[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging role of mass spectrometry-based proteomics in drug discovery

Abstract

Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mass spectrometry-based proteomics applications in the preclinical drug discovery process.
Fig. 2: Major protein identification and quantification strategies.
Fig. 3: Proteomics strategies to study drug action by the analysis of protein affinity, activity, stability and folding.
Fig. 4: Proteomics strategies to study mechanisms of drug action as well as disease biology by the analysis of protein abundance, localization, interactions and modifications.

Similar content being viewed by others

References

  1. Hughes, J. P., Rees, S., Kalindjian, S. B. & Philpott, K. L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011). This Review provides an excellent analysis of discovery strategies and molecular mode of action of approved drugs.

    Article  CAS  PubMed  Google Scholar 

  3. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Renaud, J. P. et al. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15, 679–698 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Waring, M. J. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475–486 (2015). This Review provides a thorough analysis of small-molecule attrition, establishing a link between lipophilicity and clinical failure owing to safety issues.

    Article  CAS  PubMed  Google Scholar 

  8. Arrowsmith, J. & Miller, P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat. Rev. Drug Discov. 12, 569 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Paananen, J. & Fortino, V. An omics perspective on drug target discovery platforms. Brief. Bioinform 21, 1937–1953 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  11. Connelly, C. M., Moon, M. H. & Schneekloth, J. S. Jr. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem. Biol. 23, 1077–1090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Larance, M. & Lamond, A. I. Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16, 269–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, L. M. & Kelleher, N. L., Consortium for Top Down Proteomics. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ponomarenko, E. A. et al. The size of the human proteome: the width and depth. Int. J. Anal. Chem. 2016, 7436849 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Franco-Serrano, L. et al. MultitaskProtDB-II: an update of a database of multitasking/moonlighting proteins. Nucleic Acids Res. 46, D645–D648 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Budayeva, H. G. & Kirkpatrick, D. S. Monitoring protein communities and their responses to therapeutics. Nat. Rev. Drug Discov. 19, 414–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Scudellari, M. Protein-slaying drugs could be the next blockbuster therapies. Nature 567, 298–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Bekker-Jensen, D. B. et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst. 4, 587–599.e584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010). This paper reports how chemoproteomics enabled the discovery that thalidomide binds to an E3 ligase complex.

    Article  CAS  PubMed  Google Scholar 

  23. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koch, H., Busto, M. E., Kramer, K., Medard, G. & Kuster, B. Chemical proteomics uncovers EPHA2 as a mechanism of acquired resistance to small molecule EGFR kinase inhibition. J. Proteome Res. 14, 2617–2625 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Sos, M. L. et al. Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Cell Rep. 8, 1037–1048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schirle, M. & Jenkins, J. L. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov. Today 21, 82–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Schenone, M., Dančík, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Molina, D. M. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013). This paper is a landmark study introducing the CETSA.

    Article  CAS  Google Scholar 

  33. Lomenick, B. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl Acad. Sci. USA 106, 21984–21989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng, Y. et al. Global analysis of protein structural changes in complex proteomes. Nat. Biotechnol. 32, 1036–1044 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Harding, M. W., Galat, A., Uehling, D. E. & Schreiber, S. L. A receptor for the immuno-suppressant FK506 is a cis–trans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989). This article reports the discovery of immunophilins as receptors of macrolides.

