Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population
<p>Histograms depicting the distributions of MICs (μg/mL) among strains for each clade against different drugs. Y-axis depicts the counts while x-axis depicts the MIC values, with 10<sup>−2</sup>, 10<sup>−1</sup>, 10<sup>0</sup>, 10<sup>1</sup>, and 10<sup>2</sup> on the x-axis being equivalent to 0.01, 0.1, 1, 10, and 100 μg/mL.</p> "> Figure 2
<p>QQ plots and Manhattan plots showing genome-wide SNPs associated with antifungal-susceptibility differences among strains within Clade I. The left panel displays the QQ plots for five GWAS analyses, while the right panel presents the Manhattan plots. Plots are arranged from top to bottom in the following order: FLU, AMB, CAS, MFG, and AFG. The QQ plots display the expected −log10 (<span class="html-italic">p</span>-value) on the X-axis and the observed −log10 (<span class="html-italic">p</span>-value) on the Y-axis. The Manhattan plots are depicted with scaffold position on the X-axis and the −log10 (<span class="html-italic">p</span>-value) on the Y-axis. The significant <span class="html-italic">p</span>-value threshold for the SNPs is represented by green lines on the Manhattan plots.</p> "> Figure 3
<p>QQ plots and Manhattan plots showing genome-wide SNPs associated with antifungal-susceptibility differences among strains within Clade III. The left panel displays the QQ plots for five GWAS analyses, while the right panel presents the Manhattan plots. Plots are arranged from top to bottom in the following order: FLU, CAS (FarmCPU; BLINK), MFG (FarmCPU; BLINK), and AFG (FarmCPU; BLINK). The QQ plots display the expected −log10 (<span class="html-italic">p</span>-value) on the X-axis and the observed −log10 (<span class="html-italic">p</span>-value) on the Y-axis. The Manhattan plots are depicted with scaffold position on the X-axis and the −log10 (<span class="html-italic">p</span>-value) on the Y-axis. The significant <span class="html-italic">p</span>-value threshold for the SNPs is represented by green lines on the Manhattan plots.</p> "> Figure 4
<p>QQ plots and Manhattan plots showing genome-wide SNPs associated with antifungal-susceptibility differences among strains within Clade IV. The left panel displays the QQ plots for three GWAS analyses, while the right panel presents the Manhattan plots. Plots are arranged from top to bottom in the following order: VOR, CAS (FarmCPU; BLINK), and MFG. The QQ plots display the expected −log10 (<span class="html-italic">p</span>-value) on the X-axis and the observed −log10 (<span class="html-italic">p</span>-value) on the Y-axis. The Manhattan plots are depicted with scaffold position on the X-axis and the −log10 (<span class="html-italic">p</span>-value) on the Y-axis. The significant <span class="html-italic">p</span>-value threshold for the SNPs is represented by green lines on the Manhattan plots.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Genomic Variant Calling and Annotation
