Anti-Candidal Marine Natural Products: A Review
<p>List of FDA-approved natural products from marine resources and their year of approval. (Source: <a href="https://www.marinepharmacology.org/" target="_blank">https://www.marinepharmacology.org/</a>, accessed on 10 July 2023).</p> "> Figure 2
<p>Marine organisms for the isolation of different marine natural products.</p> "> Figure 3
<p>Marine natural products from marine sponges. Red circle is an indicative of R group.</p> "> Figure 4
<p>Marine natural products from marine actinomycetes. Red circle is an indicative of R group.</p> "> Figure 5
<p>Marine natural products from marine fungi.</p> ">
Abstract
:1. Introduction
2. Marine Natural Products
2.1. Sponges
2.1.1. Glycoside Derivatives
2.1.2. Alkaloids
2.1.3. Peptides
2.1.4. Steroids
2.1.5. Terpenoids
2.1.6. Other Chemical Compounds
2.2. Algae
2.3. Sea Cucumber
2.4. Bacteria
2.4.1. Actinomycetes
2.4.2. Other Bacteria
2.5. Fungi
2.5.1. Penicillium spp.
2.5.2. Endophytic Fungi
2.5.3. Other Fungi
2.6. Miscellaneous
3. Discussion and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azanza, J.R.; Grau, S.; Vázquez, L.; Rebollo, P.; Peral, C.; López-Ibáñez de Aldecoa, A.; López-Gómez, V. The cost-effectiveness of isavuconazole compared to voriconazole, the standard of care in the treatment of patients with invasive mould diseases, prior to differential pathogen diagnosis in Spain. Mycoses 2021, 64, 66–77. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.D. Changing patterns and trends in systemic fungal infections. J. Antimicrob. Chemother. 2005, 56, i5–i11. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning, D.W.; et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020, 11, e00449-20. [Google Scholar] [CrossRef] [PubMed]
- Ocansey, B.K.; Pesewu, G.A.; Codjoe, F.S.; Osei-Djarbeng, S.; Feglo, P.K.; Denning, D.W. Estimated Burden of Serious Fungal Infections in Ghana. J. Fungi 2019, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Gintjee, T.J.; Donnelley, M.A.; Thompson, G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi 2020, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Fuentefria, A.; Pippi, B.; Lana, D.D.; Donato, K.; de Andrade, S. Antifungals discovery: An insight into new strategies to combat antifungal resistance. Lett. Appl. Microbiol. 2018, 66, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morio, F.; Jensen, R.H.; Le Pape, P.; Arendrup, M.C. Molecular basis of antifungal drug resistance in yeasts. Int. J. Antimicrob. Agents 2017, 50, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2020, 121, 3390–3411. [Google Scholar] [CrossRef]
- Kołaczkowska, A.; Kołaczkowski, M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J. Antimicrob. Chemother. 2016, 71, 1438–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- König, G.M.; Kehraus, S.; Seibert, S.F.; Abdel-Lateff, A.; Müller, D. Natural products from marine organisms and their asso-ciated microbes. ChemBioChem 2006, 7, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Ciênc. 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.-E.F.; Moustafa, M.S.; El-Wahed, A.A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.G.; Mahajan, V.; Bedi, Y.S. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 2014, 241, 303–317. [Google Scholar] [CrossRef]
- Shahnawaz, M. (Ed.) Biotechnological Approaches to Enhance Plant Secondary Metabolites: Recent Trends and Future Pro-spects; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Marine Pharmacology. Mysite. Available online: https://www.marinepharmacology.org/ (accessed on 10 July 2023).
- Nieto, F.R.; Cobos, E.J.; Tejada, M.; Sánchez-Fernández, C.; González-Cano, R.; Cendán, C.M. Tetrodotoxin (TTX) as a Therapeutic Agent for Pain. Mar. Drugs 2012, 10, 281–305. [Google Scholar] [CrossRef]
- Martinez, M.A. Plitidepsin: A Repurposed Drug for the Treatment of COVID-19. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Bal, S.; Landau, H. AL amyloidosis: Untangling new therapies. Hematology 2021, 2021, 682–688. [Google Scholar] [CrossRef]
- Thompson, R.E.; Tuchman, A.J.; Alkon, D.L. Bryostatin Placebo-Controlled Trials Indicate Cognitive Restoration Above Base-line for Advanced Alzheimer’s Disease in the Absence of Memantine. J. Alzheimer’s Dis. 2022, 86, 1221–1229. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, W.; Gu, C.; Cai, X.; Qu, D.; Lu, L.; Xie, Y.; Jiang, S. Griffithsin with A Broad-Spectrum Antiviral Activity by Binding Glycans in Viral Glycoprotein Exhibits Strong Synergistic Effect in Combination with A Pan-Coronavirus Fusion Inhibitor Targeting SARS-CoV-2 Spike S2 Subunit. Virol Sin. 2020, 35, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Anjum, K.; Abbas, S.Q.; Shah, S.A.A.; Akhter, N.; Batool, S.; Hassan, S.S.U. Marine Sponges as a Drug Treasure. Biomol. Ther. 2016, 24, 347–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, T.R.A.; Kavlekar, D.P.; LokaBharathi, P.A. Marine Drugs from Sponge-Microbe Association—A Review. Mar. Drugs 2010, 8, 1417–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertiani, T.; Edrada-Ebel, R.; Ortlepp, S.; van Soest, R.W.; de Voogd, N.J.; Wray, V.; Hentschel, U.; Kozytska, S.; Müller, W.E.; Proksch, P. From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorganic Med. Chem. 2010, 18, 1297–1311. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Rogers, E.W.; Molinski, T.F. Oceanapiside, a marine natural product, targets the sphingolipid pathway of flu-conazole-resistant Candida glabrata. Mar. Drugs 2021, 19, 126. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Ivanchina, N.V.; Dmitrenok, P.S.; Guzii, A.G.; Stonik, V.A.; Dalisay, D.S.; Molinski, T.F. Oceanalin B, a Hybrid α, ω-Bifunctionalized Sphingoid Tetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp. Mar. Drugs 2021, 19, 635. [Google Scholar] [CrossRef]
- Ahirwar, A.; Kesharwani, K.; Deka, R.; Muthukumar, S.; Khan, M.J.; Rai, A.; Vinayak, V.; Varjani, S.; Joshi, K.B.; Morjaria, S. Microalgal drugs: A promising therapeutic reserve for the future. J. Biotechnol. 2022, 349, 32–46. [Google Scholar] [CrossRef]
- DiGirolamo, J.A.; Li, X.-C.; Jacob, M.R.; Clark, A.M.; Ferreira, D. Reversal of Fluconazole Resistance by Sulfated Sterols from the Marine Sponge Topsentia sp. J. Nat. Prod. 2009, 72, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Iwai, T.; Takahashi-Nakaguchi, A.; Fromont, J.; Gonoi, T.; Kobayashi, J. Agelasines O–U, new diterpene alkaloids with a 9-N-methyladenine unit from a marine sponge Agelas sp. Tetrahedron 2012, 68, 9738–9744. [Google Scholar] [CrossRef]
- Chu, M.-J.; Tang, X.-L.; Qin, G.-F.; Sun, Y.-T.; Li, L.; de Voogd, N.J.; Li, P.-L.; Li, G.-Q. Pyrrole Derivatives and Diterpene Alkaloids from the South China Sea Sponge Agelas nakamurai. Chem. Biodivers. 2017, 14, e1600446. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Shaala, L.A.; Alshali, K.Z. Bioactive Hydantoin Alkaloids from the Red Sea Marine Sponge Hemimycale arabica. Mar. Drugs 2015, 13, 6609–6619. [Google Scholar] [CrossRef] [Green Version]
