Identifying Flood Source Areas and Analyzing High-Flow Extremes Under Changing Land Use, Land Cover, and Climate in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia
<p>Location map of the study area. (<b>a</b>) Location map of the Upper Blue Nile (UBN) basin within the 12 river basins of Ethiopia. (<b>b</b>) Location map of the upstream Gumara watershed (bounded by a red rectangle) within the Lake Tana subbasin, and (<b>c</b>) Detailed map showing the rainfall and streamflow gauging stations, stream network, climate model grid (25 km × 25 km), and grid center for the NASA dataset, and elevation map of the upstream (flood source area) part of the Gumara watershed.</p> "> Figure 2
<p>(<b>a</b>) Elevation, (<b>b</b>) slope, (<b>c</b>) hydrologic soil groups (HSGs), and (<b>d</b>–<b>k</b>) historical and projected land use and land cover maps of the Gumara watershed for the historical (1985, 2000, 2010, and 2019) and future years (2035 and 2065) under the business-as-usual (BAU) and governance (GOV) scenarios.</p> "> Figure 3
<p>Methodological framework of the study. In the figure, boxes highlighted with grey color represent the main processing algorithm, tool, and hydrological model used in the study.</p> "> Figure 4
<p>Observed ground-based rainfall and discharge data from 1981 to 2019 for the Gumara watershed. (<b>a</b>) Double mass curve analysis, (<b>b</b>) mean annual rainfall of each ground-based rainfall station, (<b>c</b>) mean monthly rainfall, and (<b>d</b>) mean monthly discharge.</p> "> Figure 5
<p>Comparison of cumulative distribution functions (CDFs) of daily observed rainfall data from RF-MERGE and historical CMIP5 and CMIP6 models for the period 1981–2005.</p> "> Figure 6
<p>A 30 m spatial resolution gridded runoff curve numbers for the historical years (<b>a</b>–<b>d</b>) and future scenarios (<b>e</b>–<b>h</b>). The gray shaded areas that bound in the figure illustrate the gradient orientation of the runoff curve number, with maximum values along the north and south directions and minimum values in the middle of the watershed.</p> "> Figure 7
<p>Historical (1981–2005) and projected (2031–2080) mean monthly rainfall (mm/month) of the Gumara watershed, estimated from RF-MERGE data and multi-model ensemble means from CMIP5 and CMIP6.</p> "> Figure 8
<p>Spatial distribution of mean annual rainfall (MARF) in the historical (1981–2005) and two future periods, near-future (2031–2056) and far-future (2056–2080), under different climate scenarios. In the figures, different color gradients show the distribution of rainfall in the study area, where the dark blue color grade shows areas that receive the highest mean annual rainfall.</p> "> Figure 9
<p>(<b>a</b>) Temporal variation of the long-term annual maximum (AM) 1-day rainfall series from RF-MERGE estimates (1981–2019) and (<b>b</b>) depth–duration–frequency (DDF) curve developed from RF-MERGE rainfall. In panel (<b>a</b>), the red line illustrates the increasing linear trend of annual maximum 1-day rainfall.</p> "> Figure 10
<p>Box plot of historical (1981–2005) and projected (2031–2080) annual maximum (AM) 1-day rainfall, represented in different color. The plot summarizes the minimum, first quartile (Q1), median, third quartile (Q3), and maximum values of the rainfall data. The blue dashed lines indicate the full range of data (minimum and maximum values) across the study periods.</p> "> Figure 11
<p>Percentage coverage of land use and land cover (LULC) classes of the Gumara watershed. (<b>a</b>) Historical years (1985, 2000, 2010, and 2019) and (<b>b</b>) future years (2035 and 2065) under the business-as-usual (BAU) and governance (GOV) scenarios.</p> "> Figure 12
<p>Delineated subwatershed’s area, centroids, and stream network of the Gumara watershed as delineated in the HEC-HMS model.</p> "> Figure 13
<p>Model sensitivity analysis for the runoff curve number (CN) from 13 August to 31 August 2010.</p> "> Figure 14
<p>Observed and simulated discharge for selected events: (<b>a</b>) Event 1 (calibration), from 1 July to 31 August 1996; (<b>b</b>) Event 2 (calibration), from 5 July to 31 July 2008; (<b>c</b>) Event 3 (validation), from 2 August to 27 August 2014.</p> "> Figure 15
<p>(<b>a</b>) Comparison of simulated peak discharge (Q) under various land use conditions across different return periods and (<b>b</b>) comparison of simulated runoff volume (V) under various land use conditions across different return periods.</p> "> Figure 16
<p>Computed flood index (<math display="inline"><semantics> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </semantics></math>) values estimated using the Unit Flood Response (UFR) approach for a 50-year return period peak discharge under different LULC conditions: (<b>a</b>) LULC-1985, (<b>b</b>) LULC-2000, (<b>c</b>) LULC-2010, and (<b>d</b>) LULC-2019. The blue color gradient represents flood index levels across subwatersheds, with the darkest blue indicating subwatersheds with the highest runoff potential.</p> "> Figure 17
<p>Comparison between historical and future annual maximum 1-day flow duration curves. (<b>a</b>) Future climate combined with the BAU land use scenario and (<b>b</b>) future climate combined with the GOV land use scenario.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.2.1. Observed Ground-Based Rainfall and Streamflow Data
2.2.2. Gridded Rainfall Products (GRFPs)
2.2.3. General Circulation Models (GCMs)
2.2.4. Elevation, Soil, and LULC Data
2.3. Methods
2.4. Data Quality Control
2.5. Random Forest Merging (RF-MERGE)
2.6. Design Rainfall and Depth–Duration–Frequency (DDF) Curve
2.7. Bias Correction
2.8. Rainfall–Runoff Modeling
2.8.1. Subwatershed Delineation
2.8.2. Rainfall and Streamflow Data
2.8.3. Model Selection
- I.