    Article  CAS  PubMed  Google Scholar 

  37. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Bach, S. et al. Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ong, S.-E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl Acad. Sci. USA 106, 4617–4622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright, M. H. & Sieber, S. A. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Prod. Rep. 33, 681–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oda, Y. et al. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75, 2159–2165 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Schirle, M., Bantscheff, M. & Kuster, B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem. Biol. 19, 72 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Ruoho, A. E., Kiefer, H., Roeder, P. E. & Singer, S. J. The mechanism of photoaffinity labeling. Proc. Natl Acad. Sci. USA 70, 2567–2571 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dubinsky, L., Krom, B. P. & Meijler, M. M. Diazirine based photoaffinity labeling. Bioorg. Med. Chem. 20, 554–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Jones, L. H. Cell permeable affinity- and activity-based probes. Future Med. Chem. 7, 2131–2141 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Murale, D. P., Hong, S. C., Haque, M. M. & Lee, J.-S. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci. 15, 14 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rutkowska, A. et al. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11, 2541–2550 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Sobotzki, N. et al. HATRIC-based identification of receptors for orphan ligands. Nat. Commun. 9, 1519 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Colca, J. R. et al. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am. J. Physiol. Endocrinol. Metab. 286, E252–E260 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Colca, J. R. et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) — relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE 8, e61551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Divakaruni, A. S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl Acad. Sci. USA 110, 5422–5427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keilhauer, E. C., Hein, M. Y. & Mann, M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol. Cell Proteom. 14, 120–135 (2015).

    Article  CAS  Google Scholar 

  54. Choi, H., Glatter, T., Gstaiger, M. & Nesvizhskii, A. I. SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments. J. Proteome Res. 11, 2619–2624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Krastel, P. et al. Nannocystin a: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew. Chem. Int. Ed. 54, 10149–10154 (2015).

    Article  CAS  Google Scholar 

  57. Ko, C.-C. et al. Chemical proteomics identifies heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as the molecular target of quercetin in its anti-cancer effects in PC-3 cells. J. Biol. Chem. 289, 22078–22089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007). This is the first paper to introduce mixed kinase inhibitor beads (kinobeads) for chemoproteomic selectivity profiling of kinase inhibitors.

    Article  CAS  PubMed  Google Scholar 

  59. Patricelli, M. P. et al. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18, 699–710 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma, K. et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat. Methods 6, 741–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Eberl, H. C. et al. Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Sci. Rep. 9, 14159 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ballell, L. et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 8, 313–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abrahams, K. A. et al. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat. Commun. 7, 12581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wyllie, S. et al. Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature 560, 192–197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cox, J. A. G. et al. THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nat. Microbiol. 1, 15006 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Hagenstein, M. C. et al. Affinity-based tagging of protein families with reversible inhibitors: a concept for functional proteomics. Angew. Chem. Int. Ed. 42, 5635–5638 (2003).

    Article  CAS  Google Scholar 

  68. Bantscheff, M., Scholten, A. & Heck, A. J. R. Revealing promiscuous drug–target interactions by chemical proteomics. Drug Discov. Today 14, 1021–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139, 680–685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dalton, S. E. et al. Selectively targeting the kinome-conserved lysine of PI3Kδ as a general approach to covalent kinase inhibition. J. Am. Chem. Soc. 140, 932–939 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Klaeger, S. et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem. Biol. 11, 1245–1254 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Dittus, L., Werner, T., Muelbaier, M. & Bantscheff, M. Differential kinobeads profiling for target identification of irreversible kinase inhibitors. ACS Chem. Biol. 12, 2515–2521 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Bergamini, G. et al. A selective inhibitor reveals PI3Kgamma dependence of T(H)17 cell differentiation. Nat. Chem. Biol. 8, 576–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999). This article is a landmark study that introduces activity-based protein profiling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patricelli, M. P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Salisbury, C. M. & Cravatt, B. F. Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J. Am. Chem. Soc. 130, 2184–2194 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Joberty, G. et al. Interrogating the druggability of the 2-oxoglutarate-dependent dioxygenase target class by chemical proteomics. ACS Chem. Biol. 11, 2002–2010 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Altun, M. et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Fleischer, T. C. et al. Chemical proteomics identifies nampt as the target of CB30865, an orphan cytotoxic compound. Chem. Biol. 17, 659–664 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569, 723–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Horning, B. D. et al. Chemical proteomic profiling of human methyltransferases. J. Am. Chem. Soc. 138, 13335–13343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, X. et al. Chemical proteomic profiling of bromodomains enables the wide-spectrum evaluation of bromodomain inhibitors in living cells. J. Am. Chem. Soc. 141, 11497–11505 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Castello, A., Hentze, M. W. & Preiss, T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends Endocrinol. Metab. 26, 746–757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mittler, G., Butter, F. & Mann, M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res. 19, 284–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lomenick, B., Olsen, R. W. & Huang, J. Identification of direct protein targets of small molecules. ACS Chem. Biol. 6, 34–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. West, G. M., Tang, L. & Fitzgerald, M. C. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal. Chem. 80, 4175–4185 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Huber, K. V. M. et al. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat. Methods 12, 1055–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reinhard, F. B. M. et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12, 1129–1131 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Leuenberger, P. et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355, eaai7825 (2017).