2.3. SNPs in Antifungal-Related Genes for Individual Clades
2.4. Genome-Wide Association Study
2.5. Analysis of SNPs Associated with Antifungal-Susceptibility
3. Results
3.1. MIC Distribution
3.2. Variant Calling and SNPs in Known Antifungal Resistance-Related Genes
3.3. Clade I Genome-Wide Association Study
3.4. Clade III Genome-Wide Association Study
3.5. Clade IV Genome-Wide Association Study
3.6. Noncoding SNPs Associated with Antifungal-susceptibility Differences
3.7. Alternative GWAS Analyses for Three Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 11 April 2023).
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov., a Novel Ascomycetous Yeast Isolated from the External Ear Canal of an Inpatient in a Japanese Hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef]
- Lee, W.G.; Shin, J.H.; Uh, Y.; Kang, M.G.; Kim, S.H.; Park, K.H.; Jang, H.C. First Three Reported Cases of Nosocomial Fungemia Caused by Candida auris. J. Clin. Microbiol. 2011, 49, 3139–3142. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 2019, 10, e01397-19. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Singh, P.; Wang, Y.; Yadav, A.; Pawar, K.; Singh, A.; Padmavati, G.; Xu, J.; Chowdhary, A. Environmental Isolation of Candida auris from the Coastal Wetlands of Andaman Islands, India. mBio 2021, 12, e03181-20. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Chies, J.A.B. Candida auris Emergence as a Consequence of Climate Change: Impacts on Americas and the Need to Contain Greenhouse Gas Emissions. Lancet Reg. Health Am. 2022, 11, 100250. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Singh, A.; Wang, Y.; Van Haren, M.H.; Singh, A.; De Groot, T.; Meis, J.F.; Xu, J.; Chowdhary, A. Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. J. Fungi 2021, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Jain, K.; Wang, Y.; Pawar, K.; Kaur, H.; Sharma, K.K.; Tripathy, V.; Singh, A.; Xu, J.; Chowdhary, A. Candida auris on Apples: Diversity and Clinical Significance. mBio 2022, 13, e00518-22. [Google Scholar] [CrossRef]
- Maertens, J.A. History of the Development of Azole Derivatives. Clin. Microbiol. Infect. 2004, 10, 1–10. [Google Scholar] [CrossRef]
- Zotchev, S. Polyene Macrolide Antibiotics and Their Applications in Human Therapy. Curr. Med. Chem. 2003, 10, 211–223. [Google Scholar] [CrossRef]
- Morris, M.I.; Villmann, M. Echinocandins in the Management of Invasive Fungal Infections, Part 2. Am. J. Health Syst. Pharm. 2006, 63, 1813–1820. [Google Scholar] [CrossRef]
- Silverman, R.B.; Holladay, M.W. The Organic Chemistry of Drug Design and Drug Action, 3rd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 1–517. [Google Scholar] [CrossRef]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A Multicentre Study of Antifungal Susceptibility Patterns among 350 Candida auris Isolates (2009–2017) in India: Role of the ERG11 and FKS1 Genes in Azole and Echinocandin Resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Frías-De-león, M.G.; Hernández-Castro, R.; Vite-Garín, T.; Arenas, R.; Bonifaz, A.; Castañón-Olivares, L.; Acosta-Altamirano, G.; Martínez-Herrera, E. Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics 2020, 9, 568. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A Package for the next Level of Genome-Wide Association Studies with Both Individuals and Markers in the Millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.F.; Gade, L.; Chow, N.A.; Loparev, V.N.; Juieng, P.; Berkow, E.L.; Farrer, R.A.; Litvintseva, A.P.; Cuomo, C.A. Genomic Insights into Multidrug-Resistance, Mating and Virulence in Candida auris and Related Emerging Species. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef]
