Proteomic Characterization of Liver Cancer Cells Treated with Clinical Targeted Drugs for Hepatocellular Carcinoma
<p>Drug-perturbated proteomics in liver cancer HepG2 cell line. (<b>a</b>) Workflow for TMT-based proteomic analysis with apatinib, regorafenib, and lenvatinib treatments in the HepG2 cells. (<b>b</b>) Results from the principal component analysis of proteomic data. (<b>c</b>) Overview of protein expression after treatment with three liver cancer-targeted drugs, showing the dynamics of protein abundance (log2 ratio). (<b>d</b>) Volcanic map of differentially expressed proteins in HepG2 cells treated with apatinib, regorafenib, and lenvatinib.</p> "> Figure 2
<p>Functional enrichment analysis of changed proteins treated with different drugs. KEGG pathway enrichment analysis of upregulated and downregulated proteins in (<b>a</b>) apatinib-treated, (<b>b</b>) regorafenib-treated, and (<b>c</b>) lenvatinib-treated groups. Biological process analysis of differentially expressed proteins in (<b>d</b>) apatinib-treated, (<b>e</b>) regorafenib-treated, and (<b>f</b>) lenvatinib-treated groups.</p> "> Figure 3
<p>The protein–protein interaction network under the treatment of regorafenib. The protein–protein interaction network of upregulated proteins (<b>a</b>) and downregulated proteins (<b>b</b>) in the regorafenib-treated group.</p> "> Figure 4
<p>Proteomic analysis predicting potential drug combination strategy. (<b>a</b>) Workflow of combination therapy prediction using published proteome profiling data. (<b>b</b>) Overview of potential drug combination of three liver cancer-targeted drugs identified through published proteomics data. (<b>c</b>) Scatter plots illustrating previously reported drug combinations of three liver cancer-targeted drugs.</p> "> Figure 5
<p>Characterization of the dynamic phosphorylation level after treatment with the three drugs in the HepG2 Cell Line. (<b>a</b>) The Western blot analysis of global phosphorylation in HepG2 cells treated with apatinib, regorafenib, and lenvatinib. (<b>b</b>) Volcano plots of differential phosphorylation sites based on protein expression profile data for three liver cancer-targeted drugs. Biological process analysis of proteins with significantly altered phosphorylation sites in (<b>c</b>) apatinib- and (<b>d</b>) regorafenib-treated groups. Protein–protein interaction network of proteins with significantly altered phosphorylation sites in (<b>e</b>) apatinib- and (<b>f</b>) regorafenib-treated groups.</p> "> Figure 6
<p>Functional exploration of the identified phosphorylated substrates. (<b>a</b>) Overview of functional phosphorylation sites for three liver cancer-targeted drugs based on integrated clinical phosphorylation data. (<b>b</b>) Overview of functional phosphorylation sites based on phosphorylation site functionality scoring. (<b>c</b>) Visualization of phosphorylation site in the TK1: S13 protein structure model. (<b>d</b>) Box plot illustrating differential expression of TK1: S13 in tumors versus NATs. (<b>e</b>) Survival probability analysis of phosphorylation site TK1: S13 associated with poor prognosis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Protein Extraction and Reductive Alkylation Trypsin Digestion
2.3. TMT Labeling
2.4. HPLC Fractionation
2.5. LC-MS/MS Analysis
2.6. Database Searching
2.7. Differential Protein and Phosphorylation Site Analyses
2.8. Enrichment and Protein Interaction Network Analyses
2.9. Potential Drug Combination Prediction
