Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model
<p>Motion coordinate system.</p> "> Figure 2
<p>Corresponding nonlinear ship model.</p> "> Figure 3
<p>Dynamic neural fuzzy model structure.</p> "> Figure 4
<p>Identification process of inverse model for ship course control.</p> "> Figure 5
<p>Flow of inverse model identification for ship course control based on DNFM.</p> "> Figure 6
<p>Ship course control system.</p> "> Figure 7
<p>Change in ship speed V.</p> "> Figure 8
<p>Change in ship model parameters <math display="inline"><semantics> <mrow> <mi mathvariant="normal">K</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="normal">T</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">β</mi> </mrow> </semantics></math>.</p> "> Figure 9
<p>DNFM generating fuzzy rules.</p> "> Figure 10
<p>DNFM identification results.</p> "> Figure 11
<p>Root mean squared error in learning.</p> "> Figure 12
<p>DNFM identification error.</p> "> Figure 13
<p>Ship course tracking.</p> "> Figure 14
<p>Rudder control for ship course.</p> "> Figure 15
<p>Equivalent rudder angle of wind.</p> "> Figure 16
<p>Equivalent rudder angle of waves.</p> "> Figure 17
<p>DNFM generating fuzzy rules under wind and wave disturbances.</p> "> Figure 18
<p>DNFM identification results under wind and wave disturbances.</p> "> Figure 19
<p>Root mean squared error under wind and wave disturbances.</p> "> Figure 20
<p>Identification error of DNFM.</p> "> Figure 21
<p>Course control and rudder angle curves under wind and wave disturbances.</p> "> Figure 22
<p>Comparison of five different controllers.</p> "> Figure 23
<p>Rudder angle using five different controllers.</p> ">
Abstract
:1. Introduction
- For the uncertainty problem caused by time-varying modeling parameters associated with ship speed, this paper creates a novel identification method based on the DNFM to identify the inverse dynamic characteristics of ship motion. The DNFM can make adjustments to its structure and parameters simultaneously during learning. It provides a full approximation of the inverse dynamics of ship motion.
- Regarding the problem that the digital PID autopilot in ship course control is overly sensitive to high-frequency interference and ship models, this paper uses the controller to replace the digital PID autopilot. The integral order and differential order are arbitrary positive real numbers, thus making the controller more flexible and robust.
- The trained DNFM, serving as an inverse controller, is connected in parallel with the controller to be used for the tracking control of the ship’s course. The weights of the dynamic neural fuzzy model can be further adjusted online, thus improving the accuracy of the controller.
- In order to verify the algorithm performance, a comparison experiment among five different ship course controllers is conducted, namely the ANFM-FOPID controller [54], the PID controller [64], the PSO-PID controller [65], the controller based on the evolutionary algorithm [66], and the controller proposed in this paper.
2. USV Mathematical Model
2.1. Motion Model
2.2. The Norrbin Nonlinear Model for Course Control
3. Ship Course Inverse Model Identification Based on DNFM
3.1. Design of DNFM
3.2. Design of Learning Algorithm for Dynamic Neural Fuzzy Model
3.3. Inverse Model Identification for Ship Course Control Based on DNFM
4. Fractional-Order Controller Based on DNFM
4.1. Fractional Calculus and Controller
4.2. Course Controller Design
5. Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ariza, R.W.; Leong, Z.Q.; Nguyen, H.; Gamini, J.S. Non-parametric dynamic system identification of ships using multi-output Gaussian Processes. Ocean Eng. 2018, 166, 26–36. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, J.; Zhou, L.; Ding, S.; Han, S. A study on ice resistance prediction based on deep learning data generation method. Ocean Eng. 2024, 301, 117467. [Google Scholar] [CrossRef]