- Suphavilai, C.; Ko, K.K.K.; Lim, K.M.; Tan, M.G.; Boonsimma, P.; Chu, J.J.K.; Goh, S.S.; Rajandran, P.; Lee, L.C.; Tan, K.Y.; et al. Discovery of the Sixth Candida auris Clade in Singapore. medRxiv 2023. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2; Use R! Springer: New York, NY, USA; Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Sahl, J.W.; Lemmer, D.; Travis, J.; Schupp, J.M.; Gillece, J.D.; Aziz, M.; Driebe, E.M.; Drees, K.P.; Hicks, N.D.; Williamson, C.H.D.; et al. NASP: An Accurate, Rapid Method for the Identification of SNPs in WGS Datasets That Supports Flexible Input and Output Formats. Microb. Genom. 2016, 2, e000074. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing Next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila melanogaster Strain W1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, M.S.; Binkley, J.; Binkley, G.; Miyasato, S.R.; Simison, M.; Sherlock, G. The Candida Genome Database (CGD): Incorporation of Assembly 22, Systematic Identifiers and Visualization of High Throughput Sequencing Data. Nucleic Acids Res. 2017, 45, D592. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J. Population Genomic Analyses Reveal Evidence for Limited Recombination in the Superbug Candida auris in Nature. Comput. Struct. Biotechnol. J. 2022, 20, 3030–3040. [Google Scholar] [CrossRef] [PubMed]
- Priebe, S.; Linde, J.; Albrecht, D.; Guthke, R.; Brakhage, A.A. FungiFun: A Web-Based Application for Functional Categorization of Fungal Genes and Proteins. Fungal Genet. Biol. 2011, 48, 353–358. [Google Scholar] [CrossRef]
- Sigel, H.C.; Thewes, S.; Niewerth, M.; Korting, H.C.; Schäder-Korting, M.; Hube, B. Oxygen Accessibility and Iron Levels Are Critical Factors for the Antifungal Action of Ciclopirox against Candida albicans. J. Antimicrob. Chemother. 2005, 55, 663–673. [Google Scholar] [CrossRef]
- Nobile, C.J.; Fox, E.P.; Nett, J.E.; Sorrells, T.R.; Mitrovich, Q.M.; Hernday, A.D.; Tuch, B.B.; Andes, D.R.; Johnson, A.D. A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell 2012, 148, 126–138. [Google Scholar] [CrossRef]
- Kempf, M.; Apaire-Marchais, V.; Saulnier, P.; Licznar, P.; Lefrançois, C.; Robert, R.; Cottin, J. Disruption of Candida albicans IFF4 Gene Involves Modifications of the Cell Electrical Surface Properties. Colloids Surf. B Biointerfaces 2007, 58, 250–255. [Google Scholar] [CrossRef]
- Shen, H.; An, M.M.; Wang, D.J.; Xu, Z.; Zhang, J.D.; Gao, P.H.; Cao, Y.Y.; Cao, Y.B.; Jiang, Y.Y. Fcr1p Inhibits Development of Fluconazole Resistance in Candida albicans by Abolishing CDR1 Induction. Biol. Pharm. Bull. 2007, 30, 68–73. [Google Scholar] [CrossRef]
