A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process
<p>The operational process of the proposed method.</p> "> Figure 2
<p>Outlier detection based on the boxplot.</p> "> Figure 3
<p>The fitting curves of the models in case 1.</p> "> Figure 4
<p>The fitting curves of the models in case 2.</p> "> Figure 5
<p>The fitting curves of the models in case 3.</p> "> Figure 6
<p>The evaluation metrics of the models in case 1.</p> "> Figure 7
<p>The evaluation metrics of the models in case 2.</p> "> Figure 8
<p>The evaluation metrics of the models in case 3.</p> ">
Abstract
:1. Introduction
2. Fractional-Order Grey Prediction Model and Its Optimization Strategy
2.1. Fractional-Order Grey Prediction Model
2.2. New Solution Ideas and Marine Predators Algorithm
3. Experiment
3.1. Data Source and Modeling Details
3.2. Comparative Analysis
3.3. Ablation Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ju-Long, D. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Şahin, U.; Şahin, T. Forecasting the cumulative number of confirmed cases of COVID-19 in Italy, UK and USA using fractional nonlinear grey Bernoulli model. Chaos Solitons Fractals 2020, 138, 109948. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.A.; Zhu, B.; Liu, S. Forecast of biofuel production and consumption in top CO2 emitting countries using a novel grey model. J. Clean. Prod. 2020, 276, 123997. [Google Scholar] [CrossRef]
- Ding, S.; Hu, J.; Lin, Q. Accurate forecasts and comparative analysis of Chinese CO2 emissions using a superior time-delay grey model. Energy Econ. 2023, 126, 107013. [Google Scholar] [CrossRef]
- Sapnken, F.E.; Noume, H.C.; Tamba, J.G. Forecasting CO2 emissions from road fuel combustion using grey prediction models: A novel approach. MethodsX 2023, 11, 102271. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, H.; Ren, Y.; Wang, Z. A Novel Intelligent Forecasting Framework for Quarterly or Monthly Energy Consumption. IEEE Trans. Ind. Inform. 2023, 20, 5352–5363. [Google Scholar] [CrossRef]
- Zhu, H.; Chong, L.; Wu, W.; Xie, W. A novel conformable fractional nonlinear grey multivariable prediction model with marine predator algorithm for time series prediction. Comput. Ind. Eng. 2023, 180, 109278. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.Z.; Xie, W. A new grey intelligent prediction algorithm with multiobjective correction strategy. Appl. Math. Model. 2023, 118, 692–708. [Google Scholar] [CrossRef]
- Liu, C.; Lao, T.; Wu, W.Z.; Xie, W.; Zhu, H. An optimized nonlinear grey Bernoulli prediction model and its application in natural gas production. Expert Syst. Appl. 2022, 194, 116448. [Google Scholar] [CrossRef]
- He, J.; Mao, S.; Ng, A.K. Neural computing for grey Richards differential equation to forecast traffic parameters with various time granularity. Neurocomputing 2023, 549, 126394. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Fang, Z.; Xu, H. Properties of the GM(1,1) with fractional order accumulation. Appl. Math. Comput. 2015, 252, 287–293. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, C.; Wu, W.Z.; Xie, W.; Lao, T. Weakened fractional-order accumulation operator for ill-conditioned discrete grey system models. Appl. Math. Model. 2022, 111, 349–362. [Google Scholar] [CrossRef]