- Wang, Z.H.; Xu, H.T.; Xia, L.; Zou, Z.J.; Soares, C.G. Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion. Ocean Eng. 2020, 216, 107994. [Google Scholar]
- Peng, B.; Gao, D.R.; Wang, M.Q.; Zhang, Y.Q. 3D-STCNN: Spatiotemporal convolutional neural network based on EEG 3D features for detecting driving fatigue. J. Data Sci. Intell. Syst. 2024, 2, 1–13. [Google Scholar] [CrossRef]
- Li, M.; Lv, Z.; Cao, Q.; Gao, J.; Hu, B. Automatic assessment method and device for depression symptom severity based on emotional facial expression and pupil-wave. IEEE Trans. Instrum. Meas. 2024, 73, 2531215. [Google Scholar] [CrossRef]
- Aumtab, C.; Wanichanon, T. Stability and Tracking Control of Nonlinear Rigid-Body Ship Motions. J. Mar. Sci. Eng. 2022, 10, 153. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Zhou, L.; Kujala, P. Investigation of ice wedge bearing capacity based on an anisotropic beam analogy. Ocean Eng. 2024, 302, 117611. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Chen, H.; Deng, W. Fractional-Order Controller for Course-Keeping of Underactuated Surface Vessels Based on Frequency Domain Specification and Improved Particle Swarm Optimization Algorithm. Appl. Sci. 2022, 12, 3139. [Google Scholar] [CrossRef]
- Jiao, L.C.; Yang, S.Y.; Liu, F.; Wang, S.G.; Feng, Z.X. Seventy years beyond neural networks: Retrospect and prospect. Chin. J. Comput. 2016, 39, 1697–1716. [Google Scholar]
- Kim, H.; Kim, S.H.; Jeon, M.; Kim, J.; Song, S.; Paik, K.J. A study on path optimization method of an unmanned surface vehicle under environmental loads using genetic algorithm. Ocean Eng. 2017, 142, 616–624. [Google Scholar] [CrossRef]
- Song, Y.J.; Han, L.H.; Zhang, B.; Deng, W. A dual-time dual-population multi-objective evolutionary algorithm with application to the portfolio optimization problem. Eng. Appl. Artif. Intell. 2024, 133, 108638. [Google Scholar] [CrossRef]
- Zhu, T.; Ren, R.; Li, Y.; Liu, W. A Model-Based Reinforcement Learning Method with Conditional Variational Auto-Encoder. J. Data Sci. Intell. Syst. 2024. [CrossRef]
- Wang, Q.; Sun, C.; Chen, Y. Adaptive neural network control for course-keeping of ships with input constraints. Trans. Inst. Meas. Control 2019, 41, 1010–1018. [Google Scholar] [CrossRef]
- Zhou, X.B.; Ma, H.J.; Gu, J.G.; Chen, H.L.; Deng, W. Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism. Eng. Appl. Artif. Intell. 2022, 114, 105139. [Google Scholar] [CrossRef]
- Simani, S.; Lam, Y.P.; Farsoni, S.; Castaldi, P. Dynamic Neural Network Architecture Design for Predicting Remaining Useful Life of Dynamic Processes. J. Data Sci. Intell. Syst. 2024, 2, 141–152. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, L.R.; Zhou, X.B.; Zhou, Y.Q.; Sun, Y.Z.; Zhu, W.H.; Chen, H.Y.; Deng, W.Q.; Chen, H.L.; Zhao, H.M. Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem. Inf. Sci. 2022, 612, 576–593. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chang, W.J.; Pen, C.L. Fuzzy Steering Control for T-S Fuzzy Model-Based Multiple Ship Systems Subject to Formation and Containment. Int. J. Fuzzy Syst. 2023, 25, 1782–1794. [Google Scholar] [CrossRef]
- Chen, H.; Ru, J.; Long, H.; He, J.; Chen, T.; Deng, W. Semi-supervised adaptive pseudo-label feature learning for hyperspectral image classification in internet of things. IEEE Internet Things J. 2024, 11, 30754–30768. [Google Scholar] [CrossRef]
- Qian, Y.; Hu, D.; Chen, Y.; Fang, Y.; Hu, Y. Adaptive Neural Network-Based Tracking Control of Underactuated Offshore Ship-to-Ship Crane Systems Subject to Unknown Wave Motions Disturbances. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3626–3637. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, X.B.; Ran, X.J.; Wang, J.M.; Chen, H.Y.; Deng, W. Adaptive cylinder vector particle swarm optimization with differential evolution for UAV path planning. Eng. Appl. Artif. Intell. 2023, 121, 105942. [Google Scholar] [CrossRef]
