Abstract
Cancer is a disease with second largest fatalities in humans and the sheer complexity of the disease is an enigma to the scientific community. It continues to be a highly significant research area for the development of diagnostics and therapeutics. While a great deal of focus has been on genomics study of cancer, the fact that cancer tissues have altered protein expression and unique protein–protein interactions demands more attention. The role of proteins and peptides which are unique and aberrant in cancer tissues has generated a great deal of interest in cancer proteome and serve as important diagnostic and therapeutic targets in the form of biomarkers. Oncoproteomics along with computational and genomic advances is utilized for the discovery of biomarkers and modern therapeutics indispensable in cancer management and care; the focus areas in cancer research involving proteomic studies, technologies used and their advances, identification and quantification of proteins with greater sensitivity and resolution, and detection of post-translational modifications. In this review, we have discussed an overview of various technological advances in oncoproteomics and the therapeutic milestones achieved using the oncoproteome data leading to antibody engineering, peptidomimetics, bispecific antibodies, and other techniques.
Similar content being viewed by others
References
Adnan-Awad S, Kim D, Hohtari H, Javarappa KK, Brandstoetter T, Mayer I, Potdar S, Heckman CA, Kytölä S, Porkka K, Doma E, Sexl V, Kankainen M, Mustjoki S (2021) Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia 35(7):1964–1975. https://doi.org/10.1038/s41375-020-01082-4
Aebersold R, Burlingame AL, Bradshaw RA (2013) Western blots versus selected reaction monitoring assays: time to turn the tables? Mol Cell Proteomics MCP 12(9):2381–2382. https://doi.org/10.1074/mcp.E113.031658
Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R (2010) Generating and navigating proteome maps using mass spectrometry. Nat Rev Mol Cell Biol 11(11):789–801. https://doi.org/10.1038/nrm2973
Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168
Alves Martins BA, de Bulhões GF, Cavalcanti IN, Martins MM, de Oliveira PG, Martins AMA (2019) Biomarkers in colorectal cancer: the role of translational proteomics research. Front Oncol 9:1284. https://doi.org/10.3389/fonc.2019.01284
Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects*. Mol Cell Proteomics 1(11):845–867. https://doi.org/10.1074/mcp.R200007-MCP200
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 40(2):271–280. https://doi.org/10.3892/ijmm.2017.3036
Arvelo F, Sojo F, Cotte C (2015) Biology of colorectal cancer. Ecancermedicalscience 9:520. https://doi.org/10.3332/ecancer.2015.520
Asleh K, Negri GL, Spencer Miko SE, Colborne S, Hughes CS, Wang XQ et al (2022) Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes. Nat Commun 13(1):896. https://doi.org/10.1038/s41467-022-28524-0
Bahl A, Talwar V, Sirohi B, Mehta P, Arya D, Shrivastava G, Dahiya A, Pavithran K (2020) Primary tumor location as a prognostic and predictive marker in metastatic colorectal cancer (Mcrc). Front Oncol 10:964. https://doi.org/10.3389/fonc.2020.00964
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A et al (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 173(2):371-385.e18. https://doi.org/10.1016/j.cell.2018.02.060
Bantscheff M, Scholten A, Heck AJR (2009) Revealing promiscuous drug–target interactions by chemical proteomics. Drug Discov Today 14(21–22):1021–1029. https://doi.org/10.1016/j.drudis.2009.07.001
Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD et al (2017) Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171(3):696-709.e23. https://doi.org/10.1016/j.cell.2017.08.051
Belluco C, Petricoin EF, Mammano E, Facchiano F, Ross-Rucker S, Nitti D et al (2007) Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer. Ann Surg Oncol 14(9):2470–2476. https://doi.org/10.1245/s10434-007-9354-3
Berezov A, Chen J, Liu Q, Zhang H-T, Greene MI, Murali R (2002) isabling receptor ensembles with rationally designed interface peptidomimetics*. J Biol Chem 277(31):28330–28339. https://doi.org/10.1074/jbc.M202880200
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17(1):48. https://doi.org/10.1186/s12943-018-0804-2
Bi X, Lin Q, Foo TW, Joshi S, You T, Shen H-M et al (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics MCP 5(6):1119–1130. https://doi.org/10.1074/mcp.M500432-MCP200
Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G et al (2015) Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15(5–6):964–980. https://doi.org/10.1002/pmic.201400323
Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C et al (2005) Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci USA 102(3):779–784. https://doi.org/10.1073/pnas.0408928102
Brown G (2021) Oncogenes, proto-oncogenes, and lineage restriction of cancer stem cells. Int J Mol Sci 22(18):9667. https://doi.org/10.3390/ijms22189667