- Zhou, D. Least absolute deviation for parameter estimation of direct discrete GM(1,1) model. Stat. Decis. 2016, 2, 15–18. [Google Scholar]
- Luo, D.; Wei, B. A unified treatment approach for a class of discrete grey forecasting models and its application. Syst. Eng. Theory Pract. 2019, 39, 451–462. [Google Scholar]
- Wei, B.; Xie, N. Parameter estimation for grey system models: A nonlinear least squares perspective. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105653. [Google Scholar] [CrossRef]
- Pei, L.; Li, Q.; Wang, Z. The NLS-based nonlinear grey Bernoulli model with an application to employee demand prediction of high-tech enterprises in China. Grey Syst. Theory Appl. 2018, 12, 133–143. [Google Scholar] [CrossRef]
- Zeng, B.; Liu, S. A self-adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application. Math. Methods Appl. Sci. 2017, 40, 7843–7857. [Google Scholar] [CrossRef]
- Saxena, A. Optimized Fractional Overhead Power Term Polynomial Grey Model (OFOPGM) for market clearing price prediction. Electr. Power Syst. Res. 2023, 214, 108800. [Google Scholar] [CrossRef]
- Li, M.W.; Xu, R.Z.; Yang, Z.Y.; Hong, W.C.; An, X.G.; Yeh, Y.H. Optimization approach of berth-quay crane-truck allocation by the tide, environment and uncertainty factors based on chaos quantum adaptive seagull optimization algorithm. Appl. Soft Comput. 2024, 152, 111197. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Xie, N.; Liu, S. Discrete grey forecasting model and its optimization. Appl. Math. Model. 2009, 33, 1173–1186. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L. Discrete grey model based on fractional order accumulate. Syst. Eng. Theory Pract. 2014, 34, 1822–1827. [Google Scholar]
- Chen, C.I. Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate. Chaos Solitons Fractals 2008, 37, 278–287. [Google Scholar] [CrossRef]
- Şahin, U. Forecasting share of renewables in primary energy consumption and CO2 emissions of China and the United States under COVID-19 pandemic using a novel fractional nonlinear grey model. Expert Syst. Appl. 2022, 209, 118429. [Google Scholar] [CrossRef]
- Suykens, J.; Vandewalle, J.; De Moor, B. Optimal control by least squares support vector machines. Neural Netw. 2001, 14, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar] [CrossRef]
- Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
Case | r | a | b |
---|---|---|---|
1 | 0.0114 | −0.0239 | 0.062 |
2 | 0.7867 | −0.0691 | 0.2532 |
3 | 0.0003 | 0.1123 | 0.1298 |
Index | Training set | ||||||||||
Our method | GM(1,1) *** | FGM(r,1) | DGM(1,1) *** | FDGM(r,1) | NGBM(1,1) * | FANGBM(r,1) * | FDNGBM(r,1) * | LSSVR | Elman | ELM | |
MAPE | 4.7462 | 11.1838 | 5.4643 | 11.3158 | 5.6396 | 2.5862 | 2.1403 | 2.1540 | 3.7663 | 4.5590 | 3.4771 |
RMSE | 12.0144 | 23.0773 | 11.7400 | 23.2162 | 11.8242 | 7.9889 | 6.6313 | 6.7597 | 10.0342 | 12.1640 | 10.0955 |
MAE | 8.8878 | 18.6898 | 9.3773 | 18.7636 | 9.3756 | 5.5696 | 4.1490 | 4.1691 | 7.3721 | 7.9118 | 7.1557 |
MSE | 144.3457 | 532.5610 | 137.8273 | 538.9924 | 139.8118 | 63.8222 | 43.9742 | 45.6936 | 100.6859 | 147.9637 | 101.9184 |