2.10. Analysis of Potential Phosphorylation Functional Sites
2.11. Analysis of Protein Structural Models
2.12. Western Blot Analysis
2.13. Statistical Analysis
2.14. Software and Visualization
3. Results
3.1. Drug-Perturbated Proteomics in Liver Cancer HepG2 Cell Line
3.2. Functional Enrichment Analysis of Changed Proteins Treated with Different Drugs
3.3. The Protein–Protein Interaction Network Under the Treatment of Different Drugs
3.4. Proteomic Analysis Predicting Potential Drug Combination Strategy
3.5. Characterization of the Dynamic Phosphorylation Level After Treatment with the Three Drugs in the HepG2 Cell Line
3.6. Functional Exploration of the Identified Phosphorylated Substrates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Kanwal, F.; Llovet, J.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 864–884. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, C.; Zhang, S.; Geng, H.; Zhu, A.X.; Bernards, R.; Qin, W.; Fan, J.; Wang, C.; Gao, Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024, 42, 180–197. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Yang, X.-R.; Chung, W.-Y.; Dennison, A.R.; Zhou, J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther. 2020, 5, 146. [Google Scholar] [CrossRef]
- Niu, M.; Yi, M.; Li, N.; Wu, K.; Wu, K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 719896. [Google Scholar] [CrossRef]
- Ladd, A.D.; Duarte, S.; Sahin, I.; Zarrinpar, A. Mechanisms of drug resistance in HCC. Hepatology 2024, 79, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Chen, Z.; Zhang, W.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S.; Rong, D.; Reiter, F.P.; et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther. 2020, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Zhang, Y.; Fonslow, B.R.; Shan, B.; Baek, M.-C.; Yates, J.R. Protein Analysis by Shotgun/Bottom-up Proteomics. Chem. Rev. 2013, 113, 2343–2394. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef]
- Mani, D.R.; Krug, K.; Zhang, B.; Satpathy, S.; Clauser, K.R.; Ding, L.; Ellis, M.; Gillette, M.A.; Carr, S.A. Cancer proteogenomics: Current impact and future prospects. Nat. Rev. Cancer 2022, 22, 298–313. [Google Scholar] [CrossRef]
- Jia, D.; Jiang, Z.; Cui, M.; Ding, X. Proteomics efforts for hepatocellular carcinoma drug development. Clin. Cancer Bull. 2024, 3, 22. [Google Scholar] [CrossRef]
- Dutta, S.; Ghosh, S.; Mishra, A.; Ghosh, R. Oncoproteomics: Insight into current proteomic technologies in cancer biomarker discovery and treatment. J. Proteins Proteom. 2023, 14, 1–24. [Google Scholar] [CrossRef]
- Xing, X.; Liang, D.; Huang, Y.; Zeng, Y.; Han, X.; Liu, X.; Liu, J. The application of proteomics in different aspects of hepatocellular carcinoma research. J. Proteom. 2016, 145, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Cai, L.; Ouyang, J.; Wang, F.; Li, Z.; Liu, M.; Wang, Y.; Zhou, Y.; Hu, E.; Huang, C.; et al. Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma. Nat. Commun. 2023, 14, 8392. [Google Scholar] [CrossRef]
- Xing, X.; Hu, E.; Ouyang, J.; Zhong, X.; Wang, F.; Liu, K.; Cai, L.; Zhou, Y.; Wang, Y.; Chen, G.; et al. Integrated omics landscape of hepatocellular carcinoma suggests proteomic subtypes for precision therapy. Cell Rep. Med. 2023, 4, 101315. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019, 567, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, S.; Marais, R.; Zhu, A.X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010, 29, 4989–5005. [Google Scholar] [CrossRef]