- Narendra, K.S.; Parthasarathy, K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1990, 1, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-T.; Lee, C.S.G. Neural-network-based fuzzy logic control and decision system. IEEE Trans. Comput. 1991, 40, 1320–1336. [Google Scholar] [CrossRef]
- Sastry, P.S.; Unnikrishnan, K.P. Memory neuron networks for identification and control of dynamical systems. IEEE Trans. Neural Netw. 1994, 5, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Barada, S.; Singh, H. Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 1998, 28, 371–391. [Google Scholar] [CrossRef]
- Lee, C.H.; Teng, C.C. Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 2000, 8, 349–366. [Google Scholar]
- Abiyev, R.H.; Kaynak, O. Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants. IEEE Trans. Ind. Electron. 2010, 57, 4147–4159. [Google Scholar] [CrossRef]
- Feng, S.; Chen, C.L.P. Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification. IEEE Trans. Cybern. 2020, 50, 414–424. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Y.; Deng, W. Fuzzy broad neuroevolution networks via multi-objective evolutionary algorithms: Balancing structural simplification and performance. IEEE Trans. Instrum. Meas. 2024. [Google Scholar] [CrossRef]
- Yang, G.X.; Guo, C. Simulation study of ship control based on hybrid intelligent technology. J. Syst. Simul. 2002, 14, 637–640. [Google Scholar]
- Deng, W.; Li, K.; Zhao, H. A flight arrival time prediction method based on cluster clustering-based modular with deep neural network. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6238–6247. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Xu, J.; Zhu, G.; Deng, W. APDPFL: Anti-poisoning attack decentralized privacy enhanced federated learning scheme for flight operation data sharing. IEEE Trans. Wirel. Commun. 2024. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Yang, C.; Lu, Z.; Chen, J. Automatic diagnosis of depression based on facial expression information and deep convolutional neural network. IEEE Trans. Comput. Soc. Syst. 2024, 11, 5728–5739. [Google Scholar] [CrossRef]
- Huang, C.; Wu, D.Q.; Zhou, X.B.; Song, Y.J.; Chen, H.L.; Deng, W. Competitive swarm optimizer with dynamic multi-competitions and convergence accelerator for large-scale optimization problems. Appl. Soft Comput. 2024, 167, 112252. [Google Scholar] [CrossRef]
- Zhang, X.K.; Lu, X.F. Robust neural network control for sip’s course-keeping. Ship Mech. 2006, 10, 54–58. [Google Scholar]
- Ran, X.J.; Suyaroj, N.; Tepsan, W.; Ma, J.H.; Zhou, X.B.; Deng, W. A hybrid genetic-fuzzy ant colony optimization algorithm for automatic K-means clustering in urban global positioning system. Eng. Appl. Artif. Intell. 2024, 137, 109237. [Google Scholar] [CrossRef]
- Xu, J.; Li, T.; Zhang, D.; Wu, J. Ensemble clustering via fusing global and local structure information. Expert Syst. Appl. 2024, 237, 121557. [Google Scholar] [CrossRef]
- Long, H.Y.; Chen, T.; Chen, H.Y.; Zhou, X.B.; Deng, W. Principal space approximation ensemble discriminative marginalized least-squares regression for hyperspectral image classification. Eng. Appl. Artif. Intell. 2024, 133, 108031. [Google Scholar] [CrossRef]
- Xie, P.; Deng, L.; Ma, Y.; Deng, W.Q. EV-Call 120: A new-generation emergency medical service system in China. J. Transl. Intern. Med. 2024, 12, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Cai, F.; Zhang, Y.S. The design and simulation of a fuzzy controller for course keeping. Ship Sci. Technol. 2004, 26, 26–27. [Google Scholar]