- Modeling runoff volumes (loss model)
- II.
- Direct runoff (transform model)
- III.
- Channel flow (routing model)
2.8.4. Model Sensitivity Analysis
2.8.5. Model Calibration and Validation
2.9. Flood Source Area Identification (FSAI)
2.10. Combined Impacts of LULC and Climate Change on High-Flows
3. Results
3.1. Rainfall Climatology
3.1.1. Mean Monthly and Annual Rainfall
3.1.2. Design Rainfall and Depth–Duration–Frequency (DDF) Curve
3.1.3. Annual Maximum (AM) 1-Day Rainfall
3.2. Land Use and Land Cover Change Analysis
3.3. Hydrological Modeling
3.3.1. Delineated Subwatersheds
3.3.2. Model Sensitivity Analysis
3.3.3. Model Calibration and Validation
3.4. Return Period-Based Peak Discharge and Runoff Volume Simulation
3.5. Flood Source Area Identification
3.6. Combined Impacts of LULC and Climate Change on High Flows
4. Discussion
4.1. Flood Source Area Identification and Analysis of High-Flow Extremes
4.2. Generalizability of the Study Findings
4.3. Limitations of the Study and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.A.; Ye, J.; Abid, M.; Ullah, R. Determinants of Flood Risk Mitigation Strategies at Household Level: A Case of Khyber Pakhtunkhwa (KP) Province, Pakistan. Nat. Hazards 2017, 88, 415–430. [Google Scholar] [CrossRef]
- Nel, J.L.; Le Maitre, D.C.; Nel, D.C.; Reyers, B.; Archibald, S.; Van Wilgen, B.W.; Forsyth, G.G.; Theron, A.K.; O’Farrell, P.J.; Mwenge Kahinda, J.M.; et al. Natural Hazards in a Changing World: A Case for Ecosystem-Based Management. PLoS ONE 2014, 9, e95942. [Google Scholar] [CrossRef] [PubMed]
- Irannezhad, M.; Minaei, M.; Ahmadian, S.; Chen, D. Impacts of Changes in Climate and Land Cover-Land Use on Flood Characteristics in Gorganrood Watershed (Northeastern Iran) during Recent Decades*. Geogr. Ann. Ser. A Phys. Geogr. 2018, 100, 340–350. [Google Scholar] [CrossRef]
- Mzava, P.; Valimba, P.; Nobert, J. Quantitative Analysis of the Impacts of Climate and Land-Cover Changes on Urban Flood Runoffs: A Case of Dar Es Salaam, Tanzania. J. Water Clim. Change 2021, 12, 2835–2853. [Google Scholar] [CrossRef]
- Kundu, P.M.; Olang, L.O. The Impact of Land Use Change on Runoff and Peak Flood Discharges for the Nyando River in Lake Victoria Drainage Basin, Kenya. WIT Trans. Ecol. Environ. 2011, 153, 83–94. [Google Scholar] [CrossRef]
- Cuo, L. Land Use/Cover Change Impacts on Hydrology in Large River Basins: A Review. In Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts; Wiley: Hoboken, NJ, USA, 2016; pp. 103–134. ISBN 9781118971772. [Google Scholar]
- Kim, J.B.; Habimana, J.d.D.; Kim, S.H.; Bae, D.H. Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on Cmip6 Esms. Sustainability 2021, 13, 12037. [Google Scholar] [CrossRef]
- Meresa, H.; Tischbein, B.; Mekonnen, T. Climate Change Impact on Extreme Precipitation and Peak Flood Magnitude and Frequency: Observations from CMIP6 and Hydrological Models; Springer: Dordrecht, The Netherlands, 2022; Volume 111, ISBN 0123456789. [Google Scholar]
- Yan, R.; Huang, J.; Wang, Y.; Gao, J.; Qi, L. Modeling the Combined Impact of Future Climate and Land Use Changes on Streamflow of Xinjiang Basin, China. Hydrol. Res. 2016, 47, 356–372. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Islam, M.N.; Abid, M.A.; O’Brien, E.; Kamil, S.; Rashid, I.U.; et al. Projected Changes in Climate Extremes Using CMIP6 Simulations Over SREX Regions. Earth Syst. Environ. 2021, 5, 481–497. [Google Scholar] [CrossRef]
- Gebrechorkos, S.; Leyland, J.; Slater, L.; Wortmann, M.; Ashworth, P.J.; Bennett, G.L.; Boothroyd, R.; Cloke, H.; Delorme, P.; Griffith, H.; et al. A High-Resolution Daily Global Dataset of Statistically Downscaled CMIP6 Models for Climate Impact Analyses. Sci. Data 2023, 10, 611. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Melton, F. NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP); NASA: Washington, DC, USA, 2015; pp. 1–8. [Google Scholar]
- Jose, D.M.; Dwarakish, G.S. Ranking of Downscaled CMIP5 and CMIP6 GCMs at a Basin Scale: Case Study of a Tropical River Basin on the South West Coast of India. Arab. J. Geosci. 2022, 15, 120. [Google Scholar] [CrossRef]
- Sharma, A.; Kale, G.D. Ranking of General Circulation Models for Surat City by Using a Hybrid Approach. Water Pract. Technol. 2022, 17, 2186–2198. [Google Scholar] [CrossRef]
- Jose, D.M.; Vincent, A.M.; Dwarakish, G.S. Improving Multiple Model Ensemble Predictions of Daily Precipitation and Temperature through Machine Learning Techniques. Sci. Rep. 2022, 12, 4678. [Google Scholar] [CrossRef]