- Tomasi, M.L.; Ramani, K. SUMOylation and phosphorylation cross-talk in hepatocellular carcinoma. Transl. Gastroenterol. Hepatol. 2018, 3, 20. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, F.; Wang, L.; Wang, Z.; Zhang, N.; Wang, Z.; Li, Z.; Song, X.; Wei, S.; Cao, L. Phosphorylation of SMC1A promotes hepatocellular carcinoma cell proliferation and migration. Int. J. Biol. Sci. 2018, 14, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, Z.; Xia, Y.; Shao, F.; Xia, W.; Wei, Y.; Li, X.; Qian, X.; Lee, J.H.; Du, L.; et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature 2020, 580, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gai, X.; Wu, Y.; Zhang, B.; Wu, X.; Cheng, R.; Tang, B.; Shang, K.; Zhao, N.; Deng, W.; et al. Oncogenic beta-catenin stimulation of AKT2-CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2202157119. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Long, J.; Yao, Z.; Zhao, Y.; Zhao, Y.; Liao, J.; Lei, K.; Xiao, H.; Dai, Z.; Peng, S.; et al. METTL1-Mediated m7G tRNA Modification Promotes Lenvatinib Resistance in Hepatocellular Carcinoma. Cancer Res. 2023, 83, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett. 2019, 460, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nojima, Y.; Aoki, M.; Re, S.; Hirano, H.; Abe, Y.; Narumi, R.; Muraoka, S.; Shoji, H.; Honda, K.; Tomonaga, T.; et al. Integration of pharmacoproteomic and computational approaches reveals the cellular signal transduction pathways affected by apatinib in gastric cancer cell lines. Comput. Struct. Biotechnol. J. 2023, 21, 2172–2187. [Google Scholar] [CrossRef]
- Yang, H.; Chen, D.; Wu, Y.; Zhou, H.; Diao, W.; Liu, G.; Li, Q. A feedback loop of PPP and PI3K/AKT signal pathway drives regorafenib-resistance in HCC. Cancer Metab. 2023, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Qian, L.; Jiang, S.; Gai, X.; Ye, S.; Chen, Y.; Wang, X.; Zhai, L.; Xu, J.; et al. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies. Mol. Cell 2021, 81, 4076–4090.e8. [Google Scholar] [CrossRef]
- Nalbach, K.; Schifferer, M.; Bhattacharya, D.; Ho-Xuan, H.; Tseng, W.C.; Williams, L.A.; Stolz, A.; Lichtenthaler, S.F.; Elazar, Z.; Behrends, C. Spatial proteomics reveals secretory pathway disturbances caused by neuropathy-associated TECPR2. Nat. Commun. 2023, 14, 870. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Xu, J.Y.; Huang, Y.; Guo, J.; Dong, Q.; Wang, Y.; Li, N.; Liu, Q.; Zhang, M.; Pan, Q.; et al. Integrative proteogenomic profiling of high-risk prostate cancer samples from Chinese patients indicates metabolic vulnerabilities and diagnostic biomarkers. Nat. Cancer 2024, 5, 1427–1447. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, J.; Li, Y.; Wang, R.; Dai, C.; Zhang, B.; Zhang, X.; Xu, L.; Tao, Y.; Han, M.; et al. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser(56) to diminish pancreatic beta cell function upon overnutrition. Sci. Transl. Med. 2024, 16, eade8647. [Google Scholar] [CrossRef]
- Saei, A.A.; Beusch, C.M.; Chernobrovkin, A.; Sabatier, P.; Zhang, B.; Tokat, U.G.; Stergiou, E.; Gaetani, M.; Vegvari, A.; Zubarev, R.A. ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery. Nat. Commun. 2019, 10, 5715. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Kuljanin, M.; Li, J.; Van Vranken, J.G.; Bulloch, N.; Schweppe, D.K.; Huttlin, E.L.; Gygi, S.P. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 2023, 41, 845–857. [Google Scholar] [CrossRef]