- Jamison, M.T.; Molinski, T.F. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Anti-fungal structure–activity relationships. J. Nat. Prod. 2015, 78, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.; Shaala, L.A.; Mohamed, G.A.; Badr, J.M.; Bamanie, F.H.; Ibrahim, S.R. Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar. Drugs 2014, 12, 1911–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-H.; Jeon, J.-E.; Ahn, C.-H.; Chung, S.-C.; Shin, J.; Oh, K.-B. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Appl. Microbiol. Biotechnol. 2012, 97, 3141–3148. [Google Scholar] [CrossRef]
- Tanaka, N.; Kusama, T.; Takahashi-Nakaguchi, A.; Gonoi, T.; Fromont, J.; Kobayashi, J. Nagelamides U–W, bromopyrrole alkaloids from a marine sponge Agelas sp. Tetrahedron Lett. 2013, 54, 3794–3796. [Google Scholar] [CrossRef]
- Tanaka, N.; Kusama, T.; Takahashi-Nakaguchi, A.; Gonoi, T.; Fromont, J.; Kobayashi, J.I. Nagelamides X–Z, dimeric bro-mopyrrole alkaloids from a marine sponge Agelas sp. Org. Lett. 2013, 15, 3262–3265. [Google Scholar] [CrossRef]
- Kumar, R.; Subramani, R.; Feussner, K.-D.; Aalbersberg, W. Aurantoside K, a New Antifungal Tetramic Acid Glycoside from a Fijian Marine Sponge of the Genus Melophlus. Mar. Drugs 2012, 10, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-B.; Liu, X.-F.; Xu, Y.; Gan, J.-H.; Jiao, W.-H.; Shen, Y.; Lin, H.-W. Woodylides A–C, New Cytotoxic Linear Polyketides from the South China Sea Sponge Plakortis simplex. Mar. Drugs 2012, 10, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Angawi, R.F.; Bavestrello, G.; Calcinai, B.; Dien, H.A.; Donnarumma, G.; Tufano, M.A.; Paoletti, I.; Grimaldi, E.; Chianese, G.; Fattorusso, E.; et al. Aurantoside J: A new tetramic acid glycoside from Theonella swinhoei. Insights into the antifungal potential of aurantosides. Mar. Drugs 2011, 9, 2809–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kon, Y.; Kubota, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J.I. Ceratinadins A–C, new bromotyrosine alkaloids from an Oki-nawan marine sponge Pseudoceratina sp. Bioorganic Med. Chem. Lett. 2010, 20, 4569–4572. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Denisenko, V.A.; Dmitrenok, P.S.; Guzii, A.G.; Santalova, E.A.; Stonik, V.A.; Molinski, T.F. Oceanalin A, a hybrid α, ω-bifunctionalized sphingoid tetrahydroisoquinoline β-glycoside from the marine sponge Oceanapia sp. Org. Lett. 2005, 7, 2897–2900. [Google Scholar] [CrossRef] [PubMed]
- Sionov, E.; Roth, D.; Sandovsky-Losica, H.; Kashman, Y.; Rudi, A.; Chill, L.; Berdicevsky, I.; Segal, E. Antifungal effect and possible mode of activity of a compound from the marine sponge Dysidea herbacea. J. Infect. 2005, 50, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M.R.; Hossain, C.F.; Mohammed, K.A.; Smillie, T.J.; Clark, A.M.; Walker, L.A.; Nagle, D.G. Reversal of Fluconazole Resistance in Multidrug Efflux-Resistant Fungi by the Dysidea a renaria Sponge Sterol 9α, 11α-Epoxycholest-7-ene-3β, 5α, 6α, 19-tetrol 6-Acetate. J. Nat. Prod. 2003, 66, 1618–1622. [Google Scholar] [CrossRef]
- Fernández, R.; Dherbomez, M.; Letourneux, Y.; Nabil, M.; Verbist, J.F.; Biard, J.F. Antifungal metabolites from the marine sponge Pachastrissa sp.: New bengamide and bengazole derivatives. J. Nat. Prod. 1999, 62, 678–680. [Google Scholar] [CrossRef]
- Sata, N.U.; Matsunaga, S.; Fusetani, N.; van Soest, R.W. Aurantosides D, E, and F: New Antifungal Tetramic Acid Glycosides from the Marine Sponge Siliquariaspongiajaponica. J. Nat. Prod. 1999, 62, 969–971. [Google Scholar] [CrossRef]
- Schmidt, E.W.; Faulkner, D.J. Microsclerodermins C–E, antifungal cyclic peptides from the lithistid marine sponges Theonella sp. and Microscleroderma sp. Tetrahedron 1998, 54, 3043–3056. [Google Scholar] [CrossRef]
- Clark, D.P.; Carroll, J.; Naylor, S.; Crews, P. An antifungal cyclodepsipeptide, cyclolithistide A, from the sponge Theonella swinhoei. J. Org. Chem. 1998, 63, 8757–8764. [Google Scholar] [CrossRef]
- Searle, P.A.; Molinski, T.F. Phorboxazoles A and B: Potent cytostatic macrolides from marine sponge Phorbas species. J. Am. Chem. Soc. 1995, 117, 8126–8131. [Google Scholar] [CrossRef]
- Bewley, C.A.; Faulkner, D.J. Theonegramide, an Antifungal Glycopeptide from the Philippine Lithistid Sponge Theonella swinhoei. J. Org. Chem. 1994, 59, 4849–4852. [Google Scholar] [CrossRef]
- Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Walchli, M.; Theonellamide, F. A novel antifungal bicyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc. 1989, 111, 2582–2588. [Google Scholar] [CrossRef]
- Kernan, M.R.; Molinski, T.F.; Faulkner, D.J. Macrocyclic antifungal metabolites from the Spanish dancer nudibranch Hexa-branchus sanguineus and sponges of the genus Halichondria. J. Org. Chem. 1988, 53, 5014–5020. [Google Scholar] [CrossRef]
- Nicholas, G.M.; Li, R.; MacMillan, J.B.; Molinski, T.F. Antifungal activity of bifunctional sphingolipids. intramolecular synergism within long-chain α,ω-bis-aminoalcohols. Bioorganic Med. Chem. Lett. 2002, 12, 2159–2162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Y.; Gu, B.-B.; Yang, F.; Jiao, W.-H.; Hu, G.-H.; Yu, H.-B.; Han, B.-N.; Zhang, W.; Shen, Y.; et al. Antifungal bromopyrrole alkaloids from the South China Sea sponge Agelas sp. Tetrahedron 2016, 72, 2964–2971. [Google Scholar] [CrossRef]
- Kubota, T.; Nakamura, K.; Kurimoto, S.I.; Sakai, K.; Fromont, J.; Gonoi, T.; Kobayashi, J.I. Zamamidine D, a manzamine alkaloid from an Okinawan Amphimedon sp. marine sponge. J. Nat. Prod. 2017, 80, 1196–1199. [Google Scholar] [CrossRef]
- Gunasekera, S.P.; Pomponi, S.A.; McCarthy, P.J. Discobahamins A and B, New Peptides from the Bahamian Deep Water Marine Sponge Discodermia sp. J. Nat. Prod. 1994, 57, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Said, A.A.E.; Mahmoud, B.K.; Attia, E.Z.; Abdelmohsen, U.R.; Fouad, M.A. Bioactive natural products from marine sponges belonging to family Hymedesmiidae. RSC Adv. 2021, 11, 16179–16191. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Feng, Q.; Liu, L.; Levin, D.E.; Roy, K.K.; Doerksen, R.J.; Baerson, S.R.; Shi, X.; Pan, X.; Xu, W.-H.; et al. Puupehenone, a Marine-Sponge-Derived Sesquiterpene Quinone, Potentiates the Antifungal Drug Caspofungin by Disrupting Hsp90 Activity and the Cell Wall Integrity Pathway. Msphere 2020, 5. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.-H.; van Soest, R.W.M.; Fusetani, N.; Matsunaga, S. Pseudoceratins A (Ia) and B (Ib), Antifungal Bicyclic Bromotyrosine-Derived Metabolites from the Marine Sponge Pseudoceratina purpurea. Cheminform 2007, 38. [Google Scholar] [CrossRef]
- Chen, M.; Yan, Y.; Ge, H.; Jiao, W.H.; Zhang, Z.; Lin, H.W. Pseudoceroximes A–E and Pseudocerolides A–E, Bromotyrosine Derivatives from a Pseudoceratina sp. Marine Sponge Collected in the South China Sea. Eur. J. Org. Chem. 2020, 17, 2583–2591. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.S.; Kim, J.Y.; Shin, H.J.; Ahn, J.W.; Paul, V.J. New Macrolides from the Sponge Chondrosia c orticata. J. Nat. Prod. 2004, 67, 1889–1892. [Google Scholar] [CrossRef]
- Nabeta, H.W.; Kouokam, J.C.; Lasnik, A.B.; Fuqua, J.L.; Palmer, K.E. Novel Antifungal Activity of Q-Griffithsin, a Broad-Spectrum Antiviral Lectin. Microbiol. Spectr. 2021, 9, e0095721. [Google Scholar] [CrossRef] [PubMed]
- Nabeta, H.W.; Lasnik, A.B.; Fuqua, J.L.; Wang, L.; Rohan, L.C.; Palmer, K.E. Antiviral lectin Q-Griffithsin suppresses fungal infection in murine models of vaginal candidiasis. Front. Cell. Infect. Microbiol. 2022, 12, 976033. [Google Scholar] [CrossRef] [PubMed]
