[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The contribution of muscle hypertrophy to strength changes following resistance training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Whilst skeletal muscle hypertrophy is considered an important adaptation to resistance training (RT), it has not previously been found to explain the inter-individual changes in strength after RT. This study investigated the contribution of hypertrophy to individual gains in isometric, isoinertial and explosive strength after 12 weeks of elbow flexor RT.

Methods

Thirty-three previously untrained, healthy men (18–30 years) completed an initial 3-week period of elbow flexor RT (to facilitate neurological responses) followed by 6-week no training, and then 12-week elbow flexor RT. Unilateral elbow flexor muscle strength [isometric maximum voluntary force (iMVF), single repetition maximum (1-RM) and explosive force], muscle volume (V m), muscle fascicle pennation angle (θ p) and normalized agonist, antagonist and stabilizer sEMG were assessed pre and post 12-week RT.

Results

Percentage gains in V m correlated with percentage changes in iMVF (r = 0.527; P = 0.002) and 1-RM (r = 0.482; P = 0.005) but not in explosive force (r ≤ 0.243; P ≥ 0.175). Percentage changes in iMVF, 1-RM, and explosive force did not correlate with percentage changes in agonist, antagonist or stabilizer sEMG (all P > 0.05). Percentage gains in θ p inversely correlated with percentage changes in normalized explosive force at 150 ms after force onset (r = 0.362; P = 0.038).

Conclusions

We have shown for the first time that muscle hypertrophy explains a significant proportion of the inter-individual variability in isometric and isoinertial strength gains following 12-week elbow flexor RT in healthy young men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACSA:

Anatomical cross-sectional area

AD:

Anterior deltoid

ANOVA:

Analysis of variance

BBL:

Biceps brachii long head

BBS:

Biceps brachii short head

BR:

Brachioradialis

BRACH:

Brachialis

EMG:

Electromyography

iMVF:

Isometric maximal voluntary force

MVC:

Maximum voluntary contraction

MRI:

Magnetic resonance imaging

M max :

Evoked supramaximal compound muscle action potential

PM:

Pectoralis major

RMS:

Root mean square

RT:

Resistance training

sEMG:

Surface electromyography

V m :

Muscle volume

1-RM:

Single repetition maximum

θ p :

Muscle fascicle pennation angle

References

  • Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534(Pt. 2):613–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93(4):1318–1326

    PubMed  Google Scholar 

  • Alexander RM, Vernon A (1975) The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud 1:115–123

    Google Scholar 

  • Allen GM, McKenzie DK, Gandevia SC (1998) Twitch interpolation of the elbow flexor muscles at high forces. Muscle Nerve 21(3):318–328

    Article  CAS  PubMed  Google Scholar 

  • Andersen LL, Andersen JL, Zebis MK, Aagaard P (2010) Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports 20(1):e162–e169

    Article  CAS  PubMed  Google Scholar 

  • Baecke JA, Burema J, Frijters JE (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36(5):936–942

    CAS  PubMed  Google Scholar 

  • Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32(7):1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Blazevich AJ, Horne S, Cannavan D, Coleman DR, Aagaard P (2008) Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps. Muscle Nerve 38(3):1133–1146

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Cannavan D, Horne S, Coleman DR, Aagaard P (2009) Changes in muscle force-length properties affect the early rise of force in vivo. Muscle Nerve 39(4):512–520

    Article  PubMed  Google Scholar 

  • Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495(Pt_2):573–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckthorpe MW, Hannah R, Pain TG, Folland JP (2012) Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve 46(4):566–576. doi:10.1002/mus.23322

    Article  PubMed  Google Scholar 

  • Burden A (2010) How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J Electromyogr Kinesiol 20(6):1023–1035

    Article  PubMed  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112(1):155–159

    Article  CAS  PubMed  Google Scholar 

  • Cureton KJ, Collins MA, Hill DW, McElhannon FM Jr (1988) Muscle hypertrophy in men and women. Med Sci Sports Exerc 20(4):338–344