- Huang, C.; Zhou, X.B.; Ran, X.J.; Liu, Y.; Deng, W.Q.; Deng, W. Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem. Inf. Sci. 2023, 619, 2–18. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Sun, Z. Path control of a surface ship in restricted waters using sliding mode. IEEE Trans. Control Syst. Technol. 2000, 8, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Cai, X.; Wu, D.; Song, Y.; Chen, H.; Ran, X.; Zhou, X.; Zhao, H. MOQEA/D: Multi-objective QEA with decomposition mechanism and excellent global search and its application. IEEE Trans. Intell. Transp. Syst. 2024, 25, 12517–12527. [Google Scholar] [CrossRef]
- He, Z.J. Fuzzy controller for ship’s course steering. Ship Sci. Technol. 2008, 30, 58–61, 65. [Google Scholar]
- Li, T.Y.; Shu, X.Y.; Wu, J.; Zheng, Q.X.; Lv, X.; Xu, J.X. Adaptive weighted ensemble clustering via kernel learning and local information preservation. Knowl.-Based Syst. 2024, 294, 111793. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Zhao, Z.; Deng, W. A new fault diagnosis approach using parameterized time-reassigned multisynchrosqueezing transform for rolling bearings. IEEE Trans. Reliab. 2024. [Google Scholar] [CrossRef]
- Guo, D.; Wu, E.Q.; Wu, Y.; Zhang, J.; Law, R.; Lin, Y. FlightBERT: Binary Encoding Representation for Flight Trajectory Prediction. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1828–1842. [Google Scholar] [CrossRef]
- Zhou, X.B.; Cai, X.; Zhang, H.; Zhang, Z.H.; Jin, T.; Chen, H.Y.; Deng, W. Multi-strategy competitive-cooperative co-evolutionary algorithm and its application. Inf. Sci. 2023, 635, 328–344. [Google Scholar] [CrossRef]
- Meng, F.C.; Wang, N. Indirect Fuzzy Adaptive Heading Control of Surface Ships. In Proceedings of the 2014 33rd CHINESE CONTROL CONFERENCE (CCC), Nanjing, China, 28–30 July 2014; pp. 4576–4580. [Google Scholar]
- Zhang, Z.; Zhang, X.; Zhang, G. ANFIS-based course-keeping control for ships using nonlinear feedback technique. J. Mar. Sci. Technol. 2019, 24, 1326–1333. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, Y.; Deng, W. Defect detection using shuffle Net-CA-SSD lightweight network for turbine blades in IoT. IEEE Internet Things J. 2024, 11, 32804–32812. [Google Scholar] [CrossRef]
- Fang, M.C.; Li, Z.Y. Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships. Int. J. Nav. Archit. Ocean Eng. 2016, 8, 38–52. [Google Scholar] [CrossRef]
- Deng, W.; Li, X.; Xu, J.; Li, W.; Zhu, G.; Zhao, H. BFKD: Blockchain-Based Federated Knowledge Distillation for Aviation Internet of Things. IEEE Trans. Reliab. 2024. [Google Scholar] [CrossRef]
- Hatami, E.; Salarieh, H. Adaptive critic-based neuro-fuzzy controller for dynamic position of ships. Sci. Iran. 2015, 22, 272–280. [Google Scholar]
- Li, G.; Chen, B.; Chen, H.; Deng, W. Fractional-Order PIλDμ Controller Using Adaptive Neural Fuzzy Model for Course Control of Underactuated Ships. Appl. Sci. 2022, 12, 5604. [Google Scholar] [CrossRef]
- Deng, W.; Chen, X.; Li, X.; Zhao, H. Adaptive federated learning with negative inner product aggregation. IEEE Internet Things J. 2023, 11, 6570–6581. [Google Scholar] [CrossRef]
- Zhang, C.; Wan, L.; Liu, Y. Ship heading control based on fuzzy PID control. In Proceedings of the 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Jinzhou, China, 6–8 June 2019; pp. 607–612. [Google Scholar]
- Podlubny, I. Fractional-order System and Fractional-order Control. IEEE Trans. Autom. Control 1999, 44, 208–214. [Google Scholar] [CrossRef]
- Kanagaraj, N. An adaptive neuro-fuzzy inference system to improve fractional order controller performance. Intell. Autom. Soft Comput. 2023, 35, 3213–3226. [Google Scholar] [CrossRef]