Byrne JC, Downes MR, O’Donoghue N, O’Keane C, O’Neill A, Fan Y et al (2009) 2-D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res 8(2):942–957. https://doi.org/10.1021/pr800570s
Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al, Herceptin Adjuvant (HERA) Trial Study Team (2017) 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (Hera) trial. Lancet (London, England), 389(10075), 1195–1205. https://doi.org/10.1016/S0140-6736(16)32616-2
Capelletto E, Novello S (2012) Emerging new agents for the management of patients with non-small cell lung cancer. Drugs 72(Suppl 1):37–52. https://doi.org/10.2165/1163028-S0-000000000-00000
Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW et al (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics MCP 13(3):907–917. https://doi.org/10.1074/mcp.M113.036095
Cashman R, Cohen H, Ben-Hamo R, Zilberberg A, Efroni S (2014) SENP5 mediates breast cancer invasion via a TGFβRI SUMOylation cascade. Oncotarget 5(4):1071–1082. https://doi.org/10.18632/oncotarget.1783
Chaiyawat P, Settakorn J, Sangsin A, Teeyakasem P, Klangjorhor J, Soongkhaw A, Pruksakorn D (2017) Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Therapy 10:565–577. https://doi.org/10.2147/OTT.S119993
Chakraborty A, Dasari S, Long W, Mohan C (2019) Urine protein biomarkers for the detection, surveillance, and treatment response prediction of bladder cancer. Am J Cancer Res 9(6):1104–1117
Chen HX, Sharon E (2013) IGF-1R as an anti-cancer target—trials and tribulations. Chin J Cancer 32(5):242–252. https://doi.org/10.5732/cjc.012.10263
Chen D, Gu K, Wang H (2019) Optimizing sequential treatment with anti-EGFR and VEGF mAb in metastatic colorectal cancer: current results and controversies. Cancer Manag Res 11:1705–1716. https://doi.org/10.2147/CMAR.S196170
Cho WCS, Cheng CHK (2007) Oncoproteomics: current trends and future perspectives. Expert Rev Proteomics 4(3):401–410. https://doi.org/10.1586/14789450.4.3.401
Cicenas J, Račienė A (2021) Anti-cancer drugs targeting protein kinases approved by fda in 2020. Cancers 13(5):947. https://doi.org/10.3390/cancers13050947
Cicenas J, Zalyte E, Bairoch A, Gaudet P (2018) Kinases and cancer. Cancers 10(3):E63. https://doi.org/10.3390/cancers10030063
Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. https://doi.org/10.1056/NEJMp1500523
Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL et al (2017) Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 8(1):291. https://doi.org/10.1038/s41467-017-00249-5
De Kouchkovsky I, Abdul-Hay M (2016) Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J 6(7):e441. https://doi.org/10.1038/bcj.2016.50
De Boer EC, De Jong WH, Steerenberg PA, Aarden LA, Tetteroo E, De Groot ER et al (1992) Induction of urinary interleukin-1 (IL-1), IL-2, IL-6, and tumour necrosis factor during intravesical immunotherapy with bacillus Calmette-Guérin in superficial bladder cancer. Cancer Immunol Immunotherapy CII 34(5):306–312. https://doi.org/10.1007/BF01741551
de Boer HR, Pool M, Joosten E, Everts M, Samplonius DF, Helfrich W et al (2019) Quantitative proteomics analysis identifies MUC1 as an effect sensor of EGFR inhibition. Oncogene 38(9):1477–1488. https://doi.org/10.1038/s41388-018-0522-7
de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254. https://doi.org/10.1038/nature07341
Debruyne EN, Vanderschaeghe D, Van Vlierberghe H, Vanhecke A, Callewaert N, Delanghe JR (2010) Diagnostic value of the hemopexin N-glycan profile in hepatocellular carcinoma patients. Clin Chem 56(5):823–831. https://doi.org/10.1373/clinchem.2009.139295
Derman BA, Stefka AT, Jiang K, McIver A, Kubicki T, Jasielec JK et al (2021) Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. Blood Cancer J 11(2):19. https://doi.org/10.1038/s41408-021-00418-2
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL (2022) The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 22(1):45–64. https://doi.org/10.1038/s41568-021-00407-4
Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):E727. https://doi.org/10.3390/cells8070727
Drabovich AP, Pavlou MP, Schiza C, Diamandis EP (2016) Dynamics of protein expression reveals primary targets and secondary messengers of estrogen receptor alpha signaling in mcf-7 breast cancer cells. Mol Cell Proteomics MCP 15(6):2093–2107. https://doi.org/10.1074/mcp.M115.057257
Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15(18):3193–3208. https://doi.org/10.1002/pmic.201500004
Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18(7):E1414. https://doi.org/10.3390/ijms18071414
Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK et al (2013) Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium. Cancer Discov 3(10):1108–1112. https://doi.org/10.1158/2159-8290.CD-13-0219
Elschenbroich S, Ignatchenko V, Clarke B, Kalloger SE, Boutros PC, Gramolini AO et al (2011) In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry. J Proteome Res 10(5):2286–2299. https://doi.org/10.1021/pr1011087
Fabre B, Combier J-P, Plaza S (2021) Recent advances in mass spectrometry-based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions. Curr Opin Chem Biol 60:122–130. https://doi.org/10.1016/j.cbpa.2020.12.002