    Article  PubMed  CAS  Google Scholar 

  91. Savitski, M. M. et al. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173, 260–274.e225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becher, I. et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat. Chem. Biol. 12, 908–910 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Kawatkar, A. et al. CETSA beyond soluble targets: a broad application to multipass transmembrane proteins. ACS Chem. Biol. 14, 1913–1920 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Becher, I. et al. Chemoproteomics reveals time-dependent binding of histone deacetylase inhibitors to endogenous repressor complexes. ACS Chem. Biol. 9, 1736–1746 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Perrin, J. et al. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nat. Biotechnol. 38, 303–308 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gaetani, M. et al. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. J. Proteome Res. 18, 4027–4037 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Piazza, I. et al. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11, 4200 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ghaemmaghami, S., Fitzgerald, M. C. & Oas, T. G. A quantitative, high-throughput screen for protein stability. Proc. Natl Acad. Sci. USA 97, 8296–8301 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Masson, G. R., Maslen, S. L. & Williams, R. L. Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry. Biochem. J. 474, 1867–1877 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Robinson, T. J. W. et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle 12, 3013–3024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Henderson, M. J., Holbert, M. A., Simeonov, A. & Kallal, L. A. High-throughput cellular thermal shift assays in research and drug discovery. SLAS Discov. 25, 137–147 (2020).

    Article  PubMed  Google Scholar 

  104. Law, V. et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Lemmon, M. A., Schlessinger, J. & Ferguson, K. M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 6, a020768 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lappano, R. & Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 10, 47–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Noberini, R., Sigismondo, G. & Bonaldi, T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 8, 429–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Kelly, T. K., De Carvalho, D. D. & Jones, P. A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014). This article provides the first draft of the human proteome.

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA Abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Qin, P. et al. Activation of the amino acid response pathway blunts the effects of cardiac stress. J. Am. Heart Assoc. 6, e004453 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Liu, W., Yuan, J., Liu, Z., Zhang, J. & Chang, J. Label-free quantitative proteomics combined with biological validation reveals activation of wnt/beta-catenin pathway contributing to trastuzumab resistance in gastric cancer. Int. J. Mol. Sci. 19, 1981 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  113. Lamb, J. The Connectivity Map: a new tool for biomedical research. Nat. Rev. Cancer 7, 54–60 (2007). This Review introduces CMAP, transcriptional expression data to probe relationships between cell physiology, diseases and drugs.

    Article  CAS  PubMed  Google Scholar 

  114. Ruprecht, B. et al. A mass spectrometry-based proteome map of drug action in lung cancer cell lines. Nat. Chem. Biol. 16, 1111–1119 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Saei, A. A. et al. ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery. Nat. Commun. 10, 5715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Francavilla, C. et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat. Struct. Mol. Biol. 23, 608–618 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Ong, S.-E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1, 376–386 (2002). This article is a foundational study for quantitative proteomics.

    Article  CAS  Google Scholar 

  121. Larance, M., Ahmad, Y., Kirkwood, K. J., Ly, T. & Lamond, A. I. Global subcellular characterization of protein degradation using quantitative proteomics. Mol. Cell Proteom. 12, 638–650 (2013).

    Article  CAS  Google Scholar 

  122. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  123. Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. Commun. 9, 689 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tharkeshwar, A. K., Gevaert, K. & Annaert, W. Organellar omics — a reviving strategy to untangle the biomolecular complexity of the cell. Proteomics 18, e1700113 (2018).