IA | 0.9968 | 0.9875 | 0.9967 | 0.9874 | 0.9966 | 0.9985 | 0.9990 | 0.9990 | 0.9977 | 0.9966 | 0.9977 |
Index | Test set | ||||||||||
Our method | GM(1,1) *** | FGM(r,1) *** | DGM(1,1) *** | FDGM(r,1) *** | NGBM(1,1) ** | FANGBM(r,1) *** | FDNGBM(r,1) *** | LSSVR ** | Elman *** | ELM *** | |
MAPE | 2.4107 | 17.9763 | 8.7587 | 18.0548 | 8.7672 | 8.9563 | 16.9455 | 16.7437 | 5.4277 | 11.6805 | 7.9137 |
RMSE | 13.5587 | 100.7229 | 52.9336 | 100.9975 | 53.0863 | 56.9316 | 102.8033 | 101.4014 | 29.2613 | 67.1001 | 43.3794 |
MAE | 12.0764 | 94.1332 | 46.8739 | 94.5025 | 46.9415 | 48.5077 | 90.7803 | 89.6621 | 27.8059 | 61.7242 | 40.9576 |
MSE | 183.8381 | 10,145.0983 | 2801.9669 | 10,200.5019 | 2818.1537 | 3241.2087 | 10,568.5084 | 10,282.2380 | 856.2241 | 4502.4174 | 1881.7688 |
IA | 0.9851 | 0.7106 | 0.7831 | 0.7092 | 0.7814 | 0.7404 | 0.5236 | 0.5301 | 0.9429 | 0.7095 | 0.8755 |
Index | Training set | ||||||||||
Our method | GM(1,1) | FGM(r,1) | DGM(1,1) | FDGM(r,1) | NGBM(1,1) | FANGBM(r,1) | FDNGBM(r,1) | LSSVR | Elman * | ELM ** | |
MAPE | 1.8903 | 3.6029 | 2.0214 | 3.5889 | 1.6693 | 1.6588 | 1.6488 | 1.6292 | 2.3929 | 4.8808 | 3.2101 |
RMSE | 151.7300 | 213.5728 | 130.0677 | 213.9911 | 124.4167 | 123.9353 | 124.0086 | 123.2995 | 181.7177 | 339.1109 | 238.7100 |
MAE | 104.2117 | 165.2994 | 102.8817 | 164.6995 | 94.9960 | 93.7579 | 93.5112 | 92.2995 | 144.7706 | 246.8396 | 191.3288 |
MSE | 23,021.9818 | 45,613.3400 | 16,917.6033 | 45,792.1827 | 15,479.5072 | 15,359.9591 | 15,378.1378 | 15,202.7634 | 33,021.3086 | 114,996.1765 | 56,982.4602 |
IA | 0.9983 | 0.9965 | 0.9987 | 0.9965 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9975 | 0.9904 | 0.9956 |
Index | Test set | ||||||||||
Our method | GM(1,1) ** | FGM(r,1) *** | DGM(1,1) ** | FDGM(r,1) *** | NGBM(1,1) *** | FANGBM(r,1) *** | FDNGBM(r,1) *** | LSSVR *** | Elman ** | ELM *** | |
MAPE | 0.6527 | 4.2648 | 2.3490 | 4.3661 | 4.7666 | 4.5704 | 4.7276 | 4.7516 | 3.4001 | 4.3910 | 6.7996 |
RMSE | 106.6044 | 551.5302 | 276.4134 | 561.3699 | 560.0621 | 532.7855 | 553.3528 | 555.5588 | 379.3698 | 504.1814 | 732.7698 |
MAE | 65.5743 | 476.0711 | 255.1534 | 486.8833 | 523.5790 | 500.8322 | 518.7340 | 521.2318 | 361.6793 | 473.7329 | 720.6889 |
MSE | 11,364.5080 | 304,185.5582 | 76,404.3905 | 315,136.1645 | 313,669.5868 | 283,860.4294 | 306,199.3710 | 308,645.5360 | 143,921.4154 | 254,198.8576 | 536,951.6334 |
IA | 0.9977 | 0.9514 | 0.9836 | 0.9497 | 0.9277 | 0.9354 | 0.9298 | 0.9293 | 0.9705 | 0.9453 | 0.8985 |
Index | Training set | ||||||||||
Our method | GM(1,1) ** | FGM(1,1) | DGM(1,1) ** | FDGM(1,1) | NGBM(1,1) * | FANGBM(1,1) | FDNGBM(r,1) | LSSVR | Elman ** | ELM | |
MAPE | 2.7061 | 4.5487 | 3.0192 | 4.5694 | 3.0552 | 3.7127 | 2.5964 | 2.8451 | 1.8004 | 1.3168 | 2.1646 |
RMSE | 90.0727 | 131.5522 | 80.4085 | 131.5595 | 81.0309 | 104.6400 | 73.1983 | 79.4030 | 64.1135 | 51.7028 | 72.0018 |
MAE | 66.5238 | 105.5441 | 70.3071 | 105.8988 | 70.8530 | 87.0617 | 61.6316 | 65.7398 | 41.9868 | 30.7819 | 51.1383 |
MSE | 8113.0861 | 17,305.9829 | 6465.5253 | 17,307.8974 | 6566.0080 | 10,949.5381 | 5357.9856 | 6304.8371 | 4110.5429 | 2673.1828 | 5184.2656 |
IA | 0.9827 | 0.9612 | 0.9861 | 0.9611 | 0.9858 | 0.9761 | 0.9886 | 0.9865 | 0.9916 | 0.9948 | 0.9894 |