- Ganeshkumar, A.; Suvaithenamudhan, S.; Elanthamilan, E.; Arun, G.; Dileepan, G.A.B.; Prabhusaran, N.; Rajaram, R. New insight of red seaweed derived Callophycin A as an alternative strategy to treat drug resistance vaginal candidiasis. Bioorganic Chem. 2020, 104, 104256. [Google Scholar] [CrossRef]
- Ji, N.Y.; Li, X.M.; Li, K.; Ding, L.P.; Gloer, J.B.; Wang, B.G. Diterpenes, sesquiterpenes, and a C15-acetogenin from the marine red alga Laurencia mariannensis. J. Nat. Prod. 2007, 70, 1901–1905. [Google Scholar] [CrossRef]
- Ganesan, R. Recovery of Aliphatic Fatty Acids from Red Seaweed Champia parvula (C. Agardh) and Its Antifungal Action. J. Aquat. Food Prod. Technol. 2019, 28, 922–932. [Google Scholar]
- Feng, M.-T.; Yu, X.-Q.; Yang, P.; Yang, H.; Lin, K.; Mao, S.-C. Two New Antifungal Polyunsaturated Fatty Acid Ethyl Esters from the Red Alga Laurencia okamurai. Chem. Nat. Compd. 2015, 51, 418–422. [Google Scholar] [CrossRef]
- Greff, S.; Zubia, M.; Genta-Jouve, G.; Massi, L.; Perez, T.; Thomas, O.P. Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J. Nat. Prod. 2014, 77, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-Q.; He, W.-F.; Liu, D.-Q.; Feng, M.-T.; Fang, Y.; Wang, B.; Feng, L.-H.; Guo, Y.-W.; Mao, S.-C. A seco -laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 2014, 103, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentao, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Ap-proaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef]
- Liu, A.-H.; Liu, D.-Q.; Liang, T.-J.; Yu, X.-Q.; Feng, M.-T.; Yao, L.-G.; Fang, Y.; Wang, B.; Feng, L.-H.; Zhang, M.-X.; et al. Caulerprenylols A and B, two rare antifungal prenylated para-xylenes from the green alga Caulerpa racemosa. Bioorganic Med. Chem. Lett. 2013, 23, 2491–2494. [Google Scholar] [CrossRef]
- Lin, A.S.; Stout, E.P.; Prudhomme, J.; Roch, K.L.; Fairchild, C.R.; Franzblau, S.G.; Kubanek, J. Bioactive Bromophycolides R− U from the Fijian red alga Callophycus serratus. J. Nat. Prod. 2010, 73, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarif, W.M.; Al-Lihaibi, S.S.; Ayyad, S.-E.N.; Abdel-Rhman, M.H.; Badria, F.A. Laurene-type sesquiterpenes from the Red Sea red alga Laurencia obtusa as potential antitumor–antimicrobial agents. Eur. J. Med. Chem. 2012, 55, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Piggott, A.M.; Yin, L.; Capon, R.J.; Song, F. Symphyocladins A–G: Bromophenol adducts from a Chinese marine red alga, Symphyocladia latiuscula. Tetrahedron Lett. 2012, 53, 2103–2106. [Google Scholar] [CrossRef]
- Oh, K.-B.; Lee, J.H.; Chung, S.-C.; Shin, J.; Shin, H.J.; Kim, H.-K.; Lee, H.-S. Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorganic Med. Chem. Lett. 2008, 18, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Jacob, M.R.; Ding, Y.; Agarwal, A.K.; Smillie, T.J.; Khan, S.I.; Clark, A.M. Capisterones A and B, which enhance fluconazole activity in Saccharomyces cerevisiae, from the marine green alga Penicillus capitatus. J. Nat. Prod. 2006, 69, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Ankisetty, S.; Nandiraju, S.; Win, H.; Park, Y.C.; Amsler, C.D.; McClintock, J.B.; Baker, J.A.; Diyabalanage, T.K.; Pasaribu, A.; Singh, M.P.; et al. Chemical Investigation of Predator-Deterred Macroalgae from the Antarctic Peninsula. J. Nat. Prod. 2004, 67, 1295–1302. [Google Scholar] [CrossRef]
- Yang, W.-S.; Qi, X.-R.; Xu, Q.-Z.; Yuan, C.-H.; Yi, Y.-H.; Tang, H.-F.; Shen, L.; Han, H. A new sulfated triterpene glycoside from the sea cucumber Colochirus quadrangularis, and evaluation of its antifungal, antitumor and immunomodulatory activities. Bioorganic Med. Chem. 2021, 41, 116188. [Google Scholar] [CrossRef]
- Elbandy, M.; Rho, J.R.; Afifi, R. Analysis of saponins as bioactive zoochemicals from the marine functional food sea cucumber Bohadschia cousteaui. Eur. Food Res. Technol. 2014, 238, 937–955. [Google Scholar] [CrossRef]
- Wang, X.-H.; Zou, Z.-R.; Yi, Y.-H.; Han, H.; Li, L.; Pan, M.-X. Variegatusides: New Non-Sulphated Triterpene Glycosides from the Sea Cucumber Stichopus variegates Semper. Mar. Drugs 2014, 12, 2004–2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, H.; Yuan, W.; Gong, W.; Tang, H.; Liu, B.; Krohn, K.; Li, L.; Yi, Y.; Zhang, W. Antifungal nortriterpene and triterpene glycosides from the sea cucumber Apostichopus japonicus Selenka. Food Chem. 2012, 132, 295–300. [Google Scholar] [CrossRef]
- Yuan, W.-H.; Yi, Y.-H.; Tan, R.-X.; Wang, Z.-L.; Sun, G.-Q.; Xue, M.; Zhang, H.-W.; Tang, H.-F. Antifungal Triterpene Glycosides from the Sea Cucumber Holothuria (Microthele) axiloga. Planta Medica 2009, 75, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.-H.; Yi, Y.-H.; Tang, H.-F.; Liu, B.-S.; Wang, Z.-L.; Sun, G.-Q.; Zhang, W.; Li, L.; Sun, P. Antifungal Triterpene Glycosides from the Sea Cucumber Bohadschia marmorata. Planta Medica 2008, 75, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.-H.; Yi, Y.-H.; Xue, M.; Zhang, H.-W.; LA, M.-P. Two Antifungal Active Triterpene Glycosides from Sea Cucumber Holothuria (Microthele) axiloga. Chin. J. Nat. Med. 2008, 6, 105–108. [Google Scholar] [CrossRef]
- Kumar, R.; Chaturvedi, A.K.; Shukla, P.K.; Lakshmi, V. Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora. Bioorganic Med. Chem. Lett. 2007, 17, 4387–4391. [Google Scholar] [CrossRef] [PubMed]
- Hagström, A.; Pommier, T.; Rohwer, F.; Simu, K.; Stolte, W.; Svensson, D.; Zweifel, U.L. Use of 16S Ribosomal DNA for Delineation of Marine Bacterioplankton Species. Appl. Environ. Microbiol. 2002, 68, 3628–3633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive Compounds from Marine Bacteria and Fungi. Microb. Biotechnol. 2010, 3, 544–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, D.; Pokhrel, A.R.; Shrestha, B.; Maharjan, J.; Sohng, J.K. Streptomyces species: A promising source of antifungal metabolites. Appl. Microbiol. Biotechnol. 2020, 104, 2253–2264. [Google Scholar]
- Solanki, R.; Khanna, M.; Lal, R. Bioactive compounds from marine actinomycetes. Indian J. Microbiol. 2008, 48, 410–431. [Google Scholar] [CrossRef] [Green Version]
- El-Tarabily, K.A.; Nassar, A.H.; Sivasithamparam, K. Soil Actinomycetes and Their Metabolites for Control of Plant Fungal Pathogens. In Microbial Metabolites in Sustainable Agroecosystem; Springer: Singapore, 2020; pp. 279–310. [Google Scholar]
- Bao, Y.; Li, H.; Dong, Y.; Duan, H.; Li, H.; Li, W. Genome-Guided Discovery of Antifungal Filipins from a Deep-Sea-Derived Streptomyces antibioticus. J. Nat. Prod. 2022, 85, 365–374. [Google Scholar] [CrossRef]
- Li, W.; Ding, L.; Li, J.; Wen, H.; Liu, Y.; Tan, S.; Yan, X.; Shi, Y.; Lin, W.; Lin, H.-W.; et al. Novel Antimycin Analogues with Agricultural Antifungal Activities from the Sponge-Associated Actinomycete Streptomyces sp. NBU3104. J. Agric. Food Chem. 2022, 70, 8309–8316. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, T.; Harunari, E.; Oku, N.; Igarashi, Y. Iseolides A–C, antifungal macrolides from a coral-derived actinomycete of the genus Streptomyces. J. Antibiot. 2020, 73, 534–541. [Google Scholar] [CrossRef]