- Talibi, D.; Raymond, M. Isolation of a Putative Candida albicans Transcriptional Regulator Involved in Pleiotropic Drug Resistance by Functional Complementation of a Pdr1 Pdr3 Mutation in Saccharomyces cerevisiae. J. Bacteriol. 1999, 181, 231. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Paul, R.A.; Rudramurthy, S.M.; Kashyap, N.; Bhattacharya, S.; Soman, R.; Shankarnarayan, S.A.; Chavan, D.; Singh, S.; Das, P.; et al. Impact of FKS1 Genotype on Echinocandin In Vitro Susceptibility in Candida auris and In Vivo Response in a Murine Model of Infection. Antimicrob. Agents Chemother. 2022, 66, e01652-21. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.A.; Miyazaki, M.; Horii, T.; Sagane, K.; Tsukahara, K.; Hata, K. E1210, a New Broad-Spectrum Antifungal, Suppresses Candida albicans Hyphal Growth through Inhibition of Glycosylphosphatidylinositol Biosynthesis. Antimicrob. Agents Chemother. 2012, 56, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Luther, C.H.; Brandt, P.; Vylkova, S.; Dandekar, T.; Müller, T.; Dittrich, M. Integrated Analysis of SR-like Protein Kinases Sky1 and Sky2 Links Signaling Networks with Transcriptional Regulation in Candida albicans. Front. Cell Infect. Microbiol. 2023, 13, 1108235. [Google Scholar] [CrossRef] [PubMed]
- Resende, C.; Parham, S.N.; Tinsley, C.; Ferreira, P.; Duarte, J.A.B.; Tuite, M.F. The Candida Albicans Sup35p Protein (CaSup35p): Function, Prion-like Behaviour and an Associated Polyglutamine Length Polymorphism. Microbiology 2002, 148, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Sparapani, S.; Bachewich, C. Characterization of a Novel Separase-Interacting Protein and Candidate New Securin, Eip1p, in the Fungal Pathogen Candida albicans. Mol. Biol. Cell 2019, 30, 2469. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Moreno, I.; Nieto, A.; Gómez, M.; Sentandreu, R.; Valentín, E. In Silico Analysis for Transcription Factors with Zn(II)(2)C(6) Binuclear Cluster DNA-Binding Domains in Candida albicans. Comp. Funct. Genom. 2005, 6, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Aljindan, R.; Aleraky, D.M.; Mahmoud, N.; Abdalhamid, B.; Almustafa, M.; Abdulazeez, S.; Francis Borgio, J. Drug Resistance-Associated Mutations in ERG11 of Multidrug-Resistant Candida auris in a Tertiary Care Hospital of Eastern Saudi Arabia. J. Fungi 2020, 7, 18. [Google Scholar] [CrossRef]
- Healey, K.R.; Kordalewska, M.; Ortigosa, C.J.; Singh, A.; Berrío, I.; Chowdhary, A.; Perlin, D.S. Limited ERG11 Mutations Identified in Isolates of Candida auris Directly Contribute to Reduced Azole Susceptibility. Antimicrob. Agents Chemother. 2018, 62, e01427-18. [Google Scholar] [CrossRef]
- Kordalewska, M.; Lee, A.; Park, S.; Berrio, I.; Chowdhary, A.; Zhao, Y.; Perlin, D.S. Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris. Antimicrob. Agents Chemother. 2018, 62, e00238-18. [Google Scholar] [CrossRef]
- Chaabane, F.; Graf, A.; Jequier, L.; Coste, A.T. Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front. Microbiol. 2019, 10, 2788. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Lockhart, S.R. Activity of CD101, a Long-Acting Echinocandin, against Clinical Isolates of Candida Auris. Diagn. Microbiol. Infect. Dis. 2018, 90, 196–197. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, J. Roles of Edc3 in the Oxidative Stress Response and CaMCA1-Encoded Metacaspase Expression in Candida albicans. FEBS J. 2014, 281, 4841–4851. [Google Scholar] [CrossRef] [PubMed]