    Article  PubMed  CAS  Google Scholar 

  125. Swietlik, J. J., Sinha, A. & Meissner, F. Dissecting intercellular signaling with mass spectrometry-based proteomics. Curr. Opin. Cell Biol. 63, 20–30 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Kalxdorf, M. et al. Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nat. Methods 18, 84–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative and dynamic mapping of protein subcellular localization. eLife 5, e16950 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Geladaki, A. et al. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 10, 331 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Orre, L. M. et al. SubCellBarCode: proteome-wide mapping of protein localization and relocalization. Mol. Cell 73, 166–182 e167 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9, 907–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Heusel, M. et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol. 15, e8438 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mrna-associated granules and bodies. Mol. Cell 69, 517–532 e511 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307.e1221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gupta, G. D. et al. A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163, 1484–1499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, J. et al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373–386.e315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349.e311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360.e312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gingras, A. C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Zeng, L. et al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J. Am. Chem. Soc. 127, 2376–2377 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). This article reports the discovery of JQ1 as a selective inhibitor of BET proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Smith, K. T., Martin-Brown, S. A., Florens, L., Washburn, M. P. & Workman, J. L. Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem. Biol. 17, 65–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ser, Z., Cifani, P. & Kentsis, A. Optimized cross-linking mass spectrometry for in situ interaction proteomics. J. Proteome Res. 18, 2545–2558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sinz, A. Cross-linking/mass spectrometry for studying protein structures and protein-protein interactions: where are we now and where should we go from here? Angew. Chem. Int. Ed. Engl. 57, 6390–6396 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Christensen, G. L. et al. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol. Cell Proteom. 9, 1540–1553 (2010).

    Article  CAS  Google Scholar 

  153. Klaeger, S. et al. The target landscape of clinical kinase drugs. Science 358, eaan4368 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhuang, G. et al. Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Sci. Signal. 6, ra25 (2013).

    PubMed  Google Scholar 

  155. Li, J. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 6, 291–299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rexer, B. N. et al. Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition. Oncogene 30, 4163–4174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Boyer, A. P., Collier, T. S., Vidavsky, I. & Bose, R. Quantitative proteomics with siRNA screening identifies novel mechanisms of trastuzumab resistance in HER2 amplified breast cancers. Mol. Cell Proteom. 12, 180–193 (2013).

    Article  CAS  Google Scholar 

  158. Gundry, J., Glenn, R., Alagesan, P. & Rajagopal, S. A practical guide to approaching biased agonism at G protein coupled receptors. Front. Neurosci. 11, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tsvetanova, N. G. et al. G protein-coupled receptor endocytosis confers uniformity in responses to chemically distinct ligands. Mol. Pharmacol. 91, 145–156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stebbing, J. et al. The regulatory roles of phosphatases in cancer. Oncogene 33, 939–953 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Lyons, S. P. et al. A quantitative chemical proteomic strategy for profiling phosphoprotein phosphatases from yeast to humans. Mol. Cell Proteom. 17, 2448–2461 (2018).

    Article  CAS  Google Scholar 

  162. Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, J. J. et al. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science 360, eaao4927 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lundby, A. et al. Oncogenic mutations rewire signaling pathways by switching protein recruitment to phosphotyrosine sites. Cell 179, 543–560.e526 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009). This article provides a global analysis of lysine acetylation.

    Article  CAS  PubMed  Google Scholar 

  166. Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).

    Article  PubMed  CAS  Google Scholar 

  167. Kranke, B., Szolar-Platzer, C., Komericki, P., Derhaschnig, J. & Aberer, W. Epidemiological significance of bufexamac as a frequent and relevant contact sensitizer. Contact Dermat. 36, 212–215 (1997).

    Article  CAS  Google Scholar 

  168. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteom. 10, M111 013284 (2011).