- Raju, K.S.; Kumar, D.N. Review of Approaches for Selection and Ensembling of GCMS. J. Water Clim. Change 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Wang, H.; Shao, W.; Mei, C.; Ding, X. Performance Evaluations of CMIP6 and CMIP5 Models for Precipitation Simulation over the Hanjiang River Basin, China. J. Water Clim. Change 2022, 13, 2089–2106. [Google Scholar] [CrossRef]
- Getachew, B.; Manjunatha, B.R. Impacts of Land-Use Change on the Hydrology of Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Glob. Chall. 2022, 6, 2200041. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The Impacts of Urbanisation and Climate Change on Urban Flooding and Urban Water Quality: A Review of the Evidence Concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef]
- Mewded, M.; Abebe, A.; Tilahun, S.; Agide, Z. Impact of Land Use and Land Cover Change on the Magnitude of Surface Runoff in the Endorheic Hayk Lake Basin, Ethiopia. SN Appl. Sci. 2021, 3, 742. [Google Scholar] [CrossRef]
- Faichia, C.; Tong, Z.; Zhang, J.; Liu, X.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using Rs Data-Based ca–Markov Model for Dynamic Simulation of Historical and Future Lucc in Vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land Use/Land Cover Change Detection and Prediction in the North-Western Coastal Desert of Egypt Using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and Predicting Land Use and Land Cover Changes Using Remote Sensing and GIS Techniques—A Case Study of a Hilly Area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef] [PubMed]
- Belay, H.; Melesse, A.M.; Tegegne, G. Scenario-Based Land Use and Land Cover Change Detection and Prediction Using the Cellular Automata–Markov Model in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Land 2024, 13, 396. [Google Scholar] [CrossRef]
- Gebresellase, S.H.; Wu, Z.; Xu, H.; Muhammad, W.I. Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia. Sustainability 2023, 15, 1683. [Google Scholar] [CrossRef]
- Al Baky, M.A.; Islam, M.; Paul, S. Flood Hazard, Vulnerability and Risk Assessment for Different Land Use Classes Using a Flow Model. Earth Syst. Environ. 2020, 4, 225–244. [Google Scholar] [CrossRef]
- Emam, A.R.; Mishra, B.K.; Kumar, P.; Masago, Y.; Fukushi, K. Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia. Water 2016, 8, 559. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M.; Asfaw, D.H.; Worqlul, A.W. Flood Frequency Analyses over Different Basin Scales in the Blue Nile River Basin, Ethiopia. Hydrology 2020, 7, 44. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis; Cambridge University Press: Cambridge, UK, 1997; ISBN 0521430453. [Google Scholar]
- Mareuil, A.; Leconte, R.; Brissette, F.; Minville, M. Impacts of Climate Change on the Frequency and Severity of Floods in the Châteauguay River Basin, Canada. Can. J. Civ. Eng. 2007, 34, 1048–1060. [Google Scholar] [CrossRef]
- Yisehak, B. Prediction of Flood Frequency under a Changing Climate, the Case of Hare Watershed, Rift Valley Basin of Ethiopia. Sustain. Water Resour. Manag. 2021, 7, 9. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L.; Sen, S.; Srivastava, P.; Lebleu, C. Identifying Areas Sensitive to Land Use/Land Cover Change for Downstream Flooding in a Coastal Alabama Watershed. Reg. Environ. Change 2016, 16, 1833–1845. [Google Scholar] [CrossRef]
- Saghafian, B.; Khosroshahi, M. Unit Response Approach for Priority Determination of Flood Source Areas. J. Hydrol. Eng. 2005, 10, 270–277. [Google Scholar] [CrossRef]
- Singh, A.; Dawson, D.; Trigg, M.; Wright, N. A Review of Modelling Methodologies for Flood Source Area (FSA) Identification. Nat. Hazards 2021, 107, 1047–1068. [Google Scholar] [CrossRef]
- Argaz, A.; Ouahman, B.; Darkaoui, A.; Bikhtar, H.; Ayouch, E.; Lazaar, R. Flood Hazard Mapping Using Remote Sensing and GIS Tools: A Case Study of Souss Watershed. J. Mater. Environ. Sci. 2019, 10, 170–181. [Google Scholar]
- Elkhrachy, I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A Case Study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Sp. Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Sulaiman, W.N.A.; Pradhan, B.; Jamil, N.R. Relationship between Design Floods and Land Use Land Cover (LULC) Changes in a Tropical Complex Catchment. Arab. J. Geosci. 2018, 11, 376. [Google Scholar] [CrossRef]