- Chow, N.A.; Muñoz, J.F.; Gade, L.; Berkow, E.L.; Li, X.; Welsh, R.M.; Forsberg, K.; Lockhart, S.R.; Adam, R.; Alanio, A.; et al. Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. mBio 2020, 11, e03364-19. [Google Scholar] [CrossRef] [PubMed]
- Černáková, L.; Roudbary, M.; Brás, S.; Tafaj, S.; Rodrigues, C.F. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int. J. Mol. Sci. 2021, 22, 4470. [Google Scholar] [CrossRef] [PubMed]
- Altinbaş, R.; Bariş, A.; Şen, S.; Öztürk, R.; Kiraz, N. Comparison of the Sensititre YeastOne Antifungal Method with the CLSI M27-A3 Reference Method to Determine the Activity of Antifungal Agents against Clinical Isolates of Candida spp. Turk. J. Med. Sci. 2020, 50, 2024. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Alastruey-Izquierdo, A.; Bernal-Martinez, L.; Cuesta, I.; Buitrago, M.J.; Rodriguez-Tudela, J.L. Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre Yeast One and E test Techniques for In Vitro Detection of Antifungal Resistance in Yeast Isolates. J. Clin. Microbiol. 2010, 48, 1782. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Pfaller, M.; Messer, S.A.; Knapp, C.C.; Killian, S.; Norris, H.A.; Ghannoum, M.A. Multicenter Comparison of the Sensititre Yeast One Colorimetric Antifungal Panel with the National Committee for Clinical Laboratory Standards M27-A Reference Method for Testing Clinical Isolates of Common and Emerging Candida spp., Cryptococcus spp., and Other Yeasts and Yeast-Like Organisms. J. Clin. Microbiol. 1999, 37, 591–595. [Google Scholar] [CrossRef]
- Xu, J. Assessing global fungal threats to humans. mLife 2022, 1, 223–240. [Google Scholar] [CrossRef]
Antifungal | Clade I (152) | Mean (Range) | Clade III (119) | Mean (Range) | Clade IV (99) | Mean (Range) |
---|---|---|---|---|---|---|
5FC | 107 | 9.83 (0.03–65) | 110 | 0.12 (0.05–0.5) | 1 | 0.5 (–) |
AMB | 148 | 1.89 (0.25–8) | 119 | 0.95 (0.125–2) | 96 | 1.04 (0.25–4) |
FLU | 126 | 151.96 (0.5–257) | 111 | 246.66 (8–256) | 96 | 13.20 (1–257) |
VOR | 147 | 2.22 (0.008–16) | 119 | 1.53 (0.06–8) | 88 | 0.29 (0.015–8) |
ITR | 134 | 1.65 (0.015–16) | 115 | 0.28 (0.06–1) | 86 | 0.19 (0.02–1) |
POS | 131 | 0.86 (0.008–8) | 114 | 0.08 (0.015–0.25) | 86 | 0.09 (0.015–0.5) |
AFG | 141 | 0.49 (0.015–9) | 119 | 0.41 (0.032–8) | 88 | 0.57 (0.016–4) |
CAS | 134 | 1.34 (0.008–16) | 118 | 0.27 (0.06–4) | 96 | 0.35 (0.016–9) |
MFG | 145 | 0.44 (0.015–9.0) | 116 | 0.28 (0.06–8.0) | 92 | 0.42 (0.03–9.0) |
Clade | Gene | Chr | Pos | Corresponding SNP Site in Clade I | REF | ALT | Mutations | REF_n | ALT_n |
---|---|---|---|---|---|---|---|---|---|
I | ERG11 | PEKT02000003.1 | 833880 | PEKT02000003.1_833880 | T | C | Lys143Arg | 119 | 59 |
I | ERG11 | PEKT02000003.1 | 833913 | PEKT02000003.1_833913 | T | A | Tyr132Phe | 62 | 116 |
I | FKS1 | PEKT02000002.1 | 1006624 | PEKT02000002.1_1006624 | G | T, A | Ser639Phe, Tyr | 170 | 5 |
I | FKS1 | PEKT02000002.1 | 1006625 | PEKT02000002.1_1006625 | A | G | Ser639Pro | 176 | 2 |
III | FKS1 | NW_021640162.1 | 2137612 | PEKT02000002.1_1006624 | G | A | Ser639Phe | 117 | 2 |
IV | ERG11 | CP043444.1 | 1566724 | PEKT02000003.1_833880 | T | C | Lys143Arg | 97 | 2 |
IV | ERG11 | CP043444.1 | 1566757 | PEKT02000003.1_833913 | A | T | Phe132Tyr | 3 | 96 |
IV | FKS1 | CP043443.1 | 2100709 | PEKT02000002.1_1006625 | A | G | Ser639Pro | 97 | 2 |