    Article  CAS  PubMed  Google Scholar 

  • D’Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, Moro G, Miotti D, Canepari M, Bottinelli R (2006) Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 570(3):611–627. doi:10.1113/jphysiol.2005.101642

    Article  PubMed Central  PubMed  Google Scholar 

  • Davies J, Parker DF, Rutherford OM, Jones DA (1988) Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. Eur J Appl Physiol Occup Physiol 57(6):667–670

    Article  CAS  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Maganaris CN, Degens H (2009) In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol 106(6):827–838

    Article  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Williams AG, Stewart CE, Degens H (2010) Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur J Appl Physiol 110(6):1117–1125

    Article  PubMed  Google Scholar 

  • Erskine RM, Fletcher G, Hanson B, Folland JP (2012) Whey protein does not enhance the adaptations to elbow flexor resistance training. Med Sci Sports Exerc 44(9):1791–1800. doi:10.1249/MSS.0b013e318256c48d

    Article  CAS  PubMed  Google Scholar 

  • Folland JP, Irish CS, Roberts JC, Tarr JE, Jones DA (2002) Fatigue is not a necessary stimulus for strength gains during resistance training. Br J Sports Med 36(5):370–373 discussion 374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172(4):249–255

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Herbert RD, Leeper JB (1998) Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol 512(Pt 2):595–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer WJ, Newton RU, Alen M (1998) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 84(4):1341–1349

    CAS  PubMed  Google Scholar 

  • Herbert RD, Dean C, Gandevia SC (1998) Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand 163(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Clarkson PM (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37(6):964–972

    PubMed  Google Scholar 

  • Jones DA, Rutherford OM (1987) Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol 391(1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa H, Ikegawa S, Fukunaga T (1994) Comparison of muscle cross-sectional area and strength between untrained women and men. Eur J Appl Physiol Occup Physiol 68(2):148–154

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34(2):364–380

    Article  PubMed  Google Scholar 

  • Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472(1):595–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Kim HW, Im S, An X, Lee MS, Lee UY, Han SH (2010) Localization of motor entry points and terminal intramuscular nerve endings of the musculocutaneous nerve to biceps and brachialis muscles. Surg Radiol Anat 32(3):213–220

    Article  PubMed  Google Scholar 

  • Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130

    CAS  PubMed  Google Scholar 

  • Narici M (1999) Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J Electromyogr Kinesiol 9(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P (1996) Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004) In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89(6):675–689

    Article  CAS  PubMed  Google Scholar 

  • Rutherford OM, Jones DA (1986) The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol 55(1):100–105

    Article  CAS  PubMed  Google Scholar 

  • Sahaly R, Vandewalle H, Driss T, Monod H (2001) Maximal voluntary force and rate of force development in humans–importance of instruction. Eur J Appl Physiol 85(3–4):345–350

    Article  CAS  PubMed  Google Scholar 

  • Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102(1):368–373

    Article  CAS  PubMed  Google Scholar 

  • Tillin NA, Folland JP (2013) Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol. doi:10.1007/s00421-013-2781-x

    PubMed  Google Scholar 

  • Tillin NA, Jimenez-Reyes P, Pain MT, Folland JP (2010) Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc 42(4):781–790

    Article  PubMed  Google Scholar 

  • Tillin NA, Pain MT, Folland JP (2011) Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship. Muscle Nerve 43(3):375–384

    Article  PubMed  Google Scholar 

  • Welle S, Totterman S, Thornton C (1996) Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci 51(6):M270–M275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for the conduct of this study was provided by GlaxoSmithKline Nutritional Healthcare UK.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Erskine.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erskine, R.M., Fletcher, G. & Folland, J.P. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol 114, 1239–1249 (2014). https://doi.org/10.1007/s00421-014-2855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2855-4

Keywords

Navigation