- Fiorillo, E.; Tarchiani, V. A Simplified Hydrological Method for Flood Risk Assessment at Sub-Basin Level in Niger. In Renewing Local Planning to Face Climate Change in the Tropics. Green Energy and Technology; Springer: Cham, Switzerland, 2017; pp. 247–263. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Zhao, B.; Ma, T.; Lu, W.; Santisirisomboon, J. Future Changes in High and Low Flows under the Impacts of Climate and Land Use Changes in the Jiulong River Basin of Southeast China. Atmosphere 2022, 13, 150. [Google Scholar] [CrossRef]
- Mahato, P.K.; Singh, D.; Bharati, B.; Gagnon, A.S.; Singh, B.B.; Brema, J. Assessing the Impacts of Human Interventions and Climate Change on Fluvial Flooding Using CMIP6 Data and GIS-Based Hydrologic and Hydraulic Models. Geocarto Int. 2022, 37, 11483–11508. [Google Scholar] [CrossRef]
- Kassaye, S.M.; Tadesse, T.; Tegegne, G.; Hordofa, A.T. Quantifying the Climate Change Impacts on the Magnitude and Timing of Hydrological Extremes in the Baro River Basin, Ethiopia. Environ. Syst. Res. 2024, 13, 2. [Google Scholar] [CrossRef]
- Yalcin, E. Assessing Future Changes in Flood Frequencies under CMIP6 Climate Projections Using SWAT Modeling: A Case Study of Bitlis Creek, Turkey. J. Water Clim. Change 2024, 15, 2212–2231. [Google Scholar] [CrossRef]
- Alemu, D.; Assaye, A. Devastating Effect of Floods on Rice Production and Commercialisation in the Fogera Plain; Future Agricultures Consortium Secretariat: Brighton, UK, 2020. [Google Scholar]
- Gashaw, W.; Legesse, D. Flood Hazard and Risk Assessment Using GIS and Remote Sensing in Fogera Woreda, Northwest Ethiopia. Nile River Basin 2011, 6, 179–206. [Google Scholar] [CrossRef]
- Nigusie, A.A.; Shiferaw, K.M.; Ebrahim, S.E. Flood Inundation Modeling Using HEC-RAS : The Case of Downstream Gumara River, Lake Tana Sub Basin, Ethiopia. Geocarto Int. 2021, 37, 9625–9643. [Google Scholar] [CrossRef]
- Melkamu, T.; Bagyaraj, M.; Adimaw, M.; Ngusie, A. Detecting and Mapping Flood Inundation Areas in Fogera-Dera Floodplain, Ethiopia during an Extreme Wet Season Using Sentinel-1 Data. Phys. Chem. Earth Parts A/B/C 2022, 127, 103189. [Google Scholar] [CrossRef]
- Molini, A.; Lanza, L.G.; La Barbera, P. The Impact of Tipping-bucket Raingauge Measurement Errors on Design Rainfall for Urban-scale Applications. Hydrol. Process. Int. J. 2005, 19, 1073–1088. [Google Scholar] [CrossRef]
- Belay, H.; Melesse, A.M.; Tegegne, G. Merging Satellite Products and Rain-Gauge Observations to Improve Hydrological Simulation: A Review. Earth 2022, 3, 1275–1289. [Google Scholar] [CrossRef]
- Mekonnen, K.; Melesse, A.M.; Woldesenbet, T.A. Merging Satellite Rainfall Estimates and Daily Rain Gauge Observations for Improved Flood Simulation in MelkaKuntire Catchment, Upper Awash Basin, Ethiopia. Remote Sens. Appl. Soc. Environ. 2022, 25, 100701. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Xuan Thinh, N. RF-MEP: A Novel Random Forest Method for Merging Gridded Precipitation Products and Ground-Based Measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Min, X.; Yang, C.; Dong, N. Merging Satellite and Gauge Rainfalls for Flood Forecasting of Two Catchments under Different Climate Conditions. Water 2020, 12, 802. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Sándor, S.; Zoltán, T. Change in Stream Flow of Gumara Watershed, Upper Blue Nile Basin, Ethiopia under Representative Concentration Pathway Climate Change Scenarios. Water 2020, 12, 3046. [Google Scholar] [CrossRef]
- Wubie, M.A.; Assen, M.; Nicolau, M.D. Patterns, Causes and Consequences of Land Use/Cover Dynamics in the Gumara Watershed of Lake Tana Basin, Northwestern Ethiopia. Environ. Syst. Res. 2016, 5, 1. [Google Scholar] [CrossRef]
- Dawit, M.; Halefom, A.; Teshome, A.; Sisay, E.; Shewayirga, B.; Dananto, M. Changes and Variability of Precipitation and Temperature in the Guna Tana Watershed, Upper Blue Nile Basin, Ethiopia. Model. Earth Syst. Environ. 2019, 5, 1395–1404. [Google Scholar] [CrossRef]
- Ayehu, G.T.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of New Satellite Rainfall Products over the Upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech. 2018, 11, 1921–1936. [Google Scholar] [CrossRef]
- Lakew, H.B.; Moges, S.A.; Asfaw, D.H. Hydrological Performance Evaluation of Multiple Satellite Precipitation Products in the Upper Blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2020, 27, 100664. [Google Scholar] [CrossRef]
