enzymes in seed germination. Plant Growth Regul. 2001, 35, 31–35. [Google Scholar] [CrossRef]
- Bhakta, D.; Ganjewala, D. Effect of leaf positions on total phenolics, flavonoids and proanthocyanidins content and antioxidant activities in Lantana camara (L). J. Sci. Res. 2009, 1, 363–369. [Google Scholar] [CrossRef]
- Achhireddy, N.R.; Singh, M. Allelopathic effects of Lantana (Lantana camara) on milkweedvine (Morrenia Odorata). Weed Sci. 1984, 32, 757–761. [Google Scholar] [CrossRef]
- Ahmed, R.; Uddin, M.; Sayed, M.; Khan, A.; Mukul, S.; Hossain, M. Allelopathic effects of Lantana camara on germination and growth behavior of some agricultural crops in Bangladesh. J. For. Res. 2007, 18, 301–304. [Google Scholar] [CrossRef]
- Medeiros Gindri, D.; Coelho, C.; Uarrota, V. Physiological and biochemical effects of Lantana camara L. allelochemicals on the seed germination of Avena Sativa L. Pesqui. Agropecuária Trop. 2020, 50, e62546. [Google Scholar] [CrossRef]
- Hussain, F.; Ghulam, S.; Sher, Z.; Ahmad, B. Allelopathy by Lantana camara. Pak. J. Bot. 2011, 43, 2373–2378. [Google Scholar]
- Mersie, W.; Singh, M. Allelopathic effect of Lantana on some agronomic crops and weeds. Plant Soil 1987, 98, 25–30. [Google Scholar] [CrossRef]
- Oudhia, P. Allelopathic effects of root leachates of some obnoxious weeds on germination and seedling vigour of wheat. Ecol. Environ. Conserv. 2001, 7, 111–113. [Google Scholar]
- Hayyat, M.S.; Safdar, M.E.; Asif, M.; Tanveer, A.; Ali, L.; Qamar, R.; H Ali, H.; Farooq, N.; Javeed, H.M.A.; Tarar, Z.H. Allelopathic effect of waste-land weeds on germination and growth of winter crops. Planta Daninha 2020, 38, e020173626. [Google Scholar] [CrossRef]
- Ujjwal, P.; Bhardwaj, S.; Veer, B. Allelopathic potential of aqueous extracts of Lantana camara with Raphanus Sativus. Int. J. Agric. Environ. Biotechnol. 2011, 4, 351–355. [Google Scholar]
- Mattson, M.P. Hormesis defined. Aging Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008, 27, 1451–1474. [Google Scholar] [CrossRef]
- Agathokleous, E.; Calabrese, E.J.; Barceló, D. Environmental hormesis: New developments. Sci. Total Environ. 2024, 906, 167450. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A. Impact of hormesis to deepen our understanding of the mechanisms underlying the bioactivities of polyphenols. Curr. Opin. Biotechnol. 2024, 86, 103074. [Google Scholar] [CrossRef]
- Jabín, B.J.; Luis, S.J.; Eucario, M.-Á. Hormesis in plant tissue culture. Plant Cell Tissue Organ Cult. 2024, 159, 16. [Google Scholar] [CrossRef]
- Erofeeva, E.A. Plant hormesis: The energy aspect of low and high-dose stresses. Plant Stress 2024, 14, 100628. [Google Scholar] [CrossRef]
- Goncalves, E.; Herrera, I.; Duarte, M.; Bustamante, R.O.; Lampo, M.; Velásquez, G.; Sharma, G.P.; García-Rangel, S. Global invasion of Lantana camara: Has the climatic niche been conserved across continents? PLoS ONE 2014, 9, e111468. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Alqarawi, A.A.; Abd_Allah, E.F. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf. 2018, 158, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A. Allelopathic properties of Lantana camara. Int. Res. J. Basic Clin. Stud. 2015, 3, 13–28. [Google Scholar]
- Puig, C.G.; Reigosa, M.J.; Valentão, P.; Andrade, P.B.; Pedrol, N. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE 2018, 13, e0192872. [Google Scholar] [CrossRef] [PubMed]
- Pannacci, E.; Masi, M.; Farneselli, M.; Tei, F. Evaluation of mugwort (Artemisia Vulgaris L.) aqueous extract as a potential bioherbicide to control Amaranthus Retroflexus L. in maize. Agriculture 2020, 10, 642. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Caldera, F.; Dhakar, N.K.; Trotta, F.; Scariot, V. Activity of Ailanthus Altissima (Mill.) swingle extract as a potential bioherbicide for sustainable weed management in horticulture. Agronomy 2020, 10, 965. [Google Scholar] [CrossRef]