    Article  CAS  Google Scholar 

  170. Thompson, J. W. et al. Quantitative Lys — Gly-Gly (diGly) proteomics coupled with inducible RNAi reveals ubiquitin-mediated proteolysis of DNA damage-inducible transcript 4 (DDIT4) by the E3 ligase HUWE1. J. Biol. Chem. 289, 28942–28955 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Reverdy, C. et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem. Biol. 19, 467–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Schauer, N. J. et al. Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Sci. Rep. 10, 5324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Adam, K. & Hunter, T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Lab. Invest. 98, 233–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Tsiatsiani, L. & Heck, A. J. Proteomics beyond trypsin. FEBS J. 282, 2612–2626 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Frauenstein, A. et al. Identification of covalent modifications regulating immune signaling complex composition and phenotype. Mol. Syst. Biol. 17, e10125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang, J. X. et al. High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat. Methods 16, 894–901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Potel, C. M. et al. Impact of phosphorylation on thermal stability of proteins. Nat. Methods 18, 757–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Chuh, K. N. & Pratt, M. R. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr. Opin. Chem. Biol. 24, 27–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Bos, J. & Muir, T. W. A chemical probe for protein crotonylation. J. Am. Chem. Soc. 140, 4757–4760 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rowland, M. M. et al. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 50, 11143–11161 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Hang, H. C. et al. Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. J. Am. Chem. Soc. 129, 2744–2745 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Storck, E. M. et al. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat. Chem. 11, 552–561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ostasiewicz, P., Zielinska, D. F., Mann, M. & Wisniewski, J. R. Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J. Proteome Res. 9, 3688–3700 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Borrebaeck, C. A. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17, 199–204 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Mann, M., Kumar, C., Zeng, W. F. & Strauss, M. T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 12, 759–770 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Cui, J. J. et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54, 6342–6363 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Dazert, E. et al. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc. Natl Acad. Sci. USA 113, 1381–1386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Coscia, F. et al. A streamlined mass spectrometry-based proteomics workflow for large scale FFPE tissue analysis. J. Pathol. 251, 100–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Jiang, Y. et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257–261 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e1019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Francavilla, C. et al. Phosphoproteomics of primary cells reveals druggable kinase signatures in ovarian cancer. Cell Rep. 18, 3242–3256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sinha, A. et al. The proteogenomic landscape of curable prostate cancer. Cancer Cell 35, 414–427.e416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396–410.e398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Steger, M. et al. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5, e12813 (2016). This paper reveals Rab proteins as the long-sought substrate of LRRK2.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Karayel, O. et al. Accurate MS-based Rab10 phosphorylation stoichiometry determination as readout for LRRK2 activity in Parkinson’s disease. Mol. Cell Proteom. 19, 1546–1560 (2020).

    Article  CAS  Google Scholar 

  200. Pankow, S. et al. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528, 510–516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Caron, E. et al. Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol. Cell. Proteom. 14, 3105–3117 (2015).

    Article  CAS  Google Scholar 

  202. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Coscia, F. et al. Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer. Cell 175, 159–170.e116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Papoian, T. et al. Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nat. Rev. Drug Discov. 14, 294 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11, 909–922 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Mellor, H. R., Bell, A. R., Valentin, J. P. & Roberts, R. R. Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol. Sci. 120, 14–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Force, T. & Kolaja, K. L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov. 10, 111–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Reddy, A. S. & Zhang, S. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol. 6, 41–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  212. Siehl, J. & Thiel, E. C-kit, GIST, and imatinib. Recent. Results Cancer Res. 176, 145–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996). This article contains the first description of the efficacy of glivec/imatinib in chronic myeloid leukaemia.