Drug | SNP ID | MAF | Nobs | FDR Adjusted p-Value | Effect | Parameters | Annotation | HGVS.c | HGVS.p | Gene | Candida albicans Ortholog |
---|---|---|---|---|---|---|---|---|---|---|---|
FLU | PEKT02000001.1_897129 | 0.036 | 126 | 3.01 × 10−8 | −101.826 | FarmCPU, PCA:10 | intergenic | c.-3672G>T | |||
PEKT02000003.1_642734 | 0.036 | 126 | 4.84 × 10−7 | 188.652 | intergenic | c.-4186G>A | |||||
PEKT02000003.1_1045994 | 0.028 | 126 | 6.80 × 10−5 | 201.408 | intergenic | c.-4975T>A | |||||
PEKT02000002.1_75394 | 0.04 | 126 | 4.22 × 10−3 | 65.982 | synonymous | c.2097A>G | p.Gln699Gln | B9J08_000534 | CR_10440 | ||
AMB | PEKT02000003.1_514453 | 0.024 | 148 | 1.39 × 10−6 | −4.813 | FarmCPU, PCA:10 | synonymous | c.672G>T | p.Ala224Ala | B9J08_001302 | BRE1 |
PEKT02000003.1_517475 | 0.162 | 148 | 2.30 × 10−4 | −1.475 | synonymous | c.849C>T | p.His283His | B9J08_001303 | BDF1 | ||
PEKT02000002.1_906944 | 0.088 | 148 | 1.21 × 10−3 | 1.789 | missense | c.1465T>C | p.Ser489Pro | B9J08_000923 | SWC4 | ||
PEKT02000002.1_45839 | 0.014 | 148 | 1.22 × 10−3 | −1.869 | missense | c.1028T>C | p.Ile343Thr | B9J08_000517 | FET31 | ||
CAS | PEKT02000002.1_1006625 | 0.015 | 134 | 1.63 × 10−18 | 7.42 | BLINK, PCA:5 | missense | c.1915T>C | p.Ser639Pro | B9J08_000964 | FKS1 |
MFG | PEKT02000002.1_1006624 | 0.014 | 145 | 2.26 × 10−24 | 6.174 | BLINK, PCA:3 | missense | c.1916C>T | p.Ser639Phe | B9J08_000964 | FKS1 |
PEKT02000002.1_1006625 | 0.014 | 145 | 4.51 × 10−11 | 2.514 | missense | c.1915T>C | p.Ser639Pro | B9J08_000964 | FKS1 | ||
PEKT02000004.1_9898 | 0.041 | 145 | 2.60 × 10−5 | 0.832 | synonymous | c.3261C>T | p.Thr1087Thr | B9J08_001531 | IFF4 | ||
PEKT02000002.1_1006624 | 0.014 | 145 | 1.10 × 10−26 | 6.234 | FarmCPU, PCA:3 | missense | c.1916C>W | p.Ser639Phe/Tyr | B9J08_000964 | FKS1 | |
PEKT02000003.1_355435 | 0.014 | 145 | 5.83 × 10−12 | −2.546 | stop_gained | c.1012C>T | p.Gln338 * | B9J08_001232 | FCR1 | ||
PEKT02000004.1_9898 | 0.041 | 145 | 7.37 × 10−6 | 0.848 | synonymous | c.3261C>T | p.Thr1087Thr | B9J08_001531 | IFF4 | ||
PEKT02000002.1_623810 | 0.128 | 145 | 4.81 × 10−3 | −0.534 | intergenic | c.4486G>A | |||||
AFG | PEKT02000002.1_1006624 | 0.014 | 141 | 5.53 × 10−29 | 7.5103 | BLINK, PCA:8 | missense | c.1916C>T | p.Ser639Phe | B9J08_000964 | FKS1 |
PEKT02000003.1_355435 | 0.014 | 141 | 1.29 × 10−15 | −3.6731 | stop_gained | c.1012C>T | p.Gln338 * | B9J08_001232 | FCR1 | ||
PEKT02000002.1_804575 | 0.032 | 141 | 4.50 × 10−7 | 1.8354 | synonymous | c.369G>A | p.Lys123Lys | B9J08_000876 | GWT1 | ||
PEKT02000001.1_212518 | 0.035 | 141 | 1.98 × 10−3 | −0.7039 | intergenic | c.-471G>A |
Drug | SNP | MAF | Nobs | FDR Adjusted p-Value | Effect | Parameters | Annotation | HGVS.c | HGVS.p | Gene | Candida albicans Ortholog |
---|---|---|---|---|---|---|---|---|---|---|---|
FLU | NW_021640166.1_27489 | 0.04 | 111 | 1.05 × 10−130 | 63.924 | BLINK, PCA:8 | synonymous | 4041T>A | Thr1347Thr | B9J08_004201 | C4_05790W_A |
NW_021640163.1_757345 | 0.03 | 111 | 1.44 × 10−99 | 261.051 | intergenic | −4102G>T | |||||
NW_021640164.1_51689 | 0.49 | 111 | 1.44 × 10−99 | 260.855 | intergenic | −781C>T | |||||
NW_021640164.1_51692 | 0.5 | 111 | 8.53 × 10−99 | 261.523 | intergenic | −784C>T | |||||