- Zhang, S.; Gui, C.; Shao, M.; Kumar, P.S.; Huang, H.; Ju, J. Antimicrobial tunicamycin derivatives from the deep sea-derived Streptomyces xinghaiensis SCSIO S15077. Nat. Prod. Res. 2018, 34, 1499–1504. [Google Scholar] [CrossRef]
- Harunari, E.; Imada, C.; Igarashi, Y. Konamycins A and B and Rubromycins CA1 and CA2, Aromatic Polyketides from the Tunicate-Derived Streptomyces hyaluromycini MB-PO13T. J. Nat. Prod. 2019, 82, 1609–1615. [Google Scholar] [CrossRef]
- Pérez-Victoria, I.; Oves-Costales, D.; Lacret, R.; Martín, J.; Sánchez-Hidalgo, M.; Díaz, C.; Reyes, F. Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066. Org. Biomol. Chem. 2019, 17, 2954–2971. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.M.; Chen, H.Q.; Wang, H.; Yang, L.; Cai, C.H.; Mi, C.N.; Mei, W.L. New antifungal cycloheximide epimers pro-duced by Streptomyces sp. YG7. J. Asian Nat. Prod. Res. 2019, 23, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Huang, Y.; Zhang, H.-J.; Li, J.-Q.; Ding, W.-J. Nitricquinomycins A-C, uncommon naphthopyrrolediones from the Streptomyces sp. ZS-A45. Tetrahedron 2019, 75, 3958–3961. [Google Scholar] [CrossRef]
- Chen, M.; Chai, W.; Zhu, R.; Song, T.; Zhang, Z.; Lian, X.-Y. Streptopyrazinones A−D, rare metabolites from marine-derived Streptomyces sp. ZZ446. Tetrahedron 2018, 74, 2100–2106. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; Zhang, D.-S.; Zhang, H.-J.; Li, J.-Q.; Ding, W.-J.; Xu, C.-D.; Ma, Z.-J. Medermycin-Type Naphthoquinones from the Marine-Derived Streptomyces sp. XMA39. J. Nat. Prod. 2018, 81, 2120–2124. [Google Scholar] [CrossRef]
- Wang, F.; Fu, S.N.; Bao, Y.X.; Yang, Y.; Shen, H.F.; Lin, B.R.; Zhou, G.X. Kitamycin C, a new antimycin-type antibiotic from Streptomyces antibioticus strain 200-09. Nat. Prod. Res. 2017, 31, 1819–1824. [Google Scholar] [CrossRef]
- Aksoy, S.; Uzel, A.; Bedir, E. Cytosine-type nucleosides from marine-derived Streptomyces rochei 06CM016. J. Antibiot. 2015, 69, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Kim, H.; Moon, K.; Nam, S.J.; Shin, J.; Oh, K.B.; Oh, D.C. Mohangamides A and B, new dilactone-tethered pseu-do-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org. Lett. 2015, 17, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.; Li, T.; Liu, X.; Yao, T.; Li, J.; Gu, Q.; Li, D.; Li, W.; Zhu, T. Genome scanning inspired isolation of reedsmycins A–F, poly-ene-polyol macrolides from Streptomyces sp. CHQ-64. Rsc Adv. 2015, 5, 22777–22782. [Google Scholar] [CrossRef]
- Lacret, R.; Oves-Costales, D.; Gómez, C.; Díaz, C.; De la Cruz, M.; Pérez-Victoria, I.; Vicente, F.; Genilloud, O.; Reyes, F. New ikarugamycin deriv-atives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar. Drugs 2014, 13, 128–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.; Mishra, P.D.; D’souza, L.; Ranadive, P. Caerulomycin A—An Antifungal Compound Isolated from Marine Actinomycetes. Adv. Microbiol. 2014, 4, 567–578. [Google Scholar] [CrossRef]
- Moon, K.; Ahn, C.-H.; Shin, Y.; Won, T.H.; Ko, K.; Lee, S.K.; Oh, K.-B.; Shin, J.; Nam, S.-I.; Oh, D.-C. New Benzoxazine Secondary Metabolites from an Arctic Actinomycete. Mar. Drugs 2014, 12, 2526–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.G.; Moon, K.; Kim, S.H.; Park, S.H.; Park, S.; Lee, S.K.; Oh, K.B.; Shin, J.H.; Oh, D.C. Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J. Nat. Prod. 2012, 75, 959–967. [Google Scholar] [CrossRef]
- Kaneda, M.; Naid, T.; Kithara, T.; Nakamura, S.; Kitahara, T.; Nakamura, S. Carbazomycins G and H, novel carbazomycin-congeners containing a quinol molety. J. Antibiot. 1988, 45, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Hong, K.; Lin, H.; She, Z.; Li, J. New Azalomycin F Analogs from Mangrove Streptomyces sp. 211726 with Activity against Microbes and Cancer Cells. Mar. Drugs 2013, 11, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.Y.; Quan, X.S.; Wang, C.; Sheng, H.F.; Zhou, G.X.; Lin, B.R.; Jiang, R.W.; Yao, X.S. Antimycins A 19 and A 20, two new anti-mycins produced by marine actinomycete Streptomyces antibioticus H74-18. J. Antibiot. 2011, 64, 661–665. [Google Scholar] [CrossRef] [Green Version]
- El-Gendy, M.M.A.; El-Bondkly, A.M.A. Production and genetic improvement of a novel antimycotic agent, Saadamycin, against Dermatophytes and other clinical fungi from Endophytic Streptomyces sp. Hedaya48. J. Ind. Microbiol. Biotechnol. 2010, 37, 831–841. [Google Scholar] [CrossRef]
- Han, Y.; Yang, B.; Zhang, F.; Miao, X.; Li, Z. Characterization of Antifungal Chitinase from Marine Streptomyces sp. DA11 Associated with South China Sea Sponge Craniella Australiensis. Mar. Biotechnol. 2008, 11, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A.L.; Brown, R.; Stach, J.E.M.; Goodfellow, M.; et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. 2009, 62, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaaban, K.; Shaaban, M.; Facey, P.; Fotso, S.; Frauendorf, H.; Helmke, E.; Maier, A.; Fiebig, H.H.; Laatsch, H. Electrospray Ionization Mass Spectra of Piperazimycins A and B and γ-Butyrolactones from a Marine-derived Streptomyces sp. J. Antibiot. 2008, 61, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhao, M.; Braun, D.R.; Ericksen, S.S.; Piotrowski, J.S.; Nelson, J.; Peng, J.; Ananiev, G.E.; Chanana, S.; Barns, K.; et al. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 2020, 370, 974–978. [Google Scholar] [CrossRef]
- Peltola, M.; Tauraite, D.; Kananen, E. Antifungal compounds from Streptomyces hygroscopicus and their synergistic effects with fluconazole. J. Antibiot. 2020, 73, 831–839. [Google Scholar]
- Li, Z.; Li, J.; Li, Y.; Li, Y.; Zhao, L.X. Production of Antifungal Metabolites by Streptomyces sp. Isolated from the Soil of Mawei Mountain. J. Agric. Sci. 2021, 13, 96–102. [Google Scholar]
- Malla, M.A.; Dubey, A.K.; Kumar, A.; Yadav, P. Streptomyces as a source of antifungal metabolites: A review. J. Appl. Microbiol. 2021, 131, 1549–1560. [Google Scholar]
- Chen, S.; Zhang, D.; Chen, M.; Zhang, Z.; Lian, X.-Y. A rare diketopiperazine glycoside from marine-sourced Streptomyces sp. ZZ446. Nat. Prod. Res. 2018, 34, 1046–1050. [Google Scholar] [CrossRef]
- Kumar, A.; Sørensen, J.L.; Hansen, F.T.; Arvas, M.; Syed, M.F.; Hassan, L.; Benz, J.P.; Record, E.; Henrissat, B.; Pöggeler, S.; et al. Genome Sequencing and analyses of Two Marine Fungi from the North Sea Unraveled a Plethora of Novel Biosynthetic Gene Clusters. Sci. Rep. 2018, 8, 10187. [Google Scholar] [CrossRef] [Green Version]
- Setiyono, E.; Adhiwibawa, M.A.S.; Indrawati, R.; Prihastyanti, M.N.U.; Shioi, Y.; Brotosudarmo, T.H.P. An Indonesian Marine Bacterium, Pseudoalteromonas rubra, Produces Antimicrobial Prodiginine Pigments. ACS Omega 2020, 5, 4626–4635. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.R.U.; Harunari, E.; Oku, N.; Akasaka, K.; Igarashi, Y. Bulbimidazoles A–C, Antimicrobial and Cytotoxic Alkanoyl Imidazoles from a Marine Gammaproteobacterium Microbulbifer Species. J. Nat. Prod. 2020, 83, 1295–1299. [Google Scholar] [CrossRef]
- Anjum, K.; Kaleem, S.; Yi, W.; Zheng, G.; Lian, X.; Zhang, Z. Novel antimicrobial indolepyrazines A and B from the ma-rine-associated Acinetobacter sp. ZZ1275. Mar. Drugs 2019, 17, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, K.; Sadiq, I.; Chen, L.; Kaleem, S.; Li, X.-C.; Zhang, Z.; Lian, X.-Y. Novel antifungal janthinopolyenemycins A and B from a co-culture of marine-associated Janthinobacterium spp. ZZ145 and ZZ148. Tetrahedron Lett. 2018, 59, 3490–3494. [Google Scholar] [CrossRef]