Index | Test set | ||||||||||
Our method | GM(1,1) *** | FGM(1,1) * | DGM(1,1) *** | FDGM(1,1) * | NGBM(1,1) | FANGBM(1,1) * | FDNGBM(r,1) ** | LSSVR | Elman | ELM | |
MAPE | 3.5510 | 9.9133 | 8.2602 | 9.8091 | 8.3962 | 4.4173 | 7.9875 | 10.6074 | 3.9946 | 5.3826 | 3.8931 |
RMSE | 115.4096 | 276.9010 | 289.9036 | 273.9747 | 295.0238 | 135.6279 | 279.1346 | 356.5978 | 117.2942 | 187.2595 | 123.6559 |
MAE | 99.9885 | 276.2853 | 239.6955 | 273.3341 | 243.6816 | 119.8090 | 231.6709 | 306.3397 | 112.5747 | 155.9057 | 111.3554 |
MSE | 13,319.3820 | 76,674.1434 | 84,044.0777 | 75,062.1586 | 87,039.0505 | 18,394.9190 | 77,916.1112 | 127,161.9968 | 13,757.9340 | 35,066.1369 | 15,290.7848 |
IA | 0.6713 | 0.6061 | 0.4114 | 0.6091 | 0.4064 | 0.7708 | 0.4260 | 0.3632 | 0.8621 | 0.5935 | 0.8218 |
Training set | Our method | GM(1,1) | FGM(1,1) | Model 1 | Our method | GM(1,1) | FGM(1,1) | Model 1 | Our method | GM(1,1) | FGM(1,1) | Model 1 |
Case 1 | Case 2 | Case 3 | ||||||||||
MAPE | 4.7462 | 11.1838 | 5.4643 | 10.3641 | 1.8903 | 3.6029 | 2.0214 | 3.4537 | 2.7061 | 4.5487 | 3.0192 | 4.3680 |
RMSE | 12.0144 | 23.0773 | 11.7400 | 24.1802 | 151.7300 | 213.5728 | 130.0677 | 226.5078 | 90.0727 | 131.5522 | 80.4085 | 137.8683 |
MAE | 8.8878 | 18.6898 | 9.3773 | 19.4523 | 104.2117 | 165.2994 | 102.8817 | 144.6816 | 66.5238 | 105.5441 | 70.3071 | 104.1649 |
MSE | 144.3457 | 532.5610 | 137.8273 | 584.6813 | 23,021.9818 | 45,613.3400 | 16,917.6033 | 51,305.7837 | 8113.0861 | 17,305.9829 | 6465.5253 | 19,007.6761 |
IA | 0.9968 | 0.9875 | 0.9967 | 0.9857 | 0.9983 | 0.9965 | 0.9987 | 0.9959 | 0.9827 | 0.9612 | 0.9861 | 0.9559 |
Test set | Our method | GM(1,1) | FGM(1,1) | Model 1 | Our method | GM(1,1) | FGM(1,1) | Model 1 | Our method | GM(1,1) | FGM(1,1) | Model 1 |
MAPE | 2.4107 | 17.9763 | 8.7587 | 13.9537 | 0.6527 | 4.2648 | 2.3490 | 2.1992 | 3.5510 | 9.9133 | 8.2602 | 7.3533 |
RMSE | 13.5587 | 100.7229 | 52.9336 | 81.7926 | 106.6044 | 551.5302 | 276.4134 | 289.0112 | 115.4096 | 276.9010 | 289.9036 | 205.5850 |
MAE | 12.0764 | 94.1332 | 46.8739 | 73.8888 | 65.5743 | 476.0711 | 255.1534 | 246.5024 | 99.9885 | 276.2853 | 239.6955 | 204.4749 |
MSE | 183.8381 | 10,145.0983 | 2801.9669 | 6690.0372 | 11,364.5080 | 304,185.5582 | 76,404.3905 | 83,527.4927 | 13,319.3820 | 76,674.1434 | 84,044.0777 | 42,265.1836 |
IA | 0.9851 | 0.7106 | 0.7831 | 0.7818 | 0.9977 | 0.9514 | 0.9836 | 0.9851 | 0.6713 | 0.6061 | 0.4114 | 0.6968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, C. A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process. Fractal Fract. 2024, 8, 396. https://doi.org/10.3390/fractalfract8070396
Wang Y, Liu C. A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process. Fractal and Fractional. 2024; 8(7):396. https://doi.org/10.3390/fractalfract8070396
Chicago/Turabian StyleWang, Yadong, and Chong Liu. 2024. "A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process" Fractal and Fractional 8, no. 7: 396. https://doi.org/10.3390/fractalfract8070396
APA StyleWang, Y., & Liu, C. (2024). A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process. Fractal and Fractional, 8(7), 396. https://doi.org/10.3390/fractalfract8070396