- Gao, Q.; Zhu, H.; Dong, L.; Shi, W.; Chen, R.; Song, Z.; Huang, C.; Li, J.; Dong, X.; Zhou, Y.; et al. Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma. Cell 2019, 179, 561–577.e522. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, D.; Jarnuczak, A.F.; Vieitez, C.; Gehre, M.; Soucheray, M.; Mateus, A.; Kleefeldt, A.A.; Hill, A.; Garcia-Alonso, L.; Stein, F.; et al. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 2020, 38, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, J.; Lu, Y.; Bian, H.; Yang, L.; Wu, H.; Zhang, X.; Zhang, B.; Xiong, M.; Chang, Y.; et al. DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. Cell Metab. 2021, 33, 2004–2020.e9. [Google Scholar] [CrossRef]
- Coscia, F.; Watters, K.M.; Curtis, M.; Eckert, M.A.; Chiang, C.Y.; Tyanova, S.; Montag, A.; Lastra, R.R.; Lengyel, E.; Mann, M. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. Nat. Commun. 2016, 7, 12645. [Google Scholar] [CrossRef]
- Liu, P.; Cong, X.; Liao, S.; Jia, X.; Wang, X.; Dai, W.; Zhai, L.; Zhao, L.; Ji, J.; Ni, D.; et al. Global identification of phospho-dependent SCF substrates reveals a FBXO22 phosphodegron and an ERK-FBXO22-BAG3 axis in tumorigenesis. Cell Death Differ. 2022, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Y.; Zhang, C.; Wang, X.; Zhai, L.; Ma, Y.; Mao, Y.; Qian, K.; Sun, C.; Liu, Z.; Jiang, S.; et al. Integrative Proteomic Characterization of Human Lung Adenocarcinoma. Cell 2020, 182, 245–261.e17. [Google Scholar] [CrossRef]
- Elizarraras, J.M.; Liao, Y.; Shi, Z.; Zhu, Q.; Pico, A.R.; Zhang, B. WebGestalt 2024: Faster gene set analysis and new support for metabolomics and multi-omics. Nucleic Acids Res. 2024, 52, W415–W421. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; et al. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39, D561–D568. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, Q.; Guo, W.; Wang, L.; Wu, T.; Zhang, W.; Liu, M.; Kong, D. Cell-cycle and apoptosis related and proteomics-based signaling pathways of human hepatoma Huh-7 cells treated by three currently used multi-RTK inhibitors. Front. Pharmacol. 2022, 13, 944893. [Google Scholar] [CrossRef]
- He, K.; An, S.; Liu, F.; Chen, Y.; Xiang, G.; Wang, H. Integrative analysis of multi-omics data reveals inhibition of RB1 signaling promotes apatinib resistance of hepatocellular carcinoma. Int. J. Biol. Sci. 2023, 19, 4511–4524. [Google Scholar] [CrossRef]
- Casanova, M.; Bautista, F.; Campbell-Hewson, Q.; Makin, G.; Marshall, L.V.; Verschuur, A.C.; Canete Nieto, A.; Corradini, N.; Ploeger, B.A.; Brennan, B.J.; et al. Regorafenib plus Vincristine and Irinotecan in Pediatric Patients with Recurrent/Refractory Solid Tumors: An Innovative Therapy for Children with Cancer Study. Clin. Cancer Res. 2023, 29, 4341–4351. [Google Scholar] [CrossRef] [PubMed]
- Stroes, C.I.; Schokker, S.; Khurshed, M.; van der Woude, S.O.; Mathot, R.A.; Slingerland, M.; de Vos-Geelen, J.; Zucchetti, M.; Matteo, C.; van Dijk, E.; et al. A phase Ib/II study of regorafenib and paclitaxel in patients with beyond first-line advanced esophagogastric carcinoma (REPEAT). Ther. Adv. Med. Oncol. 2022, 14, 17588359221109196. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Zhang, J.; Zhang, C. Stimulator of interferon response cGAMP interactor overcomes ERBB2-mediated apatinib resistance in head and neck squamous cell carcinoma. Aging 2021, 13, 20793–20807. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Li, X.; Fan, L.; He, X.; Fu, Y.; Dong, Z. A Simple UPLC/MS-MS Method for Simultaneous Determination of Lenvatinib and Telmisartan in Rat Plasma, and Its Application to Pharmacokinetic Drug-Drug Interaction Study. Molecules 2022, 27, 1291. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Canovas, J.L.; Herman-Sanchez, N.; Del Rio-Moreno, M.; Fuentes-Fayos, A.C.; Lara-Lopez, A.; Sanchez-Frias, M.E.; Amado, V.; Ciria, R.; Briceno, J.; de la Mata, M.; et al. PRPF8 increases the aggressiveness of hepatocellular carcinoma by regulating FAK/AKT pathway via fibronectin 1 splicing. Exp. Mol. Med. 2023, 55, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, L.; Yang, Q.; Li, M.; Pan, X.; Xu, J.; Zhong, C.; Yao, F.; Zhang, R.; Zhou, S.; et al. Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and -independent manners. Cell Metab. 2023, 35, 912–927.e7. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, J.; Guo, S.; Xue, X.; Wang, Y.; Qiu, S.; Cui, J.; Ma, L.; Zhang, X.; Wang, J. RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int. 2020, 20, 587. [Google Scholar] [CrossRef]
- Meissner, F.; Geddes-McAlister, J.; Mann, M.; Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 2022, 21, 637–654. [Google Scholar] [CrossRef]
- Sun, J.; Mao, F.; Liu, C.; Zhang, F.; Jiang, D.; Guo, W.; Huo, L.; Zhou, L.; Lau, W.Y.; Shi, J.; et al. Combined FOLFOX4 with all-trans retinoic acid versus FOLFOX4 with placebo in treatment of advanced hepatocellular carcinoma with extrahepatic metastasis: A randomized, double-blind comparative study. Signal Transduct. Target. Ther. 2023, 8, 368. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.T.; Shang, S.; Beretta, L. Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene 2006, 25, 3810–3817. [Google Scholar] [CrossRef] [PubMed]
- Luk, J.M.; Liu, A.M. Proteomics of hepatocellular carcinoma in Chinese patients. OMICS 2011, 15, 261–266. [Google Scholar] [CrossRef]
- Nie, W.; Yan, L.; Lee, Y.H.; Guha, C.; Kurland, I.J.; Lu, H. Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. Mass. Spectrom. Rev. 2016, 35, 331–349. [Google Scholar] [CrossRef]
- Su, M.G.; Weng, J.T.; Hsu, J.B.; Huang, K.Y.; Chi, Y.H.; Lee, T.Y. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions. BMC Syst. Biol. 2017, 11, 132. [Google Scholar] [CrossRef]
- Zhai, L.H.; Chen, K.F.; Hao, B.B.; Tan, M.J. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol. Sin. 2022, 43, 3112–3129. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.Y.; Dazert, E.; Boldanova, T.; Coto-Llerena, M.; Nuciforo, S.; Ercan, C.; Suslov, A.; Meier, M.A.; Bock, T.; Schmidt, A.; et al. Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat. Commun. 2022, 13, 2436. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Lu, J.; Ge, J.; Ding, B.; Su, R.; Jiang, Y.; Sun, Y.; Ma, J.; Li, Y.; Sun, J.; et al. IRGM is a novel regulator of PD-L1 via promoting S6K1-mediated phosphorylation of YBX1 in hepatocellular carcinoma. Cancer Lett. 2024, 581, 216495. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Wu, X.; Bu, L.; Jiang, Q.; Wang, L.; Liu, H.; Zhang, X.; Wu, Y.; Li, X.; Li, J.; et al. Atypical inflammatory kinase IKBKE phosphorylates and inactivates FoxA1 to promote liver tumorigenesis. Sci. Adv. 2024, 10, eadk2285. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Qin, M.; Shi, L.; Liu, C.; Jiang, J.; Liao, Z.; Wang, H.; Zhang, Z.; Sun, L.; Fan, H.; et al. RNA binding motif protein 45-mediated phosphorylation enhances protein stability of ASCT2 to promote hepatocellular carcinoma progression. Oncogene 2023, 42, 3127–3141. [Google Scholar] [CrossRef] [PubMed]