- Tareq, F.S.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Ieodoglucomide C and ieodoglycolipid, new glycolipids from a ma-rine-derived bacterium Bacillus licheniformis 09IDYM23. Lipids 2015, 50, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Wyche, T.P.; Piotrowski, J.S.; Hou, Y.; Braun, D.; Deshpande, R.; McIlwain, S.; Ong, I.M.; Myers, C.L.; Guzei, I.A.; Westler, W.M.; et al. Forazoline A: Marine-Derived Polyketide with Antifungal In Vivo Efficacy. Angew. Chem. Int. Ed. 2014, 53, 11583–11586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tareq, F.S.; Kim, J.H.; Lee, M.A.; Lee, H.-S.; Lee, J.-S.; Lee, Y.-J.; Shin, H.J. Antimicrobial Gageomacrolactins Characterized from the Fermentation of the Marine-Derived Bacterium Bacillus subtilis under Optimum Growth Conditions. J. Agric. Food Chem. 2013, 61, 3428–3434. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Fu, H.; Zhong, H.; Hong, K.; Zhu, W. Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation. Bioorganic Med. Chem. Lett. 2011, 21, 4005–4007. [Google Scholar] [CrossRef]
- Kunze, B.; Böhlendorf, B.; Reichenbach, H.; Höfle, G. Pedein A and B: Production, Isolation, Structure Elucidation and Biological Properties of New Antifungal Cyclopeptides from Chondromyces pediculatus (Myxobacteria). J. Antibiot. 2008, 61, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Al-Zereini, W.; Schuhmann, I.; Laatsch, H.; Helmke, E.; Anke, H. New Aromatic Nitro Compounds from Salegentibacter sp. T436, an Arctic Sea Ice Bacterium: Taxonomy, Fermentation, Isolation and Biological Activities. J. Antibiot. 2007, 60, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Neuhof, T.; Schmieder, P.; Preussel, K.; Dieckmann, R.; Pham, H.; Bartl, F.; von Döhren, H. Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J. Nat. Prod. 2005, 68, 695–700. [Google Scholar] [CrossRef]
- Barsby, T.; Kelly, M.T.; Andersen, R.J. Tupuseleiamides and Basiliskamides, New Acyldipeptides and Antifungal Polyketides Produced in Culture by a Bacilluslaterosporus Isolate Obtained from a Tropical Marine Habitat. J. Nat. Prod. 2002, 65, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, J.B.; Ernst-Russell, M.A.; De Ropp, J.S.; Molinski, T.F. Lobocyclamides A−C, Lipopeptides from a Cryptic Cyano-bacterial Mat Containing Lyngbya confervoides. J. Org. Chem. 2002, 67, 8210–8215. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Lin, R.; Yang, H.; Song, F.; Xu, X.; Wang, L. New Secondary Metabolites from the Marine-Derived Fungus Talaromyces mangshanicus BTBU20211089. Mar. Drugs 2022, 20, 79. [Google Scholar] [CrossRef]
- Ningsih, B.N.S.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J.; Muanprasat, C. A nonadride derivative from the marine-derived fungus Aspergillus chevalieri PSU-AMF79. Nat. Prod. Res. 2022, 37, 2311–2318. [Google Scholar] [CrossRef] [PubMed]
- Nuansri, S.; Rukachaisirikul, V.; Rungwirain, N.; Kaewin, S.; Yimnual, C.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J.; Muanprasat, C. α-Pyrone and decalin derivatives from the marine-derived fungus Trichoderma harzianum PSU-MF79. Nat. Prod. Res. 2021, 36, 5462–5469. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yi, W.; Qin, L.; Lian, X.-Y.; Zhang, Z. Talaromydien a and talaroisocoumarin A, new metabolites from the marine-sourced fungus Talaromyces sp. ZZ1616. Nat. Prod. Res. 2020, 36, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-S.; Shi, X.-H.; Yao, G.-S.; Shao, C.-L.; Fu, X.-M.; Zhang, X.-L.; Guan, H.-S.; Wang, C.-Y. New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus. Mar. Drugs 2020, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Takahashi, O.; Kirikoshi, R.; Yagi, A.; Ogasawara, T.; Bunya, Y.; Namikoshi, M. Epipolythiodiketopipera-zine and trichothecene derivatives from the NaI-containing fermentation of marine-derived Trichoderma cf. brevicompactum. J. Antibiot. 2020, 73, 559–567. [Google Scholar] [CrossRef]
- Yang, B.; He, Y.; Lin, S.; Zhang, J.; Li, H.; Wang, J.; Zhang, Y. Antimicrobial dolabellanes and atranones from a ma-rine-derived strain of the toxigenic fungus Stachybotrys chartarum. J. Nat. Prod. 2019, 82, 1923–1929. [Google Scholar] [CrossRef]
- Shaala, L.A.; Youssef, D.T. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Xu, P.; Li, T.; Liao, X.; He, S.; Xu, S. Asperfurandiones A and B, two antifungal furandione analogs from a ma-rine-derived fungus Aspergillus versicolor. Nat. Prod. Res. 2019, 33, 3404–3408. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-H.; Nong, X.-H.; Liang, X.; Qi, S.-H. New tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z0025. Tetrahedron 2018, 74, 2620–2626. [Google Scholar] [CrossRef]
- Yu, H.-B.; Wang, X.-L.; Xu, W.-H.; Zhang, Y.-X.; Qian, Y.-S.; Zhang, J.-P.; Lu, X.-L.; Liu, X.-Y. Eutypellenoids A–C, New Pimarane Diterpenes from the Arctic Fungus Eutypella sp. D-1. Mar. Drugs 2018, 16, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.; Chen, M.; Chai, W.; Zhang, Z.; Lian, X.Y. New bioactive pyrrospirones C− I from a marine-derived fungus Penicillium sp. ZZ380. Tetrahedron 2018, 74, 884–891. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.M.; Wang, B.G. Nigerasperones A~C, new monomeric and dimeric naphtho-γ-pyrones from a marine al-ga-derived endophytic fungus Aspergillus niger EN-13. J. Antibiot. 2007, 60, 204–210. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Q.-F.; Amin, M.; Nong, X.-H.; Zhang, X.-Y.; Qi, S.-H. Penicillenols from a deep-sea fungus Aspergillus restrictus inhibit Candida albicans biofilm formation and hyphal growth. J. Antibiot. 2017, 70, 763–770. [Google Scholar] [CrossRef]
- Okabe, M.; Sugita, T.; Kinoshita, K.; Koyama, K. Macrolides from a Marine-Derived Fungus, Penicillium meleagrinum var. viridiflavum, Showing Synergistic Effects with Fluconazole against Azole-Resistant Candida albicans. J. Nat. Prod. 2016, 79, 1208–1212. [Google Scholar] [CrossRef]
- Chen, C.J.; Zhou, Y.Q.; Liu, X.X.; Zhang, W.J.; Hu, S.S.; Lin, L.P.; Ge, H.M. Antimicrobial and anti-inflammatory com-pounds from a marine fungus Pleosporales sp. Tetrahedron Lett. 2015, 56, 6183–6189. [Google Scholar] [CrossRef]
- Xu, D.X.; Sun, P.; Kurtan, T.; Mandi, A.; Tang, H.; Liu, B.; Zhang, W. Polyhydroxy cyclohexanols from a Dendrodochium sp. fungus associated with the sea cucumber Holothuria nobilis Selenka. J. Nat. Prod. 2014, 77, 1179–1184. [Google Scholar] [CrossRef]
- Haga, A.; Tamoto, H.; Ishino, M.; Kimura, E.; Sugita, T.; Kinoshita, K.; Koyama, K. Pyridone alkaloids from a ma-rine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J. Nat. Prod. 2013, 76, 750–754. [Google Scholar] [CrossRef]
- Singh, S.B.; Zink, D.L.; Doss, G.A.; Polishook, J.D.; Ruby, C.; Register, E.; Kelly, T.M.; Bonfiglio, C.; Williamson, J.M.; Kelly, R. Citrafungins A and B, Two New Fungal Metabolite Inhibitors of GGTase I with Antifungal Activity. Org. Lett. 2004, 6, 337–340. [Google Scholar] [CrossRef]