- Mangao, A.M.; Arreola, S.L.B.; Gabriel, E.V.S.; Salamanez, K.C. Aqueous extract from leaves of Ludwigia hyssopifolia (G. Don) exell as potential bioherbicide. Sci. Food Agric. 2020, 100, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Twitty, A.; Baker, C.; Sands, D.; Boddy, L.; Travaini, M.L.; Sosa, G.; Polidore, A.L.A.; Jhala, A.J.; Kloeber, J.M.; et al. New approaches to herbicide and bioherbicide discovery. Weed Sci. 2024, 1–21. [Google Scholar] [CrossRef]
- Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.-P. Bioherbicides: Dead in the water? a review of the existing products for integrated weed management. Crop Prot. 2016, 87, 44–49. [Google Scholar] [CrossRef]
- Uyun, Q.; Respatie, D.W.; Indradewa, D. Unveiling the allelopathic potential of Wedelia leaf extract as a bioherbicide against purple nutsedge: A promising strategy for sustainable weed management. Sustainability 2024, 16, 479. [Google Scholar] [CrossRef]
- Haar, M.J.; Dekker, J. Weedy adaptation in Setaria Spp.: VII. seed germination heteroblasty in Setaria Faberi. arXiv 2014, arXiv:1403.7072. [Google Scholar]
- Douglas, B.J.; Morrison, I.N.; Thomas, A.G.; Maw, M.G. The biology of Canadian weeds: Setaria viridis (L.) Beauv. Can. J. Plant Sci. 1985, 65, 669–690. [Google Scholar] [CrossRef]
- Belderok, B. Seed dormancy problems in cereals. Field Crop Abstr. 1968, 21, 203–211. [Google Scholar]
- Defelice, M.S. Green foxtail, Setaria viridis (L.) P. Beauv. Weed Technol. 2002, 16, 253–257. [Google Scholar] [CrossRef]
Peak Number | Rt (Min) | UV Máx (nm) | Class Identification |
---|---|---|---|
1 | 3.2 | 240 | N/D 1 |
2 | 3.9 | 258 | p-hydroxybenzoic acid derivative |
3 | 4.2 | 261 | p-hydroxybenzoic acid derivative |
4 | 4.6 | 276 | Syringic acid |
5 | 5.9 | 264 | p-hydroxybenzoic acid derivative |
6 | 9.2 | 228 | N/D |
7 | 10.0 | 229 | N/D |
8 | 10.9 | N/D | N/D |
9 | 13.3 | sh 300, 328 | Chlorogenic acid |
10 | 15.3 | N/D | N/D |
11 | 16.6 | N/D | N/D |
12 | 20.0 | 267, 335 | Flavonoid |
13 | 30.2 | 273, 333 | Flavonoid |
14 | 47.8 | 273, 321 | Flavonoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lázaro-dos-Santos, M.E.d.C.; Tonelli Cavalari, N.; Ribeiro, E.d.S.; da Cunha, H.H.B.; Casanova, L.M.; Reinert, F.; Ortiz-Silva, B.; Nascimento, L.B.d.S. Effects of Aqueous Extracts of Lantana camara L. on Germination of Setaria viridis (L.) P.Beauv. Seeds with Different Degrees of Dormancy. Seeds 2024, 3, 677-688. https://doi.org/10.3390/seeds3040044
Lázaro-dos-Santos MEdC, Tonelli Cavalari N, Ribeiro EdS, da Cunha HHB, Casanova LM, Reinert F, Ortiz-Silva B, Nascimento LBdS. Effects of Aqueous Extracts of Lantana camara L. on Germination of Setaria viridis (L.) P.Beauv. Seeds with Different Degrees of Dormancy. Seeds. 2024; 3(4):677-688. https://doi.org/10.3390/seeds3040044
Chicago/Turabian StyleLázaro-dos-Santos, Marcelly Eduarda da Cunha, Nadine Tonelli Cavalari, Everson dos Santos Ribeiro, Henrique Henning Boyd da Cunha, Livia Marques Casanova, Fernanda Reinert, Bianca Ortiz-Silva, and Luana Beatriz dos Santos Nascimento. 2024. "Effects of Aqueous Extracts of Lantana camara L. on Germination of Setaria viridis (L.) P.Beauv. Seeds with Different Degrees of Dormancy" Seeds 3, no. 4: 677-688. https://doi.org/10.3390/seeds3040044
APA StyleLázaro-dos-Santos, M. E. d. C., Tonelli Cavalari, N., Ribeiro, E. d. S., da Cunha, H. H. B., Casanova, L. M., Reinert, F., Ortiz-Silva, B., & Nascimento, L. B. d. S. (2024). Effects of Aqueous Extracts of Lantana camara L. on Germination of Setaria viridis (L.) P.Beauv. Seeds with Different Degrees of Dormancy. Seeds, 3(4), 677-688. https://doi.org/10.3390/seeds3040044