Fan Y, Wang J, Yang Y, Liu Q, Fan Y, Yu J et al (2010) Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol 136(8):1243–1254. https://doi.org/10.1007/s00432-010-0775-1
Fang B, Hoffman MA, Mirza A-S, Mishall KM, Li J, Peterman SM et al (2015) Evaluating kinase ATP uptake and tyrosine phosphorylation using multiplexed quantification of chemically labeled and post-translationally modified peptides. Methods (san Diego, Calif.) 81:41–49. https://doi.org/10.1016/j.ymeth.2015.03.006
Folio C, Mora MI, Zalacain M, Corrales FJ, Segura V, Sierrasesúmaga L et al (2009) Proteomic analysis of chemonaive pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets. J Proteome Res 8(8):3882–3888. https://doi.org/10.1021/pr900113w
Füzéry AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: Issues and challenges. Clin Proteomics 10(1):13. https://doi.org/10.1186/1559-0275-10-13
García-Díaz N, Piris MÁ, Ortiz-Romero PL, Vaqué JP (2021) Mycosis fungoides and sézary syndrome: an integrative review of the pathophysiology, molecular drivers, and targeted therapy. Cancers 13(8):1931. https://doi.org/10.3390/cancers13081931
Gast M-CW, van Dulken EJ, van Loenen TKG, Kingma-Vegter F, Westerga J, Flohil CC et al (2009a) Detection of breast cancer by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry tissue and serum protein profiling. Int J Biol Markers 24(3):130–141. https://doi.org/10.1177/172460080902400302
Gast M-CW, Van Gils CH, Wessels LFA, Harris N, Bonfrer JMG, Rutgers EJT et al (2009b) Serum protein profiling for diagnosis of breast cancer using SELDI-TOF MS. Oncol Rep 22(1):205–213. https://doi.org/10.3892/or_00000426
Geisler C, Gaisa NT, Pfister D, Fuessel S, Kristiansen G, Braunschweig T et al (2015) Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2-D-DIGE and MS. BioMed Res Int. https://doi.org/10.1155/2015/454256
Ghantous A, Sinjab A, Herceg Z, Darwiche N (2013) Parthenolide: from plant shoots to cancer roots. Drug Discov Today 18(17–18):894–905. https://doi.org/10.1016/j.drudis.2013.05.005
Gong S, Wu C (2019) Generation of Fabs-in-tandem immunoglobulin molecules for dual-specific targeting. Methods (san Diego, Calif.) 154:87–92. https://doi.org/10.1016/j.ymeth.2018.07.014
Gong S, Ren F, Wu D, Wu X, Wu C (2017) Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets. Mabs 9(7):1118–1128. https://doi.org/10.1080/19420862.2017.1345401
Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66(1):39. https://doi.org/10.1128/MMBR.66.1.39-63.2002
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM (2016) Toward a shared vision for cancer genomic data. N Engl J Med 375(12):1109–1112. https://doi.org/10.1056/NEJMp1607591
Grubb RL, Deng J, Pinto PA, Mohler JL, Chinnaiyan A, Rubin M et al (2009) Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures. J Proteome Res 8(6):3044–3054. https://doi.org/10.1021/pr8009337
Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC et al (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110(13):4427–4435. https://doi.org/10.1182/blood-2007-05-090621
Hähnel R, Woodings T, Vivian AB (1979) Prognostic value of estrogen receptors in primary breast cancer. Cancer 44(2):671–675. https://doi.org/10.1002/1097-0142(197908)44:2%3c671::aid-cncr2820440238%3e3.0.co;2-v
Halbach S, Dengjel J, Brummer T (2016) Quantitative proteomics analysis of leukemia cells. Methods Mol Biol (clifton, NJ) 1465:139–148. https://doi.org/10.1007/978-1-4939-4011-0_12
Han Z, Zhang Y, He H, Dai Q, Qin G, Chen J et al (2012) Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol (northwood, London, England) 29(4):2877–2888. https://doi.org/10.1007/s12032-011-0149-9
Hanauer DA, Rhodes DR, Sinha-Kumar C, Chinnaiyan AM (2007) Bioinformatics approaches in the study of cancer. Curr Mol Med 7(1):133–141. https://doi.org/10.2174/156652407779940431
Hao T, Li-Talley M, Buck A, Chen W (2019) An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci Rep 9(1):12070. https://doi.org/10.1038/s41598-019-48445-1
Harachi M, Masui K, Cavenee WK, Mischel PS, Shibata N (2021) Protein acetylation at the interface of genetics, epigenetics and environment in cancer. Metabolites 11(4):216. https://doi.org/10.3390/metabo11040216
Hoang CD (2017) Protein-based prognostic biomarkers in lung cancer: promise or pitfall? J Thorac Cardiovasc Surg 154(4):1418–1419. https://doi.org/10.1016/j.jtcvs.2017.04.032
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J et al (2020) Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182(4):1044–106118. https://doi.org/10.1016/j.cell.2020.07.009
Hu W, Wu W, Kobayashi R, Kavanagh JJ (2004) Proteomics in cancer screening and management in gynecologic cancer. Curr Oncol Rep 6(6):456–462. https://doi.org/10.1007/s11912-004-0076-4
Huang Y, Zhu H (2017) Protein array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinform 15(2):73–81. https://doi.org/10.1016/j.gpb.2017.03.001
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189. https://doi.org/10.1016/j.cell.2010.12.001
Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay J-Y et al (2015) Vemurafenib in multiple nonmelanoma cancers with braf v600 mutations. N Engl J Med 373(8):726–736. https://doi.org/10.1056/NEJMoa1502309
Izbicka E, Campos D, Carrizales G, Tolcher A (2005) Biomarkers for sensitivity to docetaxel and paclitaxel in human tumor cell lines in vitro. Cancer Genomics Proteomics 2(4):219–226
Jan M, Sperling AS, Ebert BL (2021) Cancer therapies based on targeted protein degradation—lessons learned with lenalidomide. Nat Rev Clin Oncol 18(7):401–417. https://doi.org/10.1038/s41571-021-00479-z
Ji Q, Ding Y-H, Sun Y, Zhang Y, Gao H-E, Song H-N et al (2016) Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells. Oncotarget 7(40):65012–65023. https://doi.org/10.18632/oncotarget.11342
Jin Z-L, Pei H, Xu Y-H, Yu J, Deng T (2016) The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 20(17):3566–3573
Kamat AM, Briggman J, Urbauer DL, Svatek R, Nogueras González GM, Anderson R et al (2016) Cytokine panel for response to intravesical therapy (Cyprit): nomogram of changes in urinary cytokine levels predicts patient response to bacillus Calmette-Guérin. Eur Urol 69(2):197–200. https://doi.org/10.1016/j.eururo.2015.06.023
Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M et al (2017) Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 376(9):836–847. https://doi.org/10.1056/NEJMoa1609783
Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A et al (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10(2):182–186. https://doi.org/10.1038/nm982
Kiernan UA (2008) Biomarker rediscovery in diagnostics. Expert Opin Med Diagn 2(12):1391–1400. https://doi.org/10.1517/17530050802566488
Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R et al (2014) A draft map of the human proteome. Nature 509(7502):575–581. https://doi.org/10.1038/nature13302
Klein C, Schaefer W, Regula JT (2016) The use of CrossMAb technology for the generation of bi- and multispecific antibodies. Mabs 8(6):1010–1020. https://doi.org/10.1080/19420862.2016.1197457
Knoebl P, Thaler J, Jilma P, Quehenberger P, Gleixner K, Sperr WR (2021) Emicizumab for the treatment of acquired hemophilia A. Blood 137(3):410–419. https://doi.org/10.1182/blood.2020006315
Kosti I, Jain N, Aran D, Butte AJ, Sirota M (2016) Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci Rep 6:24799. https://doi.org/10.1038/srep24799
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113(8):E968-977. https://doi.org/10.1073/pnas.1521230113
Krueger KE (2006) The potential of serum proteomics for detection of cancer: promise or only hope? Onkologie 29(11):498–499. https://doi.org/10.1159/000096163
Kufe DW (2013) MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 32(9):1073–1081. https://doi.org/10.1038/onc.2012.158
Kumari N, Agrawal U, Mishra AK, Kumar A, Vasudeva P, Mohanty NK et al (2017) Predictive role of serum and urinary cytokines in invasion and recurrence of bladder cancer. Tumour Biol 39(4):1010428317697552. https://doi.org/10.1177/1010428317697552
Kuo Y-H, Qi J, Cook GJ (2016) Regain control of p53: targeting leukemia stem cells by isoform-specific HDAC inhibition. Exp Hematol 44(5):315–321. https://doi.org/10.1016/j.exphem.2016.02.007
Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 16(2):101–114. https://doi.org/10.1038/nrd.2016.211
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al, International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921. https://doi.org/10.1038/35057062
Laranjeira ABA, Yang SX (2016) Therapeutic target discovery and drug development in cancer stem cells for leukemia and lymphoma: from bench to the clinic. Expert Opin Drug Discov 11(11):1071–1080. https://doi.org/10.1080/17460441.2016.1236785
Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, Heymach JV, Garon EB (2021) Dual egfr-vegf pathway inhibition: a promising strategy for patients with egfr-mutant nsclc. J Thorac Oncol 16(2):205–215. https://doi.org/10.1016/j.jtho.2020.10.006
Lebrecht A, Boehm D, Schmidt M, Koelbl H, Grus FH (2009) Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry to detect breast cancer markers in tears and serum. Cancer Genomics Proteomics 6(2):75–83
Lee H-S, Kang Y, Tae K, Bae G-U, Park JY, Cho YH, Yang M (2018) Proteomic biomarkers for bisphenol a—early exposure and women’s thyroid cancer. Cancer Res Treat 50(1):111–117. https://doi.org/10.4143/crt.2017.001
Lescarbeau RM, Kaplan DL (2014) Quantitative analysis of castration resistant prostate cancer progression through phosphoproteome signaling. BMC Cancer 14(1):325. https://doi.org/10.1186/1471-2407-14-325
Lexander H, Palmberg C, Hellman U, Auer G, Hellström M, Franzén B, Jörnvall H, Egevad L (2006) Correlation of protein expression, Gleason score and DNA ploidy in prostate cancer. Proteomics 6(15):4370–4380. https://doi.org/10.1002/pmic.200600148
Li X, Warner JL (2020) A review of precision oncology knowledgebases for determining the clinical actionability of genetic variants. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00048