- Shalaby, R.; El-Hossainy, M.; Abo-Zalam, B.; Mahmoud, T.A. Optimal fractional-order PID controller based on fractional-order actor-critic algorithm. Neural Comput. Applic. 2023, 35, 2347–2380. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Deng, W. IOFL: Intelligent-optimization-based federated learning for Non-IID data. IEEE Internet Things J. 2024, 11, 16693–16699. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, M.; Huang, Y. Formal Verification of Fractional-Order PID Control Systems Using Higher-Order Logic. Fractal Fract. 2022, 6, 485. [Google Scholar] [CrossRef]
- Shi, X.; Chen, P.; Chen, L. An Integrated Method for Ship Heading Control Using Motion Model Prediction and Fractional Order Proportion Integration Differentiation Controller. J. Mar. Sci. Eng. 2023, 11, 2294. [Google Scholar] [CrossRef]
- Lin, Y.; Guo, D.; Wu, Y.; Li, L.; Wu, E.Q.; Ge, W. Fuel consumption prediction for pre-departure flights using attention-based multi-modal fusion. Inf. Fusion 2024, 101, 101983. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicle; John Wiley & Sons Ltd: Hoboken, NJ, USA, 1994. [Google Scholar]
- Dlabač, T.; Alasan, M. PSO-BASED PID controller design for ship course-keeping autopilot. Brodogradnja 2019, 70, 1–15. [Google Scholar] [CrossRef]
- Zafer, B.I.; Karahan, O. Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk. J. Electr. Eng. Comput. Sci. 2012, 20, 1123–1136. [Google Scholar]
- Meng, W.; Guo, C.; Liu, Y. Robust Adaptive Path Following for Underactuated Surface Vessels with Uncertain Dynamics. Mar. Sci. Appl. 2012, 11, 244–250. [Google Scholar] [CrossRef]
- Shen, Z. Study on General Fuzzified CMAC Based Ship Motion Intelligent Control and Its Distributed Simulation. Ph.D Thesis, Dalian Maritime University, Dalian, China, 2005. [Google Scholar]
- Leontaritis, I.J.; Billings, S.A. Input-output parametric models for non-linear systems part I: Deterministic non-linear systems. Int. J. Control 1985, 41, 303–328. [Google Scholar] [CrossRef]
Ship Length LOA | Ship Width B | Rudder Area | No Load Mass m | Design Draft T |
---|---|---|---|---|
280 m | 39.8 | 61 m2 | 3.5453 × 104 tons | 12.532 m |
Two Column Length L | Gravity Center Distance | Square Coefficient | Fully Load Mass m | Fully Load Draft |
267 m | 2.64 m | 0.67 | 6.5531 × 104 tons | 14.023 m |
−0.01045 | −0.00041371 | −0.016338 | −0.0050478 | 0.002567 |
−0.00063623 | −0.00058912 | 0.0038469 | −0.0025973 | −0.0012835 |
27.1 | 0.2676 | 186.9556 | 10.4915 | 7.5343 |
26.5 | 0.2617 | 191.1885 | 10.7291 | 8.0578 |
25.0 | 0.2468 | 202.6599 | 11.3728 | 9.5969 |
24.5 | 0.2419 | 206.7958 | 11.6049 | 10.1966 |
22.5 | 0.2222 | 225.1776 | 12.6366 | 13.1644 |
19.8 | 0.1955 | 255.8837 | 14.3601 | 19.3172 |
17.8 | 0.1758 | 284.6346 | 15.9748 | 26.5858 |
16.3 | 0.1609 | 310.8280 | 17.4475 | 34.6171 |
Controller Type | Rise Time | Overshoot | Steady-State Error ESS | |
---|---|---|---|---|
DNFM-FOPID (proposed) | 92 | 68 | 2.83% | 0.007 |
ANFM-FOPID | 32 | 18 | 4.27% | 0.009 |
PSO-PID | 416 | 67 | 31.16% | 0.024 |
PID | 519 | 71 | 14.25% | 0.007 |
EA-FOPID | 163 | 65 | 9.53% | 0.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, Y.; Li, X.; Liu, M.; Zhang, X.; Jin, H. Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model. Fractal Fract. 2024, 8, 720. https://doi.org/10.3390/fractalfract8120720
Li G, Li Y, Li X, Liu M, Zhang X, Jin H. Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model. Fractal and Fractional. 2024; 8(12):720. https://doi.org/10.3390/fractalfract8120720
Chicago/Turabian StyleLi, Guangyu, Yanxin Li, Xiang Li, Mutong Liu, Xuesong Zhang, and Hua Jin. 2024. "Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model" Fractal and Fractional 8, no. 12: 720. https://doi.org/10.3390/fractalfract8120720
APA StyleLi, G., Li, Y., Li, X., Liu, M., Zhang, X., & Jin, H. (2024). Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model. Fractal and Fractional, 8(12), 720. https://doi.org/10.3390/fractalfract8120720