- Shigemori, H.; Kasai, Y.; Komatsu, K.; Tsuda, M.; Mikami, Y.; Kobayashi, J. Sporiolides A and B, New Cytotoxic Twelve-Membered Macrolides from a Marine-Derived Fungus Cladosporium Species. Mar. Drugs 2004, 2, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Edrada, R.A.; Heubes, M.; Brauers, G.; Wray, V.; Berg, A.; Gräfe, U.; Wohlfarth, M.; Mühlbacher, J.; Schaumann, K.; Bring-mann, G.; et al. Online analysis of xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf montanense and their subsequent isolation from the sponge Xestospongia exigua. J. Nat. Prod. 2002, 65, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Toghueo, R.M.K.; Boyom, F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020, 10, 107. [Google Scholar] [CrossRef]
- Khan, I.; Zhang, H.; Liu, W.; Zhang, L.; Peng, F.; Chen, Y.; Zhang, Q.; Zhang, G.; Zhang, W.; Zhang, C. Identification and bioactivity evaluation of secondary metabolites from Antarctic-derived Penicillium chrysogenum CCTCC M 2020019. RSC Adv. 2020, 10, 20738–20744. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, H.; Wang, X.; Huang, H.; Wang, H.; Zhang, R.; Wang, Z.; Han, J. Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Cluster Expression. Molecules 2020, 25, 3657. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, I.; Kim, S.-K. Immense Essence of Excellence: Marine Microbial Bioactive Compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef] [Green Version]
- Kaleem, S.; Qin, L.; Yi, W.; Lian, X.-Y.; Zhang, Z. Bioactive Metabolites from the Mariana Trench Sediment-Derived Fungus Penicillium sp. SY2107. Mar. Drugs 2020, 18, 258. [Google Scholar] [CrossRef]
- Shaala, L.A.; Alzughaibi, T.; Genta-Jouve, G.; Youssef, D.T.A. Fusaripyridines A and B. Highly Oxygenated Antimicrobial Alkaloid Dimers Featuring an Unprecedented 1,4-Bis(2-hydroxy-1,2-dihydropyridin-2-yl)butane-2,3-dione Core from the Marine Fungus Fusarium sp. LY019. Mar. Drugs 2021, 19, 505. [Google Scholar] [CrossRef]
- Hua, Y.; Pan, R.; Bai, X.; Wei, B.; Chen, J.; Wang, H.; Zhang, H. Aromatic Polyketides from a Symbiotic Strain Aspergillus fumigatus D and Characterization of Their Biosynthetic Gene D8.t287. Mar. Drugs 2020, 18, 324. [Google Scholar] [CrossRef]
- Karim, M.R.U.; Harunari, E.; Sharma, A.R.; Oku, N.; Akasaka, K.; Urabe, D.; Igarashi, Y. Nocarimidazoles C and D, antimicrobial alkanoylimidazoles from a coral-derived actinomycete Kocuria sp.: Application of 1JC, H coupling constants for the unequivocal determination of substituted imidazoles and stereochemical diversity of anteisoalkyl chains in microbial me-tabolites. Beilstein. J. Org. Chem. 2020, 16, 2719–2727. [Google Scholar] [PubMed]
- Pérez, M.; Schleissner, C.; Fernández, R.; Rodríguez, P.; Reyes, F.; Zuñiga, P.; de la Calle, F.; Cuevas, C. PM100117 and PM100118, new antitumor macrolides produced by a marine Streptomyces caniferus GUA-06-05-006A. J. Antibiot. 2015, 69, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, G.; Cutignano, A.; Sardo, A.; Fontana, A. Antifungal Amphidinol 18 and Its 7-Sulfate Derivative from the Marine Dinoflagellate Amphidinium carterae. J. Nat. Prod. 2014, 77, 1524–1527. [Google Scholar] [CrossRef]
- Shaala, L.A.; Youssef, D.T.; Ibrahim, S.R.; Mohamed, G.A.; Badr, J.M.; Risinger, A.L.; Mooberry, S.L. Didemnaketals F and G, new bioactive spiroketals from a Red Sea ascidian Didemnum species. Mar. Drugs 2014, 12, 5021–5034. [Google Scholar] [CrossRef] [Green Version]
- López-Abarrategui, C.; Alba, A.; Silva, O.N.; Reyes-Acosta, O.; Vasconcelos, I.M.; Oliveira, J.T.; Migliolo, L.; Costa, M.P.; Costa, C.R.; Silva, M.R.; et al. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus. Biochimie 2012, 94, 968–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedders, H.; Michalek, M.; Grötzinger, J.; Leippe, M. An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 2008, 416, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.S.; Kim, H.K.; Lee, K.Y.; Kim, S.A.; Han, Y.S.; Lee, I.H. Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett. 2006, 580, 1490–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossuga, M.H.; MacMillan, J.B.; Rogers, E.W.; Molinski, T.F.; Nascimento, G.G.; Rocha, R.M.; Berlinck, R.G. (2S,3R)-2-aminododecan-3-ol, a new antifungal agent from the Ascidian Clavelina Oblonga. J. Nat. Prod. 2004, 67, 1879–1881. [Google Scholar] [CrossRef]
- Schupp, P.; Poehner, T.; Edrada, R.; Ebel, R.; Berg, A.; Wray, V.; Proksch, P. Eudistomins W and X, two new β-carbolines from the micronesian tunicate Eudistoma sp. J. Nat. Prod. 2003, 66, 272–275. [Google Scholar] [CrossRef]
- Alves, A.M.C.V.; Cruz-Martins, N.; Rodrigues, C.F. Marine Compounds with Anti-Candida sp. Activity: A Promised “Land” for New Antifungals. J. Fungi 2022, 8, 669. [Google Scholar] [CrossRef]
Compound | Source | ZOI (mm) | MIC (µg/mL) and Activities | Target Organism | Reference | |
---|---|---|---|---|---|---|
C1 | Oceanapiside | Oceanapia phillipensis | 10 | Cg | Dalisay et al., 2021 [27] | |
C2 | Oceanalin B | Oceanapia sp. | 25 | Cg | Makarieva et al., 2021 [28] | |
C3 | Pseudoceroxime A | Pseudoceratina sp. | 11.9 | Ca | Chen et al., 2020 [29] | |
C4 | Pseudoceroxime B | 13 | ||||
C5 | Pseudoceroxime C | 19.80 | ||||
C6 | Pseudoceroxime D | >20 | ||||
C7 | Pseudoceroxime E | >20 | ||||
C8 | Hippolide J | Hippospongia lachne | 0.125–4 | Ca, Cp, and Cg | Jiao et al., 2017 [30] | |
C9 | Zamamidine D | Amphimedon sp. | 16 | Ca | Kubota et al., 2017 [31] | |
C10 | Nakamurine A | Agelas nakamurai | Ca | Chu et al., 2017 [32] | ||
C11 | Nakamurine B | 60 | Ca | Chu et al., 2017 [32] | ||
C12–C14 | (Z)-5-(4-hydroxybenzylidene)-imidazolidine-2,4-dione, hemimycalins A and B | Hemimycale arabica | 22, 14, and 20 | Ca | Youssef et al., 2015 [33] | |
C15 | Crambescin | Pseudaxinella reticulate | 11–39; 6.1–17; 11–34 | Ca, Cg, and Ck | Jamison and Molinski, 2015 [34] | |
C16 | Theonellamide G | Theonella swinhoei | 4.49 and 2.0 | Ca | Youssef et al., 2014 [35] | |
C17 | Phorbasin H | 250 Targeting of yeast-to-hypha transition | Ca | Lee et al., 2013 [36] | ||
C18–C19 | Nagelamide U and W | Agelas sp. | 4 | Ca | Tanaka et al., 2013a [37] | |
C20–C22 | Nagelamide X-Z | Agelas sp. | 0.25 to 2 | Ca | Tanaka et al., 2013b [38] | |
C23 | Aurantoside K | Melophlus | 31.25 and 1.95 | Ca | Kumar et al., 2012 [39] | |
C24 | Agelasine O | Agelas sp. | >32 | Ca | Kubota et al., 2012 [31] | |
C25 | Agelasine P | >32 | ||||
C26 | Agelasine Q | 16 | ||||
C27 | Agelasine R | 16 | ||||
C28 | Agelasine S | >32 | ||||
C29 | Agelasine T | >32 | ||||
C30 | Agelasine U | >32 | ||||
C31 | Woodylide A | Plakortis simplex | 32 | Ca | Yu et al., 2012 [40] | |
C32 | Aurantoside J | Theonella swinhoei | >16 | Ca, Cp, Cg, and Ct | Angawi et al., 2011 [41] | |
C33 | Ceratinadin A | Pseudoceratina sp. | 2 | Ca | Kon et al., 2010 [42] | |
C34 | Ceratinadin B | 4 | ||||
C35 | Ceratinadin C | >32 | ||||
C36–C37 | Pseudoceratin A and B | Pseudoceratina purpurea | 8 and 6.55 | - | Ca | Jang et al., 2007 [39] |
C38 | Oceanalin A | Oceanapia sp. | 30 | Cg | Makarieva et al., 2005 [43] | |
C39 | 3,5-dibromo2-(3,5-dibromo-2-methoxyphenoxy) | Dysidea herbacea | 7.8, 7.8; 15.62 | Ca, Ct, and Cg | Sionov et al., 2005 [44] | |
C40–C41 | 9α,11α-epoxycholest-7-ene-3β,5α,6α,19-tetrol 6-acetate and agosterol A | Dysidea arenaria | Targeting of MDR1 and CDR1 | Ca | Jacob et al., 2003 [45] | |