- Belay, H.; Melesse, A.M.; Tegegne, G. Evaluation and Comparison of the Performances of the CMIP5 and CMIP6 Models in Reproducing Extreme Rainfall in the Upper Blue Nile Basin of Ethiopia. Theor. Appl. Climatol. 2024, 155, 9471–9496. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Ross, C.W.; Prihodko, L.; Anchang, J.; Kumar, S.; Ji, W.; Hanan, N.P. HYSOGs250m, Global Gridded Hydrologic Soil Groups for Curve-Number-Based Runoff Modeling. Sci. Data 2018, 5, 180091. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Eastman, J. IDRISI Taiga: Guide to GIS and Image Processing Volume—Manual Version 16.02; Clark Labs Clark University: Worcester, MA, USA, 2009; p. 325. [Google Scholar]
- Beyene, A.; Shumetie, A. Green Legacy Initiative for Sustainable Economic Development in Ethiopia; Ethiopian Economics Association: Addis Ababa, Ethiopia, 2023; ISBN 9789994454952. [Google Scholar]
- Déqué, M. Frequency of Precipitation and Temperature Extremes over France in an Anthropogenic Scenario: Model Results and Statistical Correction According to Observed Values. Glob. Planet. Change 2007, 57, 16–26. [Google Scholar] [CrossRef]
- USACE. Hydrologic Modeling System User’ s Manual; USACE: Washington, DC, USA, 2008; p. 290. [Google Scholar]
- Hirsch, R.M. A Comparison of Four Streamflow Record Extension Techniques. Water Resour. Res. 1982, 18, 1081–1088. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric to the Approach Problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Breiman, L. Breiman and Cutler’s Random Forests for Classification and Regression; R Package Version 4.7; University of California, Berkeley: Berkeley, CA, USA, 2018; p. 3. [Google Scholar]
- Fan, Z.; Li, W.; Jiang, Q.; Sun, W.; Wen, J.; Gao, J. A Comparative Study of Four Merging Approaches for Regional Precipitation Estimation. IEEE Access 2021, 9, 33625–33637. [Google Scholar] [CrossRef]
- Nguyen, G.V.; Le, X.H.; Van, L.N.; Jung, S.; Yeon, M.; Lee, G. Application of Random Forest Algorithm for Merging Multiple Satellite Precipitation Products across South Korea. Remote Sens. 2021, 13, 4033. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Stephens, M.A. EDF Statistics for Goodness of Fit and Some Comparisons. J. Am. Stat. Assoc. 1974, 69, 730–737. [Google Scholar] [CrossRef]
- Bibi, T.S. Derivation of Short-Term Design Rainfall Intensity from Daily Rainfall Data for Urban Drainage Design Using Empirical Equations in Robe Town, Ethiopia. Int. J. Hydrol. 2023, 7, 63–71. [Google Scholar] [CrossRef]
- Zinabie, A.; Kebede, B. Hydraulic Analysis of Storm Water Drainage System in Alamata Town, South Tigray, Ethiopia. Iran. J. Energy Environ. 2020, 11, 40–50. [Google Scholar] [CrossRef]
- Acharya, N.; Chattopadhyay, S.; Mohanty, U.C.; Dash, S.K.; Sahoo, L.N. On the Bias Correction of General Circulation Model Output for Indian Summer Monsoon. Meteorol. Appl. 2013, 20, 349–356. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, N. Comparison of Bias Correction Methods for Climate Change Projections in the Lower Shivaliks of Punjab. J. Water Clim. Change 2023, 14, 2606–2625. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sayama, T. Apip Impact of Climate Change on Flood Inundation in a Tropical River Basin in Indonesia. Prog. Earth Planet. Sci. 2021, 8, 5. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias Correction Capabilities of Quantile Mapping Methods for Rainfall and Temperature Variables. J. Water Clim. Change 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Soriano, E.; Mediero, L.; Garijo, C. Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water 2019, 11, 2266. [Google Scholar] [CrossRef]
- Ghonchepour, D.; Sadoddin, A.; Bahremand, A.; Croke, B.; Jakeman, A.; Salmanmahiny, A. A Methodological Framework for the Hydrological Model Selection Process in Water Resource Management Projects. Nat. Resour. Model. 2021, 34, e12326. [Google Scholar] [CrossRef]
- Acharya, A.; Lamb, K.; Piechota, T.C. Impacts of Climate Change on Extreme Precipitation Events Over Flamingo Tropicana Watershed. J. Am. Water Resour. Assoc. 2013, 49, 359–370. [Google Scholar] [CrossRef]
- Tibangayuka, N.; Mulungu, D.M.M.; Izdori, F. Assessing the Potential Impacts of Climate Change on Streamflow in the Data-Scarce Upper Ruvu River Watershed, Tanzania. J. Water Clim. Change 2022, 13, 3496–3513. [Google Scholar] [CrossRef]
- Sanyal, J.; Densmore, A.L.; Carbonneau, P. Analysing the Effect of Land-Use/Cover Changes at Sub-Catchment Levels on Downstream Flood Peaks: A Semi-Distributed Modelling Approach with Sparse Data. Catena 2014, 118, 28–40. [Google Scholar] [CrossRef]
- Jemberie, M.A.; Awass, A.A.; Melesse, A.M.; Ayele, G.T.; Demissie, S.S. Seasonal Rainfall–Runoff Variability Analysis, Lake Tana Sub-Basin, Upper Blue Nile Basin, Ethiopia. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Cham, Switzerland, 2016; pp. 341–363. [Google Scholar]