NW_021640168.1_1173685 | 0.01 | 111 | 3.69 × 10−53 | 111.826 | intergenic | −2970A>G | |||||
NW_021640164.1_773750 | 0.45 | 111 | 1.28 × 10−49 | −68.521 | upstream | −867C>T | |||||
NW_021640162.1_73156 | 0.02 | 111 | 3.17 × 10−49 | 34.103 | synonymous | 993C>T | Cys331Cys | B9J08_000516 | C6_00490W_A | ||
NW_021640165.1_3471968 | 0.01 | 111 | 4.53 × 10−36 | −22.502 | missense | 2267G>T | Gly756Val | B9J08_003726 | C2_04360W_A | ||
NW_021640162.1_147544 | 0.02 | 111 | 2.23 × 10−26 | 21.65 | missense | 124G>T | Ala42Ser | B9J08_000558 | CR_09700W_A | ||
NW_021640164.1_37868 | 0.02 | 111 | 1.01 × 10−10 | 20.514 | intergenic | −1343C>G | |||||
CAS | NW_021640163.1_1501688 | 0.02 | 118 | 1.80 × 10−83 | 1.922 | FarmCPU, PCA:5 | synonymous | 1245C>T | Cys415Cys | B9J08_001552 | orf19.3701 |
NW_021640164.1_366204 | 0.02 | 118 | 4.70 × 10−12 | 0.712 | missense | 663A>T | Arg221Ser | B9J08_002399 | SUP35 | ||
NW_021640168.1_1068005 | 0.01 | 118 | 0.0096 | 0.16 | stop_gained | 879C>A | Tyr293 * | B9J08_005386 | C6_01620W_A | ||
NW_021640163.1_1501688 | 0.02 | 118 | 5.38 × 10−82 | 1.896 | BLINK, PCA:5 | synonymous | 1245C>T | Cys415Cys | B9J08_001552 | orf19.3701 | |
NW_021640163.1_505104 | 0.02 | 118 | 2.58 × 10−06 | 0.591 | missense | 706T>C | Tyr236His | B9J08_001308 | EIP1 | ||
NW_021640164.1_51605 | 0.32 | 118 | 0.0138 | −0.053 | intergenic | −697C>T | |||||
MFG | NW_021640162.1_404574 | 0.02 | 116 | 2.86 × 10−124 | −3.939 | FarmCPU, PCA:5 | intergenic | −4910C>G | |||
NW_021640162.1_1734842 | 0.11 | 116 | 0.0045 | 0.069 | intergenic | −1408A>G | |||||
NW_021640165.1_1713220 | 0.02 | 116 | 0.00036 | 0.111 | missense | 6345T>G | Asp2115Glu | B9J08_002877 | C4_06130W_A | ||
NW_021640162.1_404574 | 0.02 | 116 | 5.63 × 10−124 | −3.942 | BLINK, PCA:5 | intergenic | −4910C>G | ||||
NW_021640162.1_564168 | 0.03 | 116 | 0.0019 | 0.145 | synonymous | 1203C>T | Pro401Pro | B9J08_000751 | CR_01410C_A | ||
NW_021640165.1_1713220 | 0.02 | 116 | 0.0029 | 0.101 | missense | 6345T>G | Asp2115Glu | B9J08_002877 | C4_06130W_A | ||
AFG | NW_021640162.1_692140 | 0.02 | 119 | 1.15 × 10−11 | 1.418 | FarmCPU, PCA:5 | missense | 520A>T | Ser174Cys | B9J08_000805 | ZCF19 |
NW_021640163.1_1501688 | 0.02 | 119 | 1.00 × 10−100 | 3.877 | synonymous | 1245C>T | Cys415Cys | B9J08_001552 | orf19.3701 | ||
NW_021640168.1_217077 | 0.03 | 119 | 0.0055 | 0.298 | intergenic | −4324G>A | |||||
NW_021640165.1_1276391 | 0.05 | 119 | 2.29 × 10−06 | 0.381 | intergenic | −2259A>T | |||||
NW_021640163.1_1501688 | 0.02 | 119 | 1.74 × 10−98 | 3.87 | BLINK, PCA:5 | synonymous | 1245C>T | Cys415Cys | B9J08_001552 | orf19.3701 | |
NW_021640162.1_1360735 | 0.18 | 119 | 0.0024 | −0.393 | intron | −2009G>A | |||||
NW_021640166.1_397189 | 0.03 | 119 | 0.00312 | 0.244 | intergenic | −1210T>A |
Drug | SNP | MAF | Nobs | FDR Adjusted p-Value | Effect | Parameters | Annotation | HGVS.c | HGVS.p | Gene | Candida albicans Ortholog |
---|---|---|---|---|---|---|---|---|---|---|---|
VOR | CP043444.1_1566757 | 0.023 | 88 | 7.66 × 10−52 | −1.76 | FarmCPU, PCA:10 | missense | c.395T>A | p.Phe132Tyr | B9J08_001448 | ERG11 |
CP043442.1_1367963 | 0.011 | 88 | 2.35 × 10−15 | 0.367 | missense | c.4328C>T | p.Ser1443Leu | B9J08_003473 | PEP1 | ||
CP043444.1_1393470 | 0.023 | 88 | 0.00041 | 0.111 | missense | c.116A>T | p.Asn39Ile | B9J08_001368 | DAK2 | ||