C42–C43 | Bengamide Bengazole | Pachastrissa sp. | 0.8 to 1.5 | Ca | Fernández et al., 1999 [46] | |
C44 | Aurantoside A | Siliquariaspongia japonica | 1.25 | Ca | Sata et al., 1999 [47] | |
C45 | Aurantoside B | 0.63 | ||||
C46 | Aurantoside D | 9.5 | ||||
C47 | Aurantoside E | 0.16 | ||||
C48 | Aurantoside F | Inactive | ||||
C49 | Microsclerodermin C | Theonella sp. | 5 | Ca | Schmidt, E. W., and Faulkner, 1998 [48] | |
C50 | Cyclolithistide A | Theonella swinhoei | 20 | Ca | Clark et al., 1998 [49] | |
C51–C52 | Phorboxazoles A and B | Phorbas sp. | 12 | Ca | Searle et al., 1995 [50] | |
C53 | Theonegramide | Theonella swinhoei | 10 | Ca | Bewley, C. A., and Faulkner, 1994 [51] | |
C54 | Theonellamide F | Theonella sp. | 3–12 | unspecific Candida spp. | Matsunaga et al., 1989 [52] | |
C55 | Halichondramide | Halichondria sp. | 0.2 | Ca | Kernan et al., 1987 [53] |
Compound | Source | ZOI (mm) | MIC (µg/mL) and Activities | Target Organism | Reference | |
---|---|---|---|---|---|---|
Crude extract | Champia parvula | 13.8 ± 0.08 and 16.7 ± 0.15 | Ca, Ct | Ganesan 2019 [67] | ||
C67 | (9Z,12Z,15Z,18Z,21Z)-ethyl tetracosa-9,12,15,18,21- pentaenoate | Laurencia okamurai | 4 | Cg | Feng et al., 2015 [68] | |
C68 | Mahorone | Asparagopsis taxiformis | >32 | Ca | Greff et al., 2014 [69] | |
C69 | 5-bromomahorone | >32 | ||||
C70 | Laurepoxyene | Laurencia okamurai | 2 | Cg | Yu et al., 2014 [70] | |
C71 | 3b-Hydroperoxyaplysin | 4 | ||||
C72 | 3a-Hydroperoxy-3-epiaplysin | >64 | ||||
C73 | 8,10-Dibromoisoaplysin | >64 | ||||
C74 | (5S)-5-Acetoxy-b-bisabolene | 64 | ||||
C75 | 10-Bromoisoaplysin | 32 | ||||
C76 | Laurokamurene C | 1 | ||||
C77 | Laurokamurene A | 64 | ||||
C78 | Phlorotannin | Cystoseira nodicaulis Cystoseira usneoides and Fucus spiralis | 15.6 and 31.3; 31.3 and >62.5 | Ca; Ck | Lopes et al., 2013 [71] | |
C79 | Caulerprenylol B | Caulerpa racemosa | 4 | Cg | Liu et al., 2013 [72] | |
C80 | Bromophycolide U | >15 | Ca | Lin et al., 2010 [73] | ||
C81 | Isolauraldehyde | Laurencia obtusa | 70 | Ca | Alarif et al., 2012 [74] | |
C82 | 12-hydroxy isolaurene | 2000 | ||||
C83 | 8,11-dihydro-12-hydroxy isolaurene | 120 | ||||
C84 | Symphyocladin G | Symphyocladia latiuscula | 10 | Ca | Xu et al., 2012 [75] | |
C85 | Bromophycolide R | Callophycus serratus | >15 | Ca | Lin et al., 2010 [73] | |
C86 | Bromophycolide S | >15 | ||||
C87 | Bromophycolide T | >15 | ||||
C88 | 2,20,3,30-tetrabromo-4,40,5,50-tetrahydroxydiphenylmethane | Odonthalia corymbifera | 1.56 | Ca | Oh et al., 2008 [76] | |
C89–C90 | Capisterones A and B | Penicillus capitatus | CDR1 efflux pump activity | Ca | Li et al., 2006 [77] | |
C91 | Acetoxyfimbrolide | Delisea pulchra | 17 | Ca | Ankisetty et al., 2004 [78] |
Compound | Group | Source | ZOI (mm) | MIC (µg/mL) | Target Organism | Reference | |
---|---|---|---|---|---|---|---|
C94 C95 C96 C97 C98 | Coloquadranoside A Philinopside A Philinopside B Philinopside E Pentactaside B | Triterpene glycosides | Colochirus quadrangularis | 4, 8, 4 20, 30, 32 4, 8, 4 4, 8, 4 25 | Ca, Ct, and Cp | Yang et al., 2021 [79] | |
C99–C108 | Cousteside A-J | Non-sulfated triterpene glycosides | Bohadschia cousteaui | 10.7 ± 0.05 to 18.0 ± 0.01 | Ca | Elbandy et al., 2014 [80] | |
C109 C110 C111 C112 C113 C114 | Variegatuside C Variegatuside D Variegatuside E Variegatuside F Variegatuside A Variegatuside B | Triterpene glycosides | Stichopus variegates Semper | 12.5; 25; 12.5 3.4; 3.4; 13.6 25; 12.5; 12.5 25; 12.5; 12.5 25; 12.5; 12.5 100; 25; >125 | Ca, Cp, and Ct | Wang et al., 2014 [81] | |
C115 | 26-Nor-25-oxo-holotoxin A1 | Triterpene glycosides | Apostichopus japonicus Selenka | >45.91 | Ca and Ct | Wang et al., 2012 [82] | |
C116 | Holotoxin D | 6.64, 13.29 | |||||
C117 | Holotoxin E | 13.45, 13.45 | |||||
C118 | Holotoxin F | 5.58, 5.68 | |||||
C119 | Holotoxin G | 5.81, 5.81 | |||||
C120 | Holotoxin A1 | 11.49, 5.68 | |||||
C121 | Holotoxin B | 11.36, 5.68 | |||||
C122 | Cladoloside B | 3.28, 1.64 | |||||
C123 | Arguside F | Triterpene glycosides | Holothuria (Microthele) axiloga | 64, 16, 16 | Ca, Ct, and Ck | Yuan et al., 2009a [83] | |
C124 | Impatienside B | 4, 4, 4 | |||||
C125 | Pervicoside D | 64, 16, 16 | |||||
C126 C127 C128 C129 C130 C131 | Marmoratoside A Marmoratoside B 17α-hydroxy impatienside A 25-acetoxy bivittoside D Impatienside A Bivittoside D | Triterpene glycosides | Bohadschia marmorata | 2.81; 2.81; 11.24 2.78; 2.78; 2.78 44.44; 44.44; 44.44 43.13; 10.78; 10.78 2.81; 2.81; 2.81 2.80; 2.80; 2.80 | Ca, Ct, and Ck | Yuan et al., 2009b [84] | |
C132 | Axilogoside A (132) | Triterpene glycoside | Holothuria (Microthele) axiloga | 16 | Ca | Wei-Hua et al., 2008 [85] | |
C133 | Holothurin B (133) | Triterpene glycoside | Actinopyga lecanora | 25, 12.5 and 6.25 | Ca, Ck, and Cp | Kumar et al., 2007 [86] |
Compound | Group | Source | ZOI (mm) | MIC (µg/mL) and Activities | Target Organism | Reference | |
---|---|---|---|---|---|---|---|
C134 C135 C136 C137 C138 C139 | Chainin Filipin IX Filipin XI Filipin XII Filipin II Filipin III | Deep-sea actinobacteria | Streptomyces antibioticus OUCT16-2 | 1.56–12.5 | Ca | Bao et al., 2022 [92] | |
C140 | Antimycin I | Sponge-associated | Streptomyces sp. NBU3104 | 8 | Ca | Li et al., 2022 [93] | |
C141–C143 | Iseolide A–C | Coral-derived | Streptomyces sp. | 0.39–6.25 | Ca | Zhang et al., 2020 [94] | |
C144 | Tunicamycin C3 | Deep sea | Streptomyces xinghaiensis SCSIO S15077 | 4–32 | Ca | Zhang et al., 2020 [95] | |
C145 | Maculosin | Costa soil | Streptomyces sp. ZZ446 | 27 | Ca | Chen et al., 2020 [61] | |
C146 | Maculosin-O-a-L rhamnopyranoside | 26 | |||||
C147 | Rubromycin CA1 | Tunicate | Streptomyces hyaluromycini | 6.3 | Ca | Harunari et al., 2019 [96] | |
C148–C151 | Caniferolide A-D | Streptomyces caniferus CA-271066 | 0.5 to 2.0 | Ca | Pérez-Victoria et al., 2019 [97] | ||
C152– C153 | 13(α)-Acetoxy-anhydroisoheximide and 13(β)-acetoxy-anhydroisoheximid | Deep sea | Streptomyces sp. YG7 | 62.5 | Ca | Pan 2019 [98] | |
C154–C156 | Nitricquinomycin A-C | Marine-sediment-derived | Streptomyces sp. ZS-A45 | >40 | Ca | Zhou et al., 2019 [99] | |
C157–C160 | Streptopyrazinone A-D | Costal soil | Streptomyces sp. ZZ446 | 35–60 | Ca | Chen et al., 2018 [100] | |
C161 | N-acetyl-L-isoleucine-L-leucinamide | ||||||
C162–C165 | Strepoxepinmycin A–D | Marine environment | Streptomyces sp. XMA39 | 5 to 10 | Ca | Jiang et al., 2018 [101] | |
C166–C168 | Kitamycin A-C | Streptomyces antibioticus strain 200-09 | 25 | Ca | Wang et al., 2017 [102] | ||
C169 | Urauchmycin B | ||||||
C170 | Deisovaleryblastomycin | ||||||
C171 | Rocheicoside A | Marine-sediment-derived | Streptomyces rochei 06CM016 | 37 | Ca | Aksoy et al., 2016 [103] | |
C172–C173 | Mohangamide A and B | Marine actinomycete | Streptomyces sp. | inhibiting isocitrate lyase | IC50 = 4.4 and 20.5 µM | Ca | Bae et al. 2015 [104] |
C174–C175 | Reedsmycin A and F | Streptomyces sp. CHQ-64 | 25–50 | Ca | Che et al., 2015 [105] | ||
C176 | 28-N-Methylikaguramycin | Marine sediment | Streptomyces zhaozhouensis CA-185989 | 4 | Ca | Lacret et al., 2014 [106] | |
C177 | Isoikarugamycin | 2–4 | |||||
C178 | Ikarugamycin | 4 | |||||