- Tassew, B.G.; Belete, M.A.; Miegel, K. Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. Hydrology 2019, 6, 21. [Google Scholar] [CrossRef]
- Cronshey, R. Urban Hydrology for Small Watersheds; US Department of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 1986. [Google Scholar]
- Cunge, J.A. On the Subject of a Flood Propagation Computation Method (Musklngum Method). J. Hydraul. Res. 1969, 7, 205–230. [Google Scholar] [CrossRef]
- Redlands, C. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Kirpich, Z.P. Time of Concentration of Small Agricultural Watersheds. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: NewYork, NY, USA, 1988; ISBN 0070108102. [Google Scholar]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe Jr, G.J. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Veith, T.L.; Bosch, D.D.; Arnold, J.G. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. J. Hydrol. Eng. 2007, 12, 173–189. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J. V River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Alaminie, A.A.; Tilahun, S.A.; Legesse, S.A.; Zimale, F.A.; Tarkegn, G.B.; Jury, M.R. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water 2021, 13, 2110. [Google Scholar] [CrossRef]
- Ayalew, D.W.; Asefa, T.; Moges, M.A.; Leyew, S.M. Evaluating the Potential Impact of Climate Change on the Hydrology of Ribb Catchment, Lake Tana Basin, Ethiopia. J. Water Clim. Change 2022, 13, 190–205. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Sándor, S.; Zoltán, T. The Dynamics of Hydrological Extremes under the Highest Emission Climate Change Scenario in the Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water 2023, 15, 358. [Google Scholar] [CrossRef]
- Fischer, T.; Su, B.; Luo, Y.; Scholten, T. Probability Distribution of Precipitation Extremes for Weather Index-Based Insurance in the Zhujiang River Basin, South China. J. Hydrometeorol. 2012, 13, 1023–1037. [Google Scholar] [CrossRef]
- Benyahya, L.; Gachon, P.; St-Hilaire, A.; Laprise, R. Frequency Analysis of Seasonal Extreme Precipitation in Southern Quebec (Canada): An Evaluation of Regional Climate Model Simulation with Respect to Two Gridded Datasets. Hydrol. Res. 2014, 45, 115–133. [Google Scholar] [CrossRef]
- Anteneh, M.; Mohammed, W. Effects of Land Cover Changes and Slope Gradient on Soil Quality in the Gumara Watershed, Lake Tana Basin of North—West Ethiopia. Model. Earth Syst. Environ. 2020, 6, 85–97. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Moges, M.A. Assessing the Land Use/Cover Dynamics and Its Impact on the Low Flow of Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Hydrol. Curr. Res. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Zelelew, D.G.; Melesse, A.M. Applicability of a Spatially Semi-Distributed Hydrological Model for Watershed Scale Runoff Estimation in Northwest Ethiopia. Water 2018, 10, 923. [Google Scholar] [CrossRef]
- Yilma, Z.L.; Kebede, H.H. Simulation of the Rainfall-Runoff Relationship Using an HEC-HMS Hydrological Model for Dabus Subbasin, Blue Nile Basin, Ethiopia. H2Open J. 2023, 6, 331–342. [Google Scholar] [CrossRef]
- USACE. Hydrologic Modeling System HEC-HMS Technical Reference Manual; Hydrologic Engineering Center: Davis, CA, USA, 2000; p. 158. [Google Scholar]
- OCHA. Eastern Africa Region (Regional Floods Snapshot); OCHA: Geneva, Switzerland, 2019; p. 2019. [Google Scholar]
- Chen, Y.; Xu, Y.; Yin, Y. Impacts of Land Use Change Scenarios on Storm-Runoff Generation in Xitiaoxi Basin, China. Quat. Int. 2009, 208, 121–128. [Google Scholar] [CrossRef]
- Saghafian, B.; Farazjoo, H.; Bozorgy, B.; Yazdandoost, F. Flood Intensification Due to Changes in Land Use. Water Resour. Manag. 2008, 22, 1051–1067. [Google Scholar] [CrossRef]
- Maghsood, F.F.; Moradi, H.; Bavani, A.R.M.; Panahi, M.; Berndtsson, R.; Hashemi, H. Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios. Water 2019, 11, 273. [Google Scholar] [CrossRef]
- Mengistu, A.G.; Woldesenbet, T.A.; Dile, Y.T.; Bayabil, H.K.; Tefera, G.W. Modeling Impacts of Projected Land Use and Climate Changes on the Water Balance in the Baro Basin, Ethiopia. Heliyon 2023, 9, e13965. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Climate and Land Use Change on Hydrological Response in Gumara Watershed, Ethiopia. Ecohydrol. Hydrobiol. 2021, 21, 315–332. [Google Scholar] [CrossRef]
No. | Station Name | Latitude (°) | Longitude (°) | Elevation (m) |
---|---|---|---|---|
1 | Amed Ber | 11.91 | 37.88 | 2051 |