Li M-Y, Zhao C, Chen L, Yao F-Y, Zhong F-M, Chen Y et al (2021) Quantitative proteomic analysis of plasma exosomes to identify the candidate biomarker of imatinib resistance in chronic myeloid leukemia patients. Front Oncol 11:779567. https://doi.org/10.3389/fonc.2021.779567
Liu WQ, Vidal M, Gresh N, Roques BP, Garbay C (1999) Small peptides containing phosphotyrosine and adjacent alphaMe-phosphotyrosine or its mimetics as highly potent inhibitors of Grb2 SH2-Domain. J Med Chem 42(18):3737–3741. https://doi.org/10.1021/jm9911074
Liu Y, He J, Li C, Benitez R, Fu S, Marrero J, Lubman DM (2010) Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations. J Proteome Res 9(2):798–805. https://doi.org/10.1021/pr900715p
Liu C, Li N, Liu G, Feng X (2021) Annexin A3 and cancer. Oncol Lett 22(6):834. https://doi.org/10.3892/ol.2021.13095
Lou X, Xiao T, Zhao K, Wang H, Zheng H, Lin D et al (2007) Cathepsin D is secreted from M-BE cells: its potential role as a biomarker of lung cancer. J Proteome Res 6(3):1083–1092. https://doi.org/10.1021/pr060422t
Luna-Vargas MPA, Chipuk JE (2016) The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J 283(14):2676–2689. https://doi.org/10.1111/febs.13624
Ma J, Diedrich JK, Jungreis I, Donaldson C, Vaughan J, Kellis M et al (2016) Improved identification and analysis of small open reading frame encoded polypeptides. Anal Chem 88(7):3967–3975. https://doi.org/10.1021/acs.analchem.6b00191
Maiolica A, Jünger MA, Ezkurdia I, Aebersold R (2012) Targeted proteome investigation via selected reaction monitoring mass spectrometry. J Proteomics 75(12):3495–3513. https://doi.org/10.1016/j.jprot.2012.04.048
Manes NP, Nita-Lazar A (2018) Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 189:75–90. https://doi.org/10.1016/j.jprot.2018.02.008
Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194–202. https://doi.org/10.1038/35106079
Mauri G, Bonazzina E, Amatu A, Tosi F, Bencardino K, Gori V et al (2021) The evolutionary landscape of treatment for brafv600e mutant metastatic colorectal cancer. Cancers 13(1):137. https://doi.org/10.3390/cancers13010137
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E (2022) Isolation, maintenance and expansion of adult hematopoietic stem/progenitor cells and leukemic stem cells. Cancers 14(7):1723. https://doi.org/10.3390/cancers14071723
Menges CW, Chen Y, Mossman BT, Chernoff J, Yeung AT, Testa JR (2010) A phosphotyrosine proteomic screen identifies multiple tyrosine kinase signaling pathways aberrantly activated in malignant mesothelioma. Genes Cancer 1(5):493–505. https://doi.org/10.1177/1947601910375273
Meyer JG, Schilling B (2017) Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 14(5):419–429. https://doi.org/10.1080/14789450.2017.1322904
Mintz MB, Sowers R, Brown KM, Hilmer SC, Mazza B, Huvos AG et al (2005) An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 65(5):1748–1754. https://doi.org/10.1158/0008-5472.CAN-04-2463
Moore CD, Ajala OZ, Zhu H (2016) Applications in high-content functional protein microarrays. Curr Opin Chem Biol 30:21–27. https://doi.org/10.1016/j.cbpa.2015.10.013
Mullard A (2016) Pioneering apoptosis-targeted cancer drug poised for FDA approval. Nat Rev Drug Discov 15(3):147–149. https://doi.org/10.1038/nrd.2016.23
Munkley J, Elliott DJ (2016) Hallmarks of glycosylation in cancer. Oncotarge 7(23):35478–35489. https://doi.org/10.18632/oncotarget.8155
Nedjadi T, Benabdelkamal H, Albarakati N, Masood A, Al-Sayyad A, Alfadda AA et al (2020) Circulating proteomic signature for detection of biomarkers in bladder cancer patients. Sci Rep 10(1):10999. https://doi.org/10.1038/s41598-020-67929-z
Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM et al (2021) Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. https://doi.org/10.1016/j.jbc.2021.100641
Noble JL, Dua RS, Coulton GR, Isacke CM, Gui GPH (2007) A comparative proteinomic analysis of nipple aspiration fluid from healthy women and women with breast cancer. Eur J Cancer (oxford, England: 1990) 43(16):2315–2320. https://doi.org/10.1016/j.ejca.2007.08.009
O’Garro C, Igbineweka L, Ali Z, Mezei M, Mujtaba S (2021) The biological significance of targeting acetylation-mediated gene regulation for designing new mechanistic tools and potential therapeutics. Biomolecules 11(3):455. https://doi.org/10.3390/biom11030455
Ősz Á, Lánczky A, Győrffy B (2021) Survival analysis in breast cancer using proteomic data from four independent datasets. Sci Rep 11(1):16787. https://doi.org/10.1038/s41598-021-96340-5
Overmyer KA, Tyanova S, Hebert AS, Westphall MS, Cox J, Coon JJ (2018) Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice. Nat Protoc 13(1):293–306. https://doi.org/10.1038/nprot.2017.121
Paesmans M, Sculier JP, Libert P, Bureau G, Dabouis G, Thiriaux J et al (1995) Prognostic factors for survival in advanced non-small-cell lung cancer: univariate and multivariate analyses including recursive partitioning and amalgamation algorithms in 1,052 patients. The European Lung Cancer Working Party. J Clin Oncol 13(5):1221–1230. https://doi.org/10.1200/JCO.1995.13.5.1221
Pang J, Liu W-P, Liu X-P, Li L-Y, Fang Y-Q, Sun Q-P, Liu S-J, Li M-T, Su Z-L, Gao X (2010) Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res 9(1):216–226. https://doi.org/10.1021/pr900953s
Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323. https://doi.org/10.1038/ng1106
Perez JJ (2018) Designing peptidomimetics. Curr Top Med Chem 18(7):566–590. https://doi.org/10.2174/1568026618666180522075258
Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al, Herceptin Adjuvant (HERA) Trial Study Team (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16), 1659–1672. https://doi.org/10.1056/NEJMoa052306
Pin E, Fredolini C, Petricoin EF (2013) The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem 46(6):524–538. https://doi.org/10.1016/j.clinbiochem.2012.12.012
Planque C, Kulasingam V, Smith CR, Reckamp K, Goodglick L, Diamandis EP (2009) Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol Cell Proteomics MCP 8(12):2746–2758. https://doi.org/10.1074/mcp.M900134-MCP200
Polanski M, Anderson NL (2007) A list of candidate cancer biomarkers for targeted proteomics. Biomarker Insights 1:1–48
Posadas EM, Simpkins F, Liotta LA, MacDonald C, Kohn EC (2005) Proteomic analysis for the early detection and rational treatment of cancer—realistic hope? Ann Oncol 16(1):16–22. https://doi.org/10.1093/annonc/mdi004
Poulos RC, Cai Z, Robinson PJ, Reddel RR, Zhong Q (2022) Opportunities for pharmacoproteomics in biomarker discovery. Proteomics. https://doi.org/10.1002/pmic.202200031
Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM (2012) Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med 4(127):127rv3. https://doi.org/10.1126/scitranslmed.3003180
Qian W-J, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X et al (2008) Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol Cell Proteomics MCP 7(10):1963–1973. https://doi.org/10.1074/mcp.M800008-MCP200
Qian M, Yan F, Yuan T, Yang B, He Q, Zhu H (2020) Targeting post-translational modification of transcription factors as cancer therapy. Drug Discov Today 25(8):1502–1512. https://doi.org/10.1016/j.drudis.2020.06.005
Rahman SMJ, Shyr Y, Yildiz PB, Gonzalez AL, Li H, Zhang X et al (2005) Proteomic patterns of preinvasive bronchial lesions. Am J Respir Crit Care Med 172(12):1556–1562. https://doi.org/10.1164/rccm.200502-274OC
Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD et al (2005) HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5(13):3262–3277. https://doi.org/10.1002/pmic.200401245
Ricolleau G, Charbonnel C, Lodé L, Loussouarn D, Joalland M-P, Bogumil R et al (2006) Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics 6(6):1963–1975. https://doi.org/10.1002/pmic.200500283
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203. https://doi.org/10.1016/j.cell.2007.11.025
Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9):616–624. https://doi.org/10.1038/nchembio.216
Rodriguez H, Tezak Z, Mesri M, Carr SA, Liebler DC, Fisher SJ et al (2010) Analytical validation of protein-based multiplex assays: a workshop report by the NCI-FDA interagency oncology task force on molecular diagnostics. Clin Chem 56(2):237–243. https://doi.org/10.1373/clinchem.2009.136416
Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR (2021) The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell 184(7):1661–1670. https://doi.org/10.1016/j.cell.2021.02.055
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A (2021) Epigenetic landscape of liquid biopsy in colorectal cancer. Front Cell Dev Biol 9:622459. https://doi.org/10.3389/fcell.2021.622459
Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684. https://doi.org/10.1056/NEJMoa052122
Rouault-Pierre K, Hamilton A, Bonnet D (2016) Effect of hypoxia-inducible factors in normal and leukemic stem cell regulation and their potential therapeutic impact. Expert Opin Biol Ther 16(4):463–476. https://doi.org/10.1517/14712598.2016.1133582
Sajic T, Liu Y, Aebersold R (2015) Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl 9(3–4):307–321. https://doi.org/10.1002/prca.201400117
Samaržija I (2021) Post-translational modifications that drive prostate cancer progression. Biomolecules 11(2):247. https://doi.org/10.3390/biom11020247
Sardana G, Marshall J, Diamandis EP (2007) Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem 53(3):429–437. https://doi.org/10.1373/clinchem.2006.077370
Sardana G, Jung K, Stephan C, Diamandis EP (2008) Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J Proteome Res 7(8):3329–3338. https://doi.org/10.1021/pr8003216
Schaab C, Geiger T, Stoehr G, Cox J, Mann M (2012) Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol Cell Proteomics MCP 11(3):M111.014068. https://doi.org/10.1074/mcp.M111.014068
Schreier VN, Pethő L, Orbán E, Marquardt A, Petre BA, Mező G, Manea M (2014) Protein expression profile of ht-29 human colon cancer cells after treatment with a cytotoxic daunorubicin-gnrh-iii derivative bioconjugate. PLoS ONE 9(4):e94041. https://doi.org/10.1371/journal.pone.0094041
Sethi MK, Hancock WS, Fanayan S (2016) Identifying n-glycan biomarkers in colorectal cancer by mass spectrometry. Acc Chem Res 49(10):2099–2106. https://doi.org/10.1021/acs.accounts.6b00193