C179 | Caerulomycin A | Marine actinomycetes | Actinoalloateichus cyanogriseus | 0.39–0.78; 0.78–1.56 | Ca, Cg, and Ck | Ambavane et al., 2014 [107] | |
C180 | Arcticoside | Arctic Actinomycete | Streptomyces sp. | Inhibition of C. albicans Isocitrate Lyase | 30.4 μM | Ca | Moon et al., 2014 [108] |
C181 | Bahamaolide A | Marine actinomycete | Streptomyces sp. | 12.5 | Ca | Kim et al. 2012 [109] | |
C182 | (N-(2-hydroxyphenyl)-2-phenazinamine) | Arctic sediment | Nocardia dassonvillei | 64 | Ca | Gao et al., 2012 [110] | |
C183 | Azalomycin F4a 2-ethylpentyl ester | Mangrove rhizosphere soil | Streptomyces sp. 211726 | 2.34 and 12.5 | Ca | Yuan et al., 2013 [111] | |
C184 | Azalomycin F5a 2-ethylpentyl ester | ||||||
C185–C186 | Antimycins A19 and A20 | Streptomyces antibioticus H74-18 | 5 to 10 | Ca | Xu et al., 2011 [112] | ||
C187 | Saadamycin | Egyptian sponge Aplysina fistularis | Streptomyces sp. Hedaya48 | 2.22 and 15 | Ca | El-Gendy and EL-Bondkly, 2010 [113] | |
C188 | 5,7-Dimethoxy-4-p-methoxylphenylcoumarin | ||||||
C189 | Chitinase | Sponge associate | Streptomyces sp. DA11 | 10.48 ± 0.45 | - | Ca | Han et al., 2009 [114] |
C190 | Caboxamycin | Deep sea cold water | Streptomyces sp. NTK 937 | - | 117 | Cg | Hohmann et al., 2009 [115] |
C191 | Piperazimycin B | Marine-derived | Streptomyces sp. | 14 | - | Ca | Shaaban et al., 2008 [116] |
Compound | Group | Source | ZOI (mm) | MIC (µg/mL) | Target Organism | Reference | |
---|---|---|---|---|---|---|---|
C192 C204 C205 | Cycloprodigiosin Prodigiosin 2-Methyl-3-hexyl prodiginine | Red marine bacterium | Pseudoalteromonas rubra | 7.9 ± 0.07, 8.2 ± 0.09 7.9 ± 0.06 | Ca | Setiyono et al., 2020 [123] | |
C193–C195 | Bulbimidazole A−C | Gammaproteobacterium Microbulbifer | 6.25–12.5 | Ca | Karim et al., 2020 [124] | ||
C196 C197 | Indolepyrazine A Indolepyrazine B | Marine bacteria | Acinetobacter sp. ZZ1275 | 12 and 14 | Ca | Anjum et al., 2019 [125] | |
C198 C199 | Janthinopolyenemycin A Janthinopolyenemycin B | Marine bacteria | Janthinobacterium spp. ZZ145 and ZZ148 | 15.6 | Ca | Anjum et al., 2018 [126] | |
C200 C201 | Ieodoglucomide C Ieodoglycolipid | Marine bacteria | Bacillus licheniformis 09IDYM23 | 0.05 and 0.03 | Ca | Tareq et al., 2015 [127] | |
C202 C203 | Forazoline A Forazoline B | Invertebrate-associated bacteria | 16 | Ca | Wyche et al., 2014 [128] | ||
C204–C210 | Gageomacrolactin A-C, macrolactins A (C207), B (C208), E (C209) and W (C210) | Marine sediments | Bacillus subtilis | 0.05–0.15 | Ca | Tareq et al., 2013 [129] | |
C211–218 | Quinazolinones (in total 8 analogues) | Marine bacterium | Bacillu cereus 041381 | 1.3–15.6 | Ca | Xu et al., 2011 [130] | |
C219 | Pedein A | Chondromyces pediculatus | 32 | 1.6 | Ca | Kunze et al. 2008 [131] | |
C220 | 2-Nitro-4-(2′-nitroethenyl)-phenol | Arctic sea ice bacterium | Salegentibacter sp. T436 | 20 | Ca | Al-Zereini et al. 2007 [132] | |
C221 | Hassallidin A | Cyanobacterium | Hassallia sp. | 4.8 | Ca | Neuhof et al., 2005 [133] | |
C222 C223 | Basiliskamide A Basiliskamide B | Tropical marine habitat | Bacillus laterosporus | 1.0 3.1 | Ca | Barsby et al., 2002 [134] | |
C224–C226 | Lobocyclamide A-C | Cyanobacterial mat | Lyngbya confervoides | 7–10 and 6–8 | Ca and Cg | MacMillan et al., 2002 [135] |
Compound | Group | Source | ZOI (mm) | MIC (µg/mL) | Target organism | Reference | |
---|---|---|---|---|---|---|---|
C227 C228 | Ditalaromylectone A Altenusin | Talaromyces mangshanicus BTBU20211089 | 200 | Ca | Zhang et al., 2022 [136] | ||
C229 | ent-Epiheveadride | Marine sediment | Aspergillus chevalieri PSU-AMF79 | 200 | Ca | Ningsih et al., 2022 [137] | |
C230 | (-)-Massoia lactone | Unidentified tunicate | Trichoderma harzianum PSU-MF79 | 200 | Ca | Nuansri et al., 2021 [138] | |
C231 | Talaroisocoumarin A | Marine-derived fungi | Talaromyces sp. ZZ1616 | 26 | Ca | Mingzhu Ma et al., 2020 [139] | |
C232 | Emethacin C | Tissue of sea hare aplysia pulmonica | Aspergillus terreus | 32 | Ca | Wu et al., 2020 [140] | |
C233–C235 | Trichobreol A-C | Marine red alga | Trichoderma cf. brevicompactum | 3.1- 50 | Ca | Yamazaki et al. 2020 [141] | |
C236 | Atranone Q | Marine fungus | Stachybotrys chartarum | 8 | Ca | Yang et al., 2019 [142] | |
C237 | Terretrione C | Tunicate-derived fungus | Penicillium sp. | 19 | 32 | Ca | Shaala LA and Youssef DT 2015 [143] |
C238 C239 | Asperfurandione A Asperfurandione B | Deep-sea fungi | Aspergillus versicolor | 64 | Ca | Ding et al., 2019 [144] | |
C240–C247 | Cladosporiumin A-H | Cladosporium sp. SCSIO z0025 | Anti-biofilm | Ca | Huang et al., 2018 [145] | ||
C248 | Eutypellenoid B | Arctic fungus | Eutypella sp. | 8, 16 and 32 | Ca, Cg, and Ct | Yu et al., 2018 [146] | |
C249–C255 | Pyrrospirones C-I | Marine-derived fungus | Penicillium sp. ZZ380. | No activity | Ca | Song et al., 2018 [147] | |
C256 | Nigerasperone C | Marine brown alga | Aspergillus niger EN-13 | 9.0 | - | Ca | Zhang et al., 2007 [148] |
C257 | Penicillenol | Marine sediment | Aspergillus restrictus DFFSCS006 | >200 | Ca | Wang et al., 2017 [149] | |
C258 C259 | Penicillenol A2 Penicillenol B1 | Marine sediment | Aspergillus restrictus DFFSCS006 | Inhibit the biofilm growth and hyphae-related genes | Ca | Wang et al., 2017 [149] | |
C260 | Melearoride A | Marine-derived fungus | Penicillium meleagrinum var. viridiflavum | >32 | Ca | Okabe et al., 2016 [150] | |
C261 | PF1163A | 1 | |||||
C262 | PF1163B | 2 | |||||
C263 | PF1163D | >32 | |||||
C264 | PF1163H | 16 | |||||
C265 | PF1163F | 8 | |||||
C266 | Melearoride B | >32 | |||||
C267 C268 | Pleosporallin D Pleosporallin E | Marine alga Enteromorpha clathrata | Pleosporales sp. | >10 7.44 | Ca | Chen et al., 2015 [151] | |
C269 | Dendrodochol A | Sea cucumber | Dendrodochium sp. | 16, 16, 16 | Ca, Cp, and Cg | Xu et al., 2014 [152] | |
C270 | Dendrodochol B | 16, >64, >64 | |||||
C271 | Dendrodochol C | 16, 16, 8 | |||||
C272 | Dendrodochol D | > 64 all | |||||
C273 | Didymellamide A | Marine-sponge-associated | Stagonosporopsis cucurbitacearum | 3.1; 3.1 | Ca and Cg | Haga et al., 2013 [153] | |
C274 | Citrafungin A | Marine fungi | Aspergillus aculeatus | 0.43 | Ca | Singh 2004 [154] | |
C275 C276 | Sporiolide A Sporiolide B | Brown alga Actinotrichia fragilis | Cladosporium sp. | 16.7 >33.33 | Ca | Shigemori et al., 2004 [155] | |
C277 | Xestodecalactone A | Marine-sponge-associated | Penicillium cf. montanense | 7, 12 and 25 | 20, 50 and 100 | Ca | Edrada et al., 2002 [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganeshkumar, A.; Gonçale, J.C.; Rajaram, R.; Junqueira, J.C. Anti-Candidal Marine Natural Products: A Review. J. Fungi 2023, 9, 800. https://doi.org/10.3390/jof9080800
Ganeshkumar A, Gonçale JC, Rajaram R, Junqueira JC. Anti-Candidal Marine Natural Products: A Review. Journal of Fungi. 2023; 9(8):800. https://doi.org/10.3390/jof9080800
Chicago/Turabian StyleGaneshkumar, Arumugam, Juliana Caparroz Gonçale, Rajendran Rajaram, and Juliana Campos Junqueira. 2023. "Anti-Candidal Marine Natural Products: A Review" Journal of Fungi 9, no. 8: 800. https://doi.org/10.3390/jof9080800
APA StyleGaneshkumar, A., Gonçale, J. C., Rajaram, R., & Junqueira, J. C. (2023). Anti-Candidal Marine Natural Products: A Review. Journal of Fungi, 9(8), 800. https://doi.org/10.3390/jof9080800