CAS | CP043442.1_1778999 | 0.01 | 96 | 7.77 × 10−15 | 0.464 | FarmCPU, PCA:12 | missense | c.3292T>C | p.Phe1098Leu | B9J08_003281 | RIM15 |
CP043443.1_1796780 | 0.094 | 96 | 1.50 × 10−5 | 0.228 | intergenic | c.-4835A>G | |||||
CP043443.1_2100709 | 0.021 | 96 | 1.04 × 10−32 | 4.725 | missense | c.1915T>C | p.Ser639Pro | B9J08_000964 | FKS1 | ||
CP043444.1_498630 | 0.141 | 96 | 0.00044 | 0.144 | stop_gained | c.964A>T | p.Arg322 * | B9J08_002136 | WOR2 | ||
CP043446.1_343550 | 0.083 | 96 | 9.95 × 10−5 | 0.093 | missense | c.488C>T | p.Pro163Leu | B9J08_004612 | EDC3 | ||
CP043443.1_2100709 | 0.021 | 96 | 2.38 × 10−34 | 4.551 | BLINK, PCA:12 | missense | c.1915T>C | p.Ser639Pro | B9J08_000964 | FKS1 | |
CP043443.1_1645903 | 0.01 | 96 | 2.33 × 10−14 | −0.464 | synonymous | c.600G>A | p.Glu200Glu | B9J08_000760 | C4_01930 | ||
CP043444.1_498630 | 0.141 | 96 | 9.68 × 10−6 | 0.162 | stop_gained | c.964A>T | p.Arg322 * | B9J08_002136 | WOR2 | ||
CP043443.1_1796780 | 0.094 | 96 | 0.000367 | 0.206 | intergenic | c.-4835A>G | |||||
CP043442.1_182935 | 0.083 | 96 | 0.00625 | −0.077 | intergenic | c.-4482C>T | |||||
MFG | CP043442.1_514989 | 0.011 | 92 | 4.55 × 10−53 | −4.452 | BLINK, PCA:5 | missense | c.400G>C | p.Gly134Arg | B9J08_002701 | C7_04260 |
CP043442.1_613136 | 0.011 | 92 | 1.05 × 10−13 | −0.797 | missense | c.590C>T | p.Pro197Leu | B9J08_003827 | C2_10320 | ||
CP043444.1_498630 | 0.147 | 92 | 3.14 × 10−6 | 0.321 | stop_gained | c.964A>T | p.Arg322 * | B9J08_002136 | WOR2 |
Clade | Drug | Noncoding SNP | Significant Linked SNPs | r2 | FDR Adjusted p-Value for Linked SNPs |
---|---|---|---|---|---|
I | FLU | PEKT02000001.1_897129 | PEKT02000003.1_1045994 | 0.057 | 0.0209 |
PEKT02000003.1_642734 | PEKT02000002.1_1006624 | 0.167 | 3.68 × 10−8 | ||
PEKT02000003.1_1045994 | PEKT02000001.1_897129 | 0.057 | 0.0209 | ||
MFG | PEKT02000002.1_623810 | - | - | - | |
AFG | PEKT02000001.1_212518 | - | - | - | |
III | FLU | NW_021640163.1_757345 | - | - | - |
NW_021640164.1_51689 | - | - | - | ||
NW_021640164.1_51692 | - | - | - | ||
NW_021640168.1_1173685 | - | - | - | ||
NW_021640164.1_773750 | - | - | - | ||
NW_021640164.1_37868 | - | - | - | ||
CAS | NW_021640164.1_51605 | NW_021640165.1_1276391 | 0.135 | 0.0119 | |
MFG | NW_021640162.1_404574 | - | - | - | |
NW_021640162.1_1734842 | - | - | - | ||
AFG | NW_021640168.1_217077 | - | - | - | |
NW_021640165.1_1276391 | NW_021640164.1_51605 | 0.135 | 0.0119 | ||
NW_021640162.1_1360735 | - | - | - | ||
NW_021640166.1_397189 | - | - | - | ||
IV | CAS | CP043443.1_1796780 | - | - | - |
CP043442.1_182935 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, J. Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. J. Fungi 2024, 10, 86. https://doi.org/10.3390/jof10010086
Wang Y, Xu J. Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. Journal of Fungi. 2024; 10(1):86. https://doi.org/10.3390/jof10010086
Chicago/Turabian StyleWang, Yue, and Jianping Xu. 2024. "Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population" Journal of Fungi 10, no. 1: 86. https://doi.org/10.3390/jof10010086
APA StyleWang, Y., & Xu, J. (2024). Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. Journal of Fungi, 10(1), 86. https://doi.org/10.3390/jof10010086