Shao X, Taha IN, Clauser KR, Gao YT, Naba A (2020) MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res 48(D1):D1136–D1144. https://doi.org/10.1093/nar/gkz849
Shen J, Behrens C, Wistuba II, Feng L, Lee JJ, Hong WK et al (2006) Identification and validation of differences in protein levels in normal, premalignant, and malignant lung cells and tissues using high-throughput Western Array and immunohistochemistry. Cancer Res 66(23):11194–11206. https://doi.org/10.1158/0008-5472.CAN-04-1444
Sheryka E, Wheeler MA, Hausladen DA, Weiss RM (2003) Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology 62(1):162–166. https://doi.org/10.1016/s0090-4295(03)00134-1
Shi T, Niepel M, McDermott JE, Gao Y, Nicora CD, Chrisler WB et al (2016) Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Sci Signal 9(436):rs6. https://doi.org/10.1126/scisignal.aaf0891
Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H et al (2022) Immune checkpoint inhibitors in cancer therapy. Curr Oncol (toronto, Ont.) 29(5):3044–3060. https://doi.org/10.3390/curroncol29050247
Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. https://doi.org/10.1056/NEJM200103153441101
Solassol I, Pinguet F, Quantin X (2019) Fda- and ema-approved tyrosine kinase inhibitors in advanced egfr-mutated non-small cell lung cancer: safety, tolerability, plasma concentration monitoring, and management. Biomolecules 9(11):668. https://doi.org/10.3390/biom9110668
Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH et al (2018a) Osimertinib in untreated egfr-mutated advanced non-small-cell lung cancer. N Engl J Med 378(2):113–125. https://doi.org/10.1056/NEJMoa1713137
Soria F, Droller MJ, Lotan Y, Gontero P, D’Andrea D, Gust KM et al (2018b) An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer. World J Urol 36(12):1981–1995. https://doi.org/10.1007/s00345-018-2380-x
Spurrier B, Ramalingam S, Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc. https://doi.org/10.1038/nprot.2008.179
Stephan C, Ralla B, Jung K (2014) Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochem Biophys Acta 1846(1):99–112. https://doi.org/10.1016/j.bbcan.2014.04.001
Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10:473–510. https://doi.org/10.1146/annurev-pathol-012414-040438
Subbiah V, Meyer C, Zinner R, Meric-Bernstam F, Zahurak ML, O’Connor A et al (2017) Phase ib/ii study of the safety and efficacy of combination therapy with multikinase vegf inhibitor pazopanib and mek inhibitor trametinib in advanced soft tissue sarcoma. Clin Cancer Res 23(15):4027–4034. https://doi.org/10.1158/1078-0432.CCR-17-0272
Surowka M, Schaefer W, Klein C (2021) Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. Mabs 13(1):1967714. https://doi.org/10.1080/19420862.2021.1967714
Taghvaei S, Sabouni F, Minuchehr Z (2021) Evidence of omics, immune infiltration, and pharmacogenomic for senp1 in the pan-cancer cohort. Front Pharmacol. https://doi.org/10.3389/fphar.2021.700454
Tanase CP, Codrici E, Popescu ID, Mihai S, Enciu A-M, Necula LG, et al (2017) Prostate cancer proteomics: current trends and future perspectives for biomarker discovery. Oncotarget 8(11), 18497–18512. https://doi.org/10.18632/oncotarget.14501
Tang H-Y, Ali-Khan N, Echan LA, Levenkova N, Rux JJ, Speicher DW (2005) A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 5(13):3329–3342. https://doi.org/10.1002/pmic.200401275
Tang R, Li FX, Shao WF, Wen QS, Yu XR, Xiong JB (2016) Protein–protein interaction between ezrin and p65 in human breast cancer cells. Genet Mol Res GMR. https://doi.org/10.4238/gmr.15028334
Terfve C, Sabidó E, Wu Y, Gonçalves E, Choi M, Vaga S et al (2017) System-wide quantitative proteomics of the metabolic syndrome in mice: genotypic and dietary effects. J Proteome Res 16(2):831–841. https://doi.org/10.1021/acs.jproteome.6b00815
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale A-L, Krogh A, Haakensen VD et al (2021) High-throughput proteomics of breast cancer interstitial fluid: Identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 15(2):429–461. https://doi.org/10.1002/1878-0261.12850
Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chang Chien C-R, Makhson A et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360(14):1408–1417. https://doi.org/10.1056/NEJMoa0805019
van Winden AWJ, Gast M-CW, Beijnen JH, Rutgers EJT, Grobbee DE, Peeters PHM et al (2009) Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS: a case control study. BMC Med Genomics 2:4. https://doi.org/10.1186/1755-8794-2-4
Vanarsa K, Enan S, Patel P, Strachan B, Sam Titus ASCL, Dennis A et al (2021) Urine protein biomarkers of bladder cancer arising from 16-plex antibody-based screens. Oncotarget 12(8):783–790. https://doi.org/10.18632/oncotarget.27941
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science (new York, NY) 291(5507):1304–1351. https://doi.org/10.1126/science.1058040
Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8(4):399–411. https://doi.org/10.1016/j.stem.2011.02.006
Wang M, Zhu J, Lubman DM, Gao C (2019) Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 57(4):407–416. https://doi.org/10.1515/cclm-2018-0379
Weng L-P, Wu C-C, Hsu B-L, Chi L-M, Liang Y, Tseng C-P, Hsieh L-L, Yu J-S (2008) Secretome-based identification of Mac-2 binding protein as a potential oral cancer marker involved in cell growth and motility. J Proteome Res 7(9):3765–3775. https://doi.org/10.1021/pr800042n
Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. https://doi.org/10.1038/nature13319
Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50. https://doi.org/10.1080/02648725.1996.10647923
Wu C-C, Peng P-H, Chang Y-T, Huang Y-S, Chang K-P, Hao S-P et al (2008a) Identification of potential serum markers for nasopharyngeal carcinoma from a xenografted mouse model using Cy-dye labeling combined with three-dimensional fractionation. Proteomics 8(17):3605–3620. https://doi.org/10.1002/pmic.200701034
Wu C-C, Chen H-C, Chen S-J, Liu H-P, Hsieh Y-Y, Yu C-J, Tang R, Hsieh L-L, Yu J-S, Chang Y-S (2008b) Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 8(2):316–332. https://doi.org/10.1002/pmic.200700819
Wu C-C, Huang Y-S, Lee L-Y, Liang Y, Tang R-P, Chang Y-S, Hsieh L-L, Yu J-S (2008c) Overexpression and elevated plasma level of tumor-associated antigen 90K/Mac-2 binding protein in colorectal carcinoma. Proteomics Clin Appl 2(12):1586–1595. https://doi.org/10.1002/prca.200800080
Wu C-C, Hsu C-W, Chen C-D, Yu C-J, Chang K-P, Tai D-I et al (2010) Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics MCP 9(6):1100–1117. https://doi.org/10.1074/mcp.M900398-MCP200
Xia C, Tao Y, Li M, Che T, Qu J (2020) Protein acetylation and deacetylation: an important regulatory modification in gene transcription (Review). Exp Ther Med 20(4):2923–2940. https://doi.org/10.3892/etm.2020.9073
Xin L, Qiao R, Chen X, Tran H, Pan S, Rabinoviz S et al (2022) A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics. Nat Commun 13(1):3108. https://doi.org/10.1038/s41467-022-30867-7
Xu X (2021) Capillary electrophoresis-mass spectrometry for cancer metabolomics. Adv Exp Med Biol 1280:189–200. https://doi.org/10.1007/978-3-030-51652-9_13
Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC et al (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet (london, England) 362(9382):433–439. https://doi.org/10.1016/S0140-6736(03)14068-8
Yang L, Wang J, Li J, Zhang H, Guo S, Yan M et al (2016a) Identification of serum biomarkers for gastric cancer diagnosis using a human proteome microarray. Mol Cell Proteomics MCP 15(2):614–623. https://doi.org/10.1074/mcp.M115.051250
Yang S, Chen X, Pan Y, Yu J, Li X, Ma S (2016b) Proteins associated with EGFR-TKIs resistance in patients with non-small cell lung cancer revealed by mass spectrometry. Mol Med Rep 14(5):4823–4829. https://doi.org/10.3892/mmr.2016.5823
Yang Q, Zhang Y, Cui H, Chen L, Zhao Y, Lin Y et al (2018) Dbdepc 3.0: the database of differentially expressed proteins in human cancer with multi-level annotation and drug indication. Database J Biol Databases Curation 2018:bay015. https://doi.org/10.1093/database/bay015
Zhang G, Fang B, Liu RZ, Lin H, Kinose F, Bai Y et al (2011) Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity. J Proteome Res 10(1):305–319. https://doi.org/10.1021/pr1006203
Zhang M, Wang B, Xu J, Wang X, Xie L, Zhang B et al (2017) Canprovar 2.0: an updated database of human cancer proteome variation. J Proteome Res 16(2):421–432. https://doi.org/10.1021/acs.jproteome.6b00505
Zhang B, Whiteaker JR, Hoofnagle AN, Baird GS, Rodland KD, Paulovich AG (2019) Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 16(4):256–268. https://doi.org/10.1038/s41571-018-0135-7
Zhang T, Pabla S, Lenzo FL, Conroy JM, Nesline MK, Glenn ST et al (2020) Proliferative potential and response to nivolumab in clear cell renal cell carcinoma patients. Oncoimmunology 9(1):1773200. https://doi.org/10.1080/2162402X.2020.1773200
Zhao Z, Azadzoi KM, Choi H-P, Jing R, Lu X, Li C et al (2017) Lc–ms/ms analysis unravels deep oxidation of manganese superoxide dismutase in kidney cancer. Int J Mol Sci 18(2):319. https://doi.org/10.3390/ijms18020319
Zhou S, Zhu X, Liu W, Cheng F, Zou P, You Y et al (2020) Comparison of chronic myeloid leukemia stem cells and hematopoietic stem cells by global proteomic analysis. Biochem Biophys Res Commun 522(2):362–367. https://doi.org/10.1016/j.bbrc.2019.11.092
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38(7):1551–1566. https://doi.org/10.1016/j.clinthera.2016.03.026
Acknowledgements
The review received no grants from any agency.
Author information
Authors and Affiliations
Contributions
RG: conceptualization, writing, reviewing, and editing. SD and AM: writing, researching topic, and preparing diagrams and tables SG: draft preparation, editing, and reviewing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dutta, S., Ghosh, S., Mishra, A. et al. Oncoproteomics: insight into current proteomic technologies in cancer biomarker discovery and treatment. J Proteins Proteom 14, 1–24 (2023). https://doi.org/10.1007/s42485-022-00100-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42485-022-00100-6