2 | Arb Gebeya | 11.62 | 37.74 | 2248 |
3 | Debre Tabor | 11.87 | 38.01 | 2612 |
4 | Gassay | 11.79 | 38.13 | 2789 |
5 | Hamusit | 11.78 | 37.56 | 1954 |
6 | Mekaneyesus | 11.58 | 37.90 | 2374 |
7 | Wanzaye | 11.78 | 37.68 | 1821 |
8 | Wereta | 11.92 | 37.70 | 1819 |
Gridded Rainfall Product | Spatial Resolution (km) | Source URL (Accessed Date Day/Month/Year) | Reference |
---|---|---|---|
MSWEP | 10 km × 10 km | https://www.gloh2o.org/mswep (accessed on 1 February 2024) | [54] |
CHIRPS | 5 km × 5 km | https://www.chc.ucsb.edu/data/chirps/ (accessed on 15 February 2024) | [55] |
ERA5-Land | 10 km × 10 km | https://www.ecmwf.int/en/era5-land (accessed on 25 February 2024) | [56] |
GCM | Name | Spatial Resolution (km) | Modeling Center | Country |
---|---|---|---|---|
CMIP5 | MIROC5 | 25 km × 25 km | National Institute for Environmental Studies, the University of Tokyo | Japan |
MRI-CGCM3 | 25 km × 25 km | Meteorological Research Institute | Japan | |
CanESM2 | 25 km × 25 km | Canadian Centre for Climate Modeling and Analysis | Canada | |
MPI-ESM1-2-LR | 25 km × 25 km | Max Planck Institute for Meteorology | Germany | |
CMIP6 | MPI-ESM1-2-LR | 25 km × 25 km | Max Planck Institute for Meteorology | Germany |
MRI-ESM2-0 | 25 km × 25 km | Meteorological Research Institute | Japan | |
CNRM-CM6-1 | 25 km × 25 km | Centre National de Recherches Meteorologiques | France | |
BCC-CSM2-MR | 25 km × 25 km | Beijing Climate Center, China Meteorological Administration | China |
Subwatershed | Area (km2) | Subwatershed Slope (%) | Longest Flow Path Length (km) | Longest Flow Path Slope (%) | Centroidal Flow Path Length (km) | Centroidal Flow Path Slope (%) |
---|---|---|---|---|---|---|
W1 | 203.4 | 24.20 | 30.8 | 4.952 | 11.4 | 1.89 |
W2 | 115.2 | 13.10 | 28.9 | 1.748 | 13.3 | 0.35 |
W3 | 196.5 | 15.00 | 34.0 | 1.39 | 14.2 | 1.13 |
W4 | 215.2 | 19.40 | 34.2 | 2.287 | 13.0 | 1.06 |
W5 | 135.7 | 24.20 | 35.9 | 3.118 | 15.1 | 1.94 |
W6 | 99.9 | 14.50 | 25.8 | 1.871 | 10.3 | 0.18 |
W7 | 175.2 | 19.70 | 27.2 | 2.936 | 10.0 | 1.10 |
W8 | 115.6 | 15.40 | 33.6 | 1.999 | 21.0 | 0.97 |
Gumara | 1256.7 |
Simulation | Peak Discharge (m3/s) | Change in Peak Discharge (%) |
---|---|---|
Initial simulation | 280 | – |
CN (+25%) | 307.4 | 9.79 |
CN (−25%) | 244.4 | −12.71 |
Event | Peak Discharge (m3/s) | Performance Evaluation | ||||
---|---|---|---|---|---|---|
Observed | Simulated | RMSE (m3/s) | R | NSE | PBIAS | |
Event 1 (calibration) | 362 | 423.6 | 27.1 | 0.89 | 0.82 | −5.19 |
Event 2 (calibration) | 402 | 417.7 | 25.69 | 0.94 | 0.88 | 1.95 |
Event 3 (validation) | 365.5 | 350.8 | 26.70 | 0.87 | 0.85 | −3.99 |
Runoff Volume Model: SCS-Curve Number | Direct Runoff Model: SCS-Unit Hydrograph | Routing Model: Muskingum Model | |||||
---|---|---|---|---|---|---|---|
Subwatershed | Initial Abstraction (mm) | Curve Number | Subwatershed | Lag Time (min.) | Reach | Muskingum K (hr.) | Muskingum X (hr.) |
W1 | 15.2 | 77 | W1 | 106 | R1 | 1 | 0.45 |
W2 | 14.9 | 77 | W2 | 150 | R2 | 0.76 | 0.50 |
W3 | 14.3 | 78 | W3 | 186 | R3 | 0.15 | 0.35 |
W4 | 14.3 | 78 | W4 | 155 | R4 | 0.1 | 0.30 |
W5 | 14.9 | 77 | W5 | 142 | R5 | 0.58 | 0.50 |
W6 | 15.5 | 77 | W6 | 134 | R6 | 1.1 | 0.50 |
W7 | 15.2 | 77 | W7 | 118 | R7 | 1.17 | 0.45 |
W8 | 14.3 | 78 | W8 | 160 | R8 | 0.36 | 0.40 |
Return Period | Peak Discharge (m3/s) | Runoff Volume (MCM) | ||||
---|---|---|---|---|---|---|
1985 | 2019 | Change (%) | 1985 | 2019 | Change (%) | |
T-5 | 169.4 | 211.7 | 24.9 | 4.8 | 5.96 | 24.2 |
T-10 | 228.4 | 278.5 | 21.9 | 6.4 | 7.66 | 19.7 |
T-25 | 298.9 | 359.5 | 20.2 | 8.3 | 9.66 | 16.4 |
T-50 | 348.4 | 416.7 | 19.6 | 9.6 | 10.8 | 12.5 |
T-100 | 384.8 | 452.7 | 17.6 | 10.8 | 11.8 | 9.3 |
Subwatershed | Area (km2) | (m3/s) | (m3/s) | (%) | (m3/s/km2) | ||
---|---|---|---|---|---|---|---|
LULC-1985 | |||||||
W1 | 203.4 | 74.9 | 270.7 | 16.8 | 2 | 0.269 | 3 |
W2 | 115.2 | 37.5 | 297.5 | 8.6 | 7 | 0.242 | 6 |
W3 | 196.5 | 65.6 | 281.5 | 13.5 | 4 | 0.223 | 8 |
W4 | 215.2 | 67 | 266.5 | 18.1 | 1 | 0.274 | 2 |
W5 | 135.7 | 40.1 | 292.4 | 10.1 | 5 | 0.243 | 5 |
W6 | 99.9 | 42 | 295.1 | 9.3 | 6 | 0.303 | 1 |
W7 | 175.2 | 55.7 | 281.4 | 13.5 | 3 | 0.251 | 4 |
W8 | 115.6 | 40.6 | 298.9 | 8.1 | 8 | 0.229 | 7 |
Gumara | 1256.7 | 325.4 | |||||
LULC-2000 | |||||||
W1 | 203.4 | 81.8 | 310.8 | 15.8 | 2 | 0.287 | 5 |
W2 | 115.2 | 40.5 | 338.1 | 8.4 | 7 | 0.269 | 7 |
W3 | 196.5 | 69.6 | 324.1 | 12.2 | 4 | 0.229 | 8 |
W4 | 215.2 | 80.6 | 298.5 | 19.1 | 1 | 0.328 | 1 |
W5 | 135.7 | 50.8 | 328.8 | 10.9 | 5 | 0.297 | 4 |
W6 | 99.9 | 39.9 | 338.6 | 8.3 | 8 | 0.305 | 3 |
