Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves
<p>(<b>a</b>) Location of the four case studies in Spain; (<b>b</b>) catchments of the four case studies.</p> "> Figure 2
<p>Comparison between HBV results and observations in the control period.</p> "> Figure 3
<p>Comparison between monthly mean temperatures supplied by climate models and observations in the control period. Blue lines are observations. Red lines represent the median of the 12 climate models considered.</p> "> Figure 4
<p>Annual maximum daily precipitation frequency curves in Barrios de Luna catchment. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw precipitation supplied by climate models; (<b>b</b>) linear bias correction; (<b>c</b>) polynomial bias correction.</p> "> Figure 5
<p>Annual maximum daily precipitation frequency curves in Camporredondo catchment. Blue lines are frequency curves fitted to observations. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw precipitation supplied by climate models; (<b>b</b>) linear bias correction; (<b>c</b>) polynomial bias correction.</p> "> Figure 6
<p>Annual maximum daily precipitation frequency curves in Porma catchment. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw precipitation supplied by climate models; (<b>b</b>) linear bias correction; (<b>c</b>) polynomial bias correction.</p> "> Figure 7
<p>Annual maximum daily precipitation frequency curves in Riaño catchment. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw precipitation supplied by climate models; (<b>b</b>) linear bias correction; (<b>c</b>) polynomial bias correction.</p> "> Figure 8
<p>Comparison between flood frequency curves fitted to annual maximum series simulated by the HBV model with observed data and HBV simulations with climate projections in Barrios de Luna catchment, using a set of combinations of bias correction techniques. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw data with no bias correction; (<b>b</b>) raw temperature and precipitation with quantile mapping (QM) linear correction; (<b>c</b>) raw temperature and precipitation with QM polynomial correction; (<b>d</b>) raw precipitation and temperature bias corrected; (<b>e</b>) temperature bias corrected and precipitation with QM linear correction; (<b>f</b>) temperature bias corrected and precipitation with QM polynomial correction.</p> "> Figure 9
<p>Comparison between flood frequency curves fitted to annual maximum series simulated by the HBV model with observed data and HBV simulations with climate projections in Camporredondo catchment, using a set of combinations of bias correction techniques. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw data with no bias correction; (<b>b</b>) raw temperature and precipitation with QM linear correction; (<b>c</b>) raw temperature and precipitation with QM polynomial correction; (<b>d</b>) raw precipitation and temperature bias corrected; (<b>e</b>) temperature bias corrected and precipitation with QM linear correction; (<b>f</b>) temperature bias corrected and precipitation with QM polynomial correction.</p> "> Figure 10
<p>Comparison between flood frequency curves fitted to annual maximum series simulated by the HBV model with observed data and HBV simulations with climate projections in Porma catchment, using a set of combinations of bias correction techniques. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw data with no bias correction; (<b>b</b>) raw temperature and precipitation with QM linear correction; (<b>c</b>) raw temperature and precipitation with QM polynomial correction; (<b>d</b>) raw precipitation and temperature bias corrected; (<b>e</b>) temperature bias corrected and precipitation with QM linear correction; (<b>f</b>) temperature bias corrected and precipitation with QM polynomial correction.</p> "> Figure 11
<p>Comparison between flood frequency curves fitted to annual maximum series simulated by the HBV model with observed data and HBV simulations with climate projections in Riaño catchment, using a set of combinations of bias correction techniques. Red lines represent the median of the 12 climate models considered. (<b>a</b>) Raw data with no bias correction; (<b>b</b>) raw temperature and precipitation with QM linear correction; (<b>c</b>) raw temperature and precipitation with QM polynomial correction; (<b>d</b>) raw precipitation and temperature bias corrected; (<b>e</b>) temperature bias corrected and precipitation with QM linear correction; (<b>f</b>) temperature bias corrected and precipitation with QM polynomial correction.</p> "> Figure 12
<p>Expected flood frequency curves in the future periods (2011–2040, 2041–2070 and 2071–2100) with the best bias correction techniques identified in the previous section. The dotted lines show the Q<sub>33</sub> and Q<sub>67</sub> percentiles for each period. The first column shows the results for RCP 4.5 and the second column for RCP 8.5. The first raw shows results for the Barrios de Luna catchment, the second for Camporredondo, the third for Porma and the fourth for Riaño.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Data
2.2. Generalized Extreme Value (GEV) Distribution
2.3. HBV Model and Calibration
2.4. Bias Correction
2.4.1. Temperature Correction
2.4.2. Precipitation Correction
3. Results and Discussion
3.1. Bias Correction in Temperature Series
3.2. Bias Correction in Precipitation Series
3.3. Bias Correction in Terms of Flood Frequency Curves in the Control Period
3.4. Expected Changes in Flood Frequency Curves in the Future Period
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AEMET | Agencia Española de Meteorología |
CORDEX | Coordinated Regional Climate Downscaling Experiment |
GAP | Genetic Algorithm and Powell |
GCM | General Climate Model |
GEV | Generalized extreme value |
HBV | Hydrologiska Byråns Vattenbalansavdelning |
References
- Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Volume 996. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. (Eds.) Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Baratti, E.; Montanari, A.; Castellarin, A.; Salinas, J.L.; Viglione, A.; Bezzi, A. Estimating the flood frequency distribution at seasonal and annual time scales. Hydrol. Earth Syst. Sci. 2012, 16, 4651–4660. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F.F.; Huang, S.; Milly, P.C.D.; Stoffel, M.; Matczak, P.; et al. Differences in flood hazard projections in Europe–their causes and consequences for decision making. Hydrol. Sci. J. 2017, 62, 1–14. [Google Scholar] [CrossRef]
- Eden, J.M.; Widmann, M.; Maraun, D.; Vrac, M. Comparison of GCM-and RCM-simulated precipitation following stochastic postprocessing. J. Geophys. Res. Atmos. 2014, 119, 11040–11053. [Google Scholar] [CrossRef]
- Bergström, S.; Carlsson, B.; Gardelin, M.; Lindström, G.; Pettersson, A.; Rummukainen, M. Climate change impacts on runoff in Sweden assessments by global climate models, dynamical downscaling and hydrological modelling. Clim. Res. 2001, 16, 101–112. [Google Scholar] [CrossRef]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geogr. Compass 2010, 4, 834–860. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: Abenchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A.; van den Hurk, B.J.J.M.; de Wit, M.J.M. Estimatedchanges in flood quantiles of the river Meuse from resampling of regionalclimate model output. J. Hydrol. 2008, 351, 331–343. [Google Scholar] [CrossRef]
- Déqué, M.; Rowell, D.P.; Lüthi, D.; Giorