Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Low-Intensity Aerobic Training Combined with Blood Flow Restriction
2.3. Body Composition
2.4. Physical Fitness
2.5. Vascular Responses
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pignanelli, C.; Christiansen, D.; Burr, J.F. Blood flow restriction training and the high-performance athlete: Science to application. J. Appl. Physiol. 2021, 130, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef] [PubMed]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood Flow Restriction Training for Athletes: A Systematic Review. Am. J. Sports Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef]
- Luebbers, P.E.; Fry, A.C.; Kriley, L.M.; Butler, M.S. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J. Strength Cond. Res. 2014, 28, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.C.; Tirko, A.W.; Shipe, J.M.; Sumeriski, O.R.; Moran, K. The Systemic Effects of Blood Flow Restriction Training: A Systematic Review. Int. J. Sports Phys. Ther. 2021, 16, 978–990. [Google Scholar] [CrossRef]
- Gawel, D.; Jarosz, J.; Matykiewicz, P.; Kaszuba, M.; Trybulski, R. Acute impact of blood flow restriction during resistance exercise—Review. Trends Sport Sci. 2021, 28, 83–92. [Google Scholar]
- Alves, A.R.; Marinho, D.A.; Pecego, M.; Ferraz, R.; Marques, M.C.; Neiva, H.P. Strength training combined with high-intensity interval aerobic training in young adults’ body composition. Trends Sport Sci. 2021, 28, 187–193. [Google Scholar]
- Lixandrão, M.E.; Roschel, H.; Ugrinowitsch, C.; Miquelini, M.; Alvarez, I.F.; Libardi, C.A. Blood-Flow Restriction Resistance Exercise Promotes Lower Pain and Ratings of Perceived Exertion Compared With Either High- or Low-Intensity Resistance Exercise Performed to Muscular Failure. J. Sport Rehabil. 2019, 28, 706–710. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, N.; Pang, F.; Chen, T. Resistance Training with Blood Flow Restriction on Vascular Function: A Meta-analysis. Int. J. Sports Med. 2021, 42, 577–587. [Google Scholar] [CrossRef]
- Freitas, E.; Miller, R.M.; Heishman, A.D.; Aniceto, R.R.; Larson, R.; Pereira, H.M.; Bemben, D.; Bemben, M.G. The perceptual responses of individuals with multiple sclerosis to blood flow restriction versus traditional resistance exercise. Physiol. Behav. 2021, 229, 113219. [Google Scholar] [CrossRef]
- Smith, N.; Scott, B.R.; Girard, O.; Peiffer, J.J. Aerobic Training With Blood Flow Restriction for Endurance Athletes: Potential Benefits and Considerations of Implementation. J. Strength Cond. Res 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Pinheiro, F.A.; Pires, F.O.; Rønnestad, B.R.; Hardt, F.; Conceição, M.S.; Lixandrão, M.E.; Berton, R.; Tricoli, V. The Effect of Low-intensity Aerobic Training Combined with Blood Flow Restriction on Maximal Strength, Muscle Mass, and Cycling Performance in a Cyclist with Knee Displacement. Int. J. Environ. Res. Public Health 2022, 19, 2993. [Google Scholar] [CrossRef]
- Abe, T.; Fujita, S.; Nakajima, T.; Sakamaki, M.; Ozaki, H.; Ogasawara, R.; Sugaya, M.; Kudo, M.; Kurano, M.; Yasuda, T.; et al. Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2max in Young Men. J. Sports Sci. Med. 2010, 9, 452–458. [Google Scholar]
- Kim, D.; Singh, H.; Loenneke, J.P.; Thiebaud, R.S.; Fahs, C.A.; Rossow, L.M.; Young, K.; Seo, D.I.; Bemben, D.A.; Bemben, M.G. Comparative Effects of Vigorous-Intensity and Low-Intensity Blood Flow Restricted Cycle Training and Detraining on Muscle Mass, Strength, and Aerobic Capacity. J. Strength Cond. Res. 2016, 30, 1453–1461. [Google Scholar] [CrossRef]
- Abe, T.; Kearns, C.F.; Sato, Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol. 2008, 104, 1255. [Google Scholar] [CrossRef]
- Astorino, T.A.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J. Strength. Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef]
- Tanner, A.V.; Nielsen, B.V.; Allgrove, J. Salivary and plasma cortisol and testosterone responses to interval and tempo runs and a bodyweight-only circuit session in endurance-trained men. J. Sports Sci. 2014, 32, 680–689. [Google Scholar] [CrossRef]
- Bennett, H.; Slattery, F. Effects of Blood Flow Restriction Training on Aerobic Capacity and Performance: A Systematic Review. J. Strength Cond. Res. 2019, 33, 572–583. [Google Scholar] [CrossRef]
- Yoon, E.J.; Kim, J. Effect of Body Fat Percentage on Muscle Damage Induced by High-Intensity Eccentric Exercise. Int. J. Environ. Res. Public Health 2020, 17, 3476. [Google Scholar] [CrossRef]
- Alves, E.D.; Salermo, G.P.; Panissa, V.; Franchini, E.; Takito, M.Y. Effects of long or short duration stimulus during high-intensity interval training on physical performance, energy intake, and body composition. J. Exerc. Rehabil. 2017, 13, 393–399. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; Mendes Cordeiro, E.; Volino-Souza, M.; Rezende, C.; Conte-Junior, C.A.; Silveira Alvares, T. Flow-Mediated Dilation in Healthy Young Individuals Is Impaired after a Single Resistance Exercise Session. Int. J. Environ. Res. Public Health 2020, 17, 5194. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.J.; Cho, S.A.; Cho, J.Y.; Lee, S.; Park, J.H.; Hwang, S.H.; Hong, S.J.; Yu, C.W.; Lim, D.S. Brachial-Ankle Pulse Wave Velocity is Associated with Composite Carotid and Coronary Atherosclerosis in a Middle-Aged Asymptomatic Population. J. Atheroscler. Thromb. 2016, 23, 1033–1046. [Google Scholar] [CrossRef]
- Mahé, G.; Lanéelle, D.; Le Faucheur, A. Postexercise Ankle-Brachial Index Testing to Diagnose Peripheral Artery Disease. JAMA 2021, 325, 89. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.S.; Willoughby, D.S. Mechanisms Behind Blood Flow-Restricted Training and its Effect Toward Muscle Growth. J. Strength Cond. Res. 2019, 33, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Torma, F.; Gombos, Z.; Fridvalszki, M.; Langmar, G.; Tarcza, Z.; Merkely, B.; Naito, H.; Ichinoseki-Sekine, N.; Takeda, M.; Murlasits, Z.; et al. Blood flow restriction in human skeletal muscle during rest periods after high-load resistance training down-regulates miR-206 and induces Pax7. J. Sport Health Sci. 2021, 10, 470–477. [Google Scholar] [CrossRef]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Erskine, R.M.; Fletcher, G.; Folland, J.P. The contribution of muscle hypertrophy to strength changes following resistance training. Eur. J. Appl. Physiol. 2014, 114, 1239–1249. [Google Scholar] [CrossRef]
- Reggiani, C.; Schiaffino, S. Muscle hypertrophy and muscle strength: Dependent or independent variables? A provocative review. Eur. J. Transl. Myol. 2020, 30, 9311. [Google Scholar] [CrossRef]
- Clanton, T.L.; Zuo, L.; Klawitter, P. Oxidants and skeletal muscle function: Physiologic and pathophysiologic implications. Proc. Soc. Exp. Biol. Med. 1999, 222, 253–262. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Lin, A.; Xiao, M.; Xiao, B.; Wan, C. Improving angiogenesis and muscle performance in the ischemic limb model by physiological ischemic training in rabbits. Am. J. Phys. Med. Rehabil. 2011, 90, 1020–1029. [Google Scholar] [CrossRef]
- Karabulut, M.; Esparza, B.; Dowllah, I.M.; Karabulut, U. The impact of low-intensity blood flow restriction endurance training on aerobic capacity, hemodynamics, and arterial stiffness. J. Sports Med. Phys. Fitness 2021, 61, 877–884. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.F.; Caputo, F.; Corvino, R.B.; Denadai, B.S. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand. J. Med. Sci. Sports 2016, 26, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
LABFR (n = 14) | CON (n = 15) | |
---|---|---|
Age (years) | 30.21 ± 4.93 | 29.67 ± 3.06 |
Height (cm) | 175.07 ± 8.46 | 172.27 ± 5.66 |
Weight (kg) | 75.23 ± 9.08 | 73.59 ± 10.68 |
BMI (kg/m2) | 24.44 ± 2.32 | 24.63 ± 2.77 |
Body fat (%) | 12.54 ± 4.27 | 15.33 ± 5.05 |
Group | Pre | Post | F | p | ηp2 | |
---|---|---|---|---|---|---|
Fat mass (kg) | BFR (n = 14) | 12.54 ± 4.27 | 11.56 ± 3.09 | 0.265 | 0.611 | 0.010 |
CON (n = 15) | 15.33 ± 5.05 | 14.52 ± 4.77 | ||||
Body fat (%) | BFR (n = 14) | 16.90 ± 6.42 | 15.82 ± 6.63 | 0.490 | 0.490 | 0.018 |
CON (n = 15) | 20.92 ± 6.88 | 20.18 ± 6.76 | ||||
Muscle mass (kg) | BFR (n = 14) | 35.59 ± 6.08 | 36.06 ± 5.91 | 53.242 | 0.001 *** | 0.664 |
CON (n = 15) | 32.98 ± 6.13 | 32.46 ± 6.08 | ||||
Thigh circumference (right, cm) | BFR (n = 14) | 56.42 ± 4.23 | 57.10 ± 4.32 | 4.544 | 0.042 * | 0.144 |
CON (n = 15) | 55.26 ± 5.43 | 55.36 ± 5.54 | ||||
Thigh circumference (left, cm) | BFR (n = 14) | 56.07 ± 3.94 | 57.10 ± 4.27 | 3.171 | 0.086 | 0.105 |
CON (n = 15) | 55.00 ± 5.53 | 55.46 ± 5.44 |
Group | Pre | Post | F | p | ηp2 | |
---|---|---|---|---|---|---|
Power (cm) | BFR (n = 14) | 57.57 ± 8.21 | 62.71 ± 8.38 | 0.624 | 0.437 | 0.023 |
CON (n = 15) | 48.93 ± 14.16 | 53.06 ± 12.10 | ||||
VO2max (mL/kg/min) | BFR (n = 14) | 48.59 ± 8.56 | 51.74 ± 9.45 | 0.258 | 0.616 | 0.009 |
CON (n = 15) | 44.01 ± 6.80 | 46.48 ± 6.58 |
Group | Pre | Post | F | p | ηp2 | |
---|---|---|---|---|---|---|
FMD (%) | BFR (n = 14) | 7.27 ± 2.96 | 7.39 ± 2.02 | 0.042 | 0.840 | 0.002 |
CON (n = 15) | 6.73 ± 1.88 | 7.01 ± 1.95 | ||||
baPWV (cm/s) | BFR (n = 14) | 1216.07 ± 139.47 | 1141.89 ± 154.45 | 0.073 | 0.789 | 0.003 |
CON (n = 15) | 1179.93 ± 133.21 | 1110.76 ± 139.25 | ||||
ABI | BFR (n = 14) | 1.11 ± 0.071 | 1.01 ± 0.115 | 0.188 | 0.668 | 0.007 |
CON (n = 15) | 1.09 ± 0.074 | 1.00 ± 0.082 | ||||
SBP (mmHg) | BFR (n = 14) | 126.71 ± 7.31 | 118.35 ± 7.93 | 0.039 | 0.845 | 0.001 |
CON (n = 15) | 125.46 ± 9.50 | 117.53 ± 6.34 | ||||
DBP (mmHg) | BFR (n = 14) | 78.00 ± 9.79 | 67.21 ± 5.82 | 2.354 | 0.137 | 0.080 |
CON (n = 15) | 76.13 ± 9.14 | 69.93 ± 8.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beak, H.J.; Park, W.; Yang, J.H.; Kim, J. Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners. Healthcare 2022, 10, 1789. https://doi.org/10.3390/healthcare10091789
Beak HJ, Park W, Yang JH, Kim J. Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners. Healthcare. 2022; 10(9):1789. https://doi.org/10.3390/healthcare10091789
Chicago/Turabian StyleBeak, Hyoung Jean, Wonil Park, Ji Hye Yang, and Jooyoung Kim. 2022. "Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners" Healthcare 10, no. 9: 1789. https://doi.org/10.3390/healthcare10091789
APA StyleBeak, H. J., Park, W., Yang, J. H., & Kim, J. (2022). Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners. Healthcare, 10(9), 1789. https://doi.org/10.3390/healthcare10091789