    Article  CAS  PubMed  Google Scholar 

  214. Vinken, M. The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312, 158–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Huang, L. H. et al. ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 46, D911–D917 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Medard, G. et al. Optimized chemical proteomics assay for kinase inhibitor profiling. J. Proteome Res. 14, 1574–1586 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Golkowski, M. et al. Kinobead and single-shot LC-MS profiling identifies selective PKD inhibitors. J. Proteome Res. 16, 1216–1227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zuhl, A. M. et al. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of beta-secretase inhibitors. Nat. Commun. 7, 13042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Butler, D. & Callaway, E. Scientists in the dark after French clinical trial proves fatal. Nature 529, 263–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. van Esbroeck, A. C. M. et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356, 1084–1087 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Paolini, G. V., Shapland, R. H. B., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Dittmann, A. et al. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol. 9, 495–502 (2013).

    Article  PubMed  CAS  Google Scholar 

  224. Gharbi, S. I. et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem. J. 404, 15–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Munoz, L. Non-kinase targets of protein kinase inhibitors. Nat. Rev. Drug Discov. 16, 424–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lacouture, M. E. et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist 18, 314–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Elkins, J. M. et al. Comprehensive characterization of the published kinase inhibitor set. Nat. Biotechnol. 34, 95–103 (2015).

    Article  PubMed  CAS  Google Scholar 

  230. van Vliet, D. et al. Infants with tyrosinemia type 1: should phenylalanine be supplemented? JIMD Rep. 18, 117–124 (2015).

    Article  PubMed  Google Scholar 

  231. Yang, X. & Bartlett, M. G. Identification of protein adduction using mass spectrometry: protein adducts as biomarkers and predictors of toxicity mechanisms. Rapid Commun. Mass. Spectrom. 30, 652–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  232. Uetrecht, J. Idiosyncratic drug reactions: current understanding. Annu. Rev. Pharmacol. Toxicol. 47, 513–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  233. Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Liu, N. et al. Direct and two-step bioorthogonal probes for Bruton’s tyrosine kinase based on ibrutinib: a comparative study. Org. Biomol. Chem. 13, 5147–5157 (2015).

    Article  CAS  PubMed  Google Scholar 

  236. Federspiel, J. D. et al. Specificity of protein covalent modification by the electrophilic proteasome inhibitor carfilzomib in human cells. Mol. Cell. Proteom. 15, 3233–3242 (2016).

    Article  CAS  Google Scholar 

  237. Whitby, L. R., Obach, R. S., Simon, G. M., Hayward, M. M. & Cravatt, B. F. Quantitative chemical proteomic profiling of the in vivo targets of reactive drug metabolites. ACS Chem. Biol. 12, 2040–2050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010). This study provides an analytical framework to assess selectivity when targeting functional cysteine residues in proteins with covalent strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Sun, R. et al. A chemoproteomic platform to assess bioactivation potential of drugs. Chem. Res. Toxicol. 30, 1797–1803 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Hodgman, M. J. & Garrard, A. R. A review of acetaminophen poisoning. Crit. Care Clin. 28, 499–516 (2012).

    Article  PubMed  Google Scholar 

  241. Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).

    Article  CAS  Google Scholar 

  242. Tailor, A., Waddington, J. C., Meng, X. & Park, B. K. Mass spectrometric and functional aspects of drug-protein conjugation. Chem. Res. Toxicol. 29, 1912–1935 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Illing, P. T. et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486, 554–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  244. Long, M. J. C. & Aye, Y. Privileged electrophile sensors: a resource for covalent drug development. Cell Chem. Biol. 24, 787–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  CAS  PubMed  Google Scholar 

  246. Garber, K. Kinase inhibitors overachieve in CLL. Nat. Rev. Drug Discov. 13, 162–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  247. Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589.e517 (2018). This paper reports the discovery of ARS-1620, which laid the foundation for present clinical G12C-specific KRAS inhibitors.

    Article  CAS  PubMed  Google Scholar 

  248. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Flanagan, M. E. et al. Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J. Med. Chem. 57, 10072–10079 (2014).