- Su, R.Y.; Xu, C.H.; Guo, H.J.; Meng, L.J.; Zhuo, J.Y.; Xu, N.; Li, H.G.; He, C.Y.; Zhang, X.Y.; Lian, Z.X.; et al. Oncogenic cholesterol rewires lipid metabolism in hepatocellular carcinoma via the CSNK2A1-IGF2R Ser2484 axis. J. Adv. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.P.; He, Y.; Yang, J.; Wei, X.; Fan, Y.L.; Zhang, G.G.; Zhu, Y.D.; Li, Z.Q.; Liao, H.X.; Qin, D.J.; et al. Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct. Target. Ther. 2023, 8, 14. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, C.; Ma, J.; Peng, P.; Ren, X.; Cai, S.; Shen, X.; Wu, Y.; Zhang, S.; Wang, X.; et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 2023, 5, 61–79. [Google Scholar] [CrossRef]
- Ma, W.; Sun, Y.; Yan, R.; Zhang, P.; Shen, S.; Lu, H.; Zhou, Z.; Jiang, Z.; Ye, L.; Mao, Q.; et al. OXCT1 functions as a succinyltransferase, contributing to hepatocellular carcinoma via succinylating LACTB. Mol. Cell 2024, 84, 538–551.e7. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Guo, J.; Dong, R.; Yang, X.; Deng, C.; Wei, C.; Xu, J.; Han, W.; Lu, J.; Gao, C.; et al. Quantitative acetylome analysis reveals histone modifications that may predict prognosis in hepatitis B-related hepatocellular carcinoma. Clin. Transl. Med. 2021, 11, e313. [Google Scholar] [CrossRef]
- Lin, M.; Zheng, X.; Yan, J.; Huang, F.; Chen, Y.; Ding, R.; Wan, J.; Zhang, L.; Wang, C.; Pan, J.; et al. The RNF214-TEAD-YAP signaling axis promotes hepatocellular carcinoma progression via TEAD ubiquitylation. Nat. Commun. 2024, 15, 4995. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, Z.; Chen, J.; Fan, Y.; Guo, J.; Su, Y.; Wang, H.; Zhang, X.; Wu, X.; Jiang, Q.; et al. High-fat diet promotes liver tumorigenesis via palmitoylation and activation of AKT. Gut 2024, 73, 1156–1168. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Peng, C.; Ren, S.; Zhang, C. Intricate effects of post-translational modifications in liver cancer: Mechanisms to clinical applications. J. Transl. Med. 2024, 22, 651. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, D1211–D1217. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ma, J.; Liu, Y.; Chen, Z.; Xiao, N.; Lu, Y.; Fu, Y.; Yang, C.; Li, M.; Wu, S.; et al. iProX in 2021: Connecting proteomics data sharing with big data. Nucleic Acids Res. 2022, 50, D1522–D1527. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, H.; Zhou, J.; Zhou, C.; Xie, S.; Wang, J.; Tan, M.; Xu, J. Proteomic Characterization of Liver Cancer Cells Treated with Clinical Targeted Drugs for Hepatocellular Carcinoma. Biomedicines 2025, 13, 152. https://doi.org/10.3390/biomedicines13010152
Long H, Zhou J, Zhou C, Xie S, Wang J, Tan M, Xu J. Proteomic Characterization of Liver Cancer Cells Treated with Clinical Targeted Drugs for Hepatocellular Carcinoma. Biomedicines. 2025; 13(1):152. https://doi.org/10.3390/biomedicines13010152
Chicago/Turabian StyleLong, Hezhou, Jiafu Zhou, Changxia Zhou, Shuyu Xie, Jingling Wang, Minjia Tan, and Junyu Xu. 2025. "Proteomic Characterization of Liver Cancer Cells Treated with Clinical Targeted Drugs for Hepatocellular Carcinoma" Biomedicines 13, no. 1: 152. https://doi.org/10.3390/biomedicines13010152
APA StyleLong, H., Zhou, J., Zhou, C., Xie, S., Wang, J., Tan, M., & Xu, J. (2025). Proteomic Characterization of Liver Cancer Cells Treated with Clinical Targeted Drugs for Hepatocellular Carcinoma. Biomedicines, 13(1), 152. https://doi.org/10.3390/biomedicines13010152