W7 | 175.2 | 73.4 | 313.2 | 15.1 | 3 | 0.319 | 2 |
W8 | 115.6 | 50.2 | 337 | 8.7 | 6 | 0.278 | 6 |
Gumara | 1256.7 | 369.1 | |||||
LULC-2010 | |||||||
W1 | 203.4 | 82.6 | 324.8 | 15.3 | 2 | 0.289 | 7 |
W2 | 115.2 | 45.5 | 348.7 | 9.1 | 6 | 0.303 | 5 |
W3 | 196.5 | 70.3 | 339.1 | 11.6 | 4 | 0.226 | 8 |
W4 | 215.2 | 84.6 | 309.6 | 19.3 | 1 | 0.344 | 1 |
W5 | 135.7 | 54.8 | 340.3 | 11.3 | 5 | 0.319 | 4 |
W6 | 99.9 | 42.9 | 350.4 | 8.7 | 8 | 0.332 | 3 |
W7 | 175.2 | 75.4 | 325.5 | 15.1 | 3 | 0.333 | 2 |
W8 | 115.6 | 51.1 | 350 | 8.8 | 7 | 0.291 | 6 |
Gumara | 1256.7 | 383.6 | |||||
LULC-2019 | |||||||
W1 | 203.4 | 89.7 | 352.8 | 15.3 | 3 | 0.314 | 6 |
W2 | 115.2 | 51.4 | 378.1 | 9.3 | 6 | 0.335 | 5 |
W3 | 196.5 | 76.6 | 369.1 | 11.4 | 5 | 0.242 | 8 |
W4 | 215.2 | 90.7 | 337.5 | 19.0 | 1 | 0.368 | 1 |
W5 | 135.7 | 61.1 | 368.6 | 11.5 | 4 | 0.354 | 4 |
W6 | 99.9 | 48.3 | 380.1 | 8.8 | 7 | 0.366 | 3 |
W7 | 175.2 | 83.4 | 352.3 | 15.5 | 2 | 0.367 | 2 |
W8 | 115.6 | 53 | 381.7 | 8.4 | 8 | 0.303 | 7 |
Gumara | 1256.7 | 416.7 |
Scenario/Period | BAU Land Use Scenario | Flow Under Combined Future Climate and BAU Land Use Scenario | GOV Land Use Scenario | Flow Under Combined Future Climate and GOV Land Use Scenario | ||
---|---|---|---|---|---|---|
Mean Annual Maximum Flow (m3/s) | Change (%) | Mean Annual Maximum Flow (m3/s) | Change (%) | |||
Historical CMIP5 (1981–2005) | 188.1 | – | 188.1 | – | ||
Historical CMIP6 (1981–2005) | 211.5 | – | 211.5 | – | ||
RCP4.5 (2031–2055) | 2035 | 224 | 19.1 | 2035 | 200.5 | 6.6 |
RCP4.5 (2056–2080) | 2065 | 209.4 | 11.3 | 2065 | 200.2 | 6.4 |
RCP8.5 (2031–2055) | 2035 | 223.5 | 18.9 | 2035 | 204.0 | 8.5 |
RCP8.5 (2056–2080) | 2065 | 225.7 | 20.0 | 2065 | 202.8 | 7.8 |
SSP2-4.5 (2031–2055) | 2035 | 243.1 | 14.9 | 2035 | 225.1 | 6.4 |
SSP2-4.5 (2056–2080) | 2065 | 237.4 | 12.3 | 2065 | 223.9 | 5.9 |
SSP5-8.5 (2031–2055) | 2035 | 246.4 | 16.5 | 2035 | 226.4 | 7.0 |
SSP5-8.5 (2056–2080) | 2065 | 254.8 | 20.5 | 2065 | 230.6 | 9.0 |
Scenario/Period | BAU Land Use Scenario | Flow Under Combined Future Climate and BAU Land Use Scenario | GOV Land Use Scenario | Flow Under Combined Future Climate and GOV Land Use Scenario | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Q0–Q25 | Q26–Q50 | Q51–Q75 | Q76–Q100 | Q0–Q25 | Q26–Q50 | Q51–Q75 | Q76–Q100 | |||
Historical CMIP5 (1981–2005) | _ | 234.7 | 200.4 | 172.3 | 142.8 | _ | 234.7 | 200.4 | 172.3 | 142.8 |
Historical CMIP6 (1981–2005) | _ | 265.5 | 224.9 | 191.6 | 161.7 | _ | 265.5 | 224.9 | 191.6 | 161.7 |
RCP4.5 (2031–2055) | 2035 | 269.6 | 234.4 | 212.9 | 177.5 | 2035 | 242.4 | 203.5 | 168.4 | 141.7 |
RCP4.5 (2055–2080) | 2065 | 285.7 | 219.5 | 182.9 | 147.8 | 2065 | 268.4 | 203.8 | 172.1 | 132.3 |
RCP8.5 (2031–2055) | 2035 | 293.2 | 244.6 | 209.3 | 143.4 | 2035 | 282.7 | 231 | 197 | 123.6 |
RCP8.5 (2056–2080) | 2065 | 291 | 241 | 203.3 | 165.1 | 2065 | 276.7 | 227.9 | 184.4 | 149.3 |
SSP2-4.5 (2031–2055) | 2035 | 330.8 | 274.9 | 206.3 | 155.2 | 2035 | 308 | 247.8 | 186 | 132.1 |
SSP2-4.5 (2056–2080) | 2065 | 328.7 | 250.5 | 206.3 | 162.1 | 2065 | 310.7 | 227.4 | 189.2 | 144.8 |
SSP5-8.5 (2031–2055) | 2035 | 327 | 272 | 218.1 | 164.3 | 2035 | 298.3 | 245.1 | 196.9 | 139.3 |
SSP5-8.5 (2056–2080) | 2065 | 356.4 | 302.2 | 247.2 | 177.8 | 2065 | 331.6 | 271.5 | 219.7 | 143.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belay, H.; Melesse, A.M.; Tegegne, G.; Tamiru, H. Identifying Flood Source Areas and Analyzing High-Flow Extremes Under Changing Land Use, Land Cover, and Climate in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Climate 2025, 13, 7. https://doi.org/10.3390/cli13010007
Belay H, Melesse AM, Tegegne G, Tamiru H. Identifying Flood Source Areas and Analyzing High-Flow Extremes Under Changing Land Use, Land Cover, and Climate in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Climate. 2025; 13(1):7. https://doi.org/10.3390/cli13010007
Chicago/Turabian StyleBelay, Haile, Assefa M. Melesse, Getachew Tegegne, and Habtamu Tamiru. 2025. "Identifying Flood Source Areas and Analyzing High-Flow Extremes Under Changing Land Use, Land Cover, and Climate in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia" Climate 13, no. 1: 7. https://doi.org/10.3390/cli13010007
APA StyleBelay, H., Melesse, A. M., Tegegne, G., & Tamiru, H. (2025). Identifying Flood Source Areas and Analyzing High-Flow Extremes Under Changing Land Use, Land Cover, and Climate in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Climate, 13(1), 7. https://doi.org/10.3390/cli13010007