    Article  CAS  PubMed  Google Scholar 

  250. Powers, J. C., Asgian, J. L., Ekici, O. D. & James, K. E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  PubMed  Google Scholar 

  251. Niphakis, M. J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Kambe, T., Correia, B. E., Niphakis, M. J. & Cravatt, B. F. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 136, 10777–10782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016). This article redefines the chemogenomics target space by covalent ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Johansson, H. et al. Fragment-based covalent ligand screening enables rapid discovery of inhibitors for the RBR E3 ubiquitin ligase HOIP. J. Am. Chem. Soc. 141, 2703–2712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Boike, L. et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  257. Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hahm, H. S. et al. Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. Nat. Chem. Biol. 16, 150–159 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Gehringer, M. & Laufer, S. A. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J. Med. Chem. 62, 5673–5724 (2019).

    Article  CAS  PubMed  Google Scholar 

  261. Evans, M. J., Saghatelian, A., Sorensen, E. J. & Cravatt, B. F. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23, 1303–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  262. Evans, M. J. et al. Mechanistic and structural requirements for active site labeling of phosphoglycerate mutase by spiroepoxides. Mol. Biosyst. 3, 495 (2007).

    Article  CAS  PubMed  Google Scholar 

  263. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541.e529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Jones, L. H. Expanding chemogenomic space using chemoproteomics. Bioorg. Med. Chem. 27, 3451–3453 (2019).

    Article  CAS  PubMed  Google Scholar 

  266. Conway, L. P., Li, W. & Parker, C. G. Chemoproteomic-enabled phenotypic screening. Cell Chem. Biol. 28, 371–393 (2021).

    Article  CAS  PubMed  Google Scholar 

  267. Dale, B. et al. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 21, 638–654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 7, e38430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). The above two articles relate to breakthrough studies that sparked renewed interest in targeted degradation as therapeutic strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Marx, V. A dream of single-cell proteomics. Nat. Methods 16, 809–812 (2019).

    Article  CAS  PubMed  Google Scholar 

  272. Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. J. Proteome Res. 17, 2565–2571 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Mund, A. et al. AI-driven Deep Visual Proteomics defines cell identity and heterogeneity. Preprint at bioRxiv https://doi.org/10.1101/2021.01.25.427969 (2021).

    Article  Google Scholar 

  274. Fu, Q. et al. Highly reproducible automated proteomics sample preparation workflow for quantitative mass spectrometry. J. Proteome Res. 17, 420–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  275. Muller, T. et al. Automated sample preparation with SP3 for low-input clinical proteomics. Mol. Syst. Biol. 16, e9111 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Messner, C. B. et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 11, 11–24.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Geyer, P. E. et al. Plasma proteome profiling to assess human health and disease. Cell Syst. 2, 185–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  278. Riley, N. M., Hebert, A. S. & Coon, J. J. Proteomics moves into the fast lane. Cell Syst. 2, 142–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  279. Nahnsen, S., Bielow, C., Reinert, K. & Kohlbacher, O. Tools for label-free peptide quantification. Mol. Cell. Proteom. 12, 549–556 (2013).

    Article  CAS  Google Scholar 

  280. Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 11, O111 016717 (2012).

    Article  CAS  Google Scholar 

  281. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003). This paper introduces a new concept for chemical labels to enable relative and absolute protein quantification.

    Article  CAS  PubMed  Google Scholar 

  282. Virreira Winter, S. et al. EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification. Nat. Methods 15, 527–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  283. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). This paper introduces the most frequently used and free software suite in proteomics.

    Article  CAS  PubMed  Google Scholar 

  284. Zhang, J. et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell Proteom. 11, M111 010587 (2012).

    Article  CAS  Google Scholar 

  285. Sinitcyn, P., Rudolph, J. D. & Cox, J. Computational methods for understanding mass spectrometry–based shotgun proteomics data. Annu. Rev. Biomed. Data Sci. 1, 207–234 (2018).

    Article  Google Scholar 

  286. Tsiamis, V. et al. One thousand and one software for proteomics: tales of the toolmakers of science. J. Proteome Res. 18, 3580–3585 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Martens, L. & Vizcaino, J. A. A golden age for working with public proteomics data. Trends Biochem. Sci. 42, 333–341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014). This article reports the first draft of the human proteome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  290. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  CAS  Google Scholar 

  291. Go, C. D. et al. A proximity biotinylation map of a human cell. Preprint at bioRxiv https://doi.org/10.1101/796391 (2019).

    Article  Google Scholar 

  292. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015). The above two references describe some of the deepest and information-rich high-quality interactome studies to date.

    Article  CAS  PubMed  Google Scholar 

  294. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  295. Ochoa, D. et al. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373 (2020).

    Article  CAS  PubMed  Google Scholar 

  296. Jarzab, A. et al. Meltome atlas-thermal proteome stability across the tree of life. Nat. Methods 17, 495–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  297. Shao, W. et al. The SysteMHC Atlas project. Nucleic Acids Res. 46, D1237–D1247 (2018).

    Article  CAS  PubMed  Google Scholar 

  298. UniProt, C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article  CAS  Google Scholar 

  299. Choobdar, S. et al. Assessment of network module identification across complex diseases. Nat. Methods 16, 843–852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Felix Meissner or Marcus Bantscheff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Maarten Altelaar, Donald Kirkpatrick and Giulio Superti-Furga for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Proteomics software tools and databases: https://proteomics.bio.tools

The human protein atlas: https://www.proteinatlas.org/search/protein_class%3AFDA+approved+drug+targets

Glossary

CRISPR interference

(CRISPRi). A genetic perturbation technique that enables sequence-specific repression of transcription.

CRISPR activation

(CRISPRa). A genetic perturbation technique that allows sequence-specific activation of transcription.

Chemoproteomics

A discovery-driven proteomics technology to assess target engagement, mechanism of action and/or nonspecific off-targets by characterizing the interactions between compounds and proteins.

Compound-centric chemoproteomics

(CCCP). A chemical proteomics strategy to assess interacting proteins of bioactive compounds.

Structure–activity relationship

(SAR). Describes the interdependency between compound structures and protein binding affinities.

Photoaffinity labelling

(PAL). A strategy to study protein interaction by use of photocrosslinkers that generate reactive species and react with adjacent molecules, resulting in a direct covalent modification.

Click chemistry

A class of biocompatible reactions commonly used to join small, modular molecule units.

Dissociation constants

Binding affinity is typically reported by the equilibrium dissociation constant (Kd), which measures the strength of interaction between compounds and proteins.

Cheng–Prusoff relationship

Defines the theoretical relationship between the measured IC50 of a competitive inhibitor of a given Ki, the concentration of labelled ligand and the Kd of the ligand–receptor interaction.

Activity-based probe profiling

(ABPP). Uses active-site-targeted chemical probes that react with mechanistically related classes of enzyme and monitor the state of proteins.

Pharmacophores

Description of molecular features that are necessary for molecular recognition of a ligand by a biological macromolecule.

Chaotropes

Disrupt the hydrogen-bonding network between water molecules, thereby perturbing the stability of the native state of other molecules in the solution, in particlular, biological macromolecules.

Thermal proteome profiling

(TPP). Also known as cellular thermal shift assay (CETSA)–MS, a proteomics profiling and target identification approach based on the principle that proteins change their thermal stability and become more resistant to heat-induced unfolding when complexed with a ligand.

2D thermal proteome profiling

(2D-TPP). Monitors changes of protein melting curves over a range of drug concentrations.

Warhead

A chemical group that reacts with adjacent molecules, resulting in a direct covalent modification.

Biased agonism

The ability of a ligand to induce different functional states by activating specific signalling pathways downstream of the same activated receptor.

Prenylated proteins

The addition of a prenyl group (3-methylbut-2-en-1-yl) that facilitates protein attachment to cell membranes.

Secondary pharmacology

Unintended pharmacological activity of a drug.

Drug polypharmacology

The design or use of drugs that act on multiple targets or disease pathways.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meissner, F., Geddes-McAlister, J., Mann, M. et al. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 21, 637–654 (2022). https://doi.org/10.1038/s41573-022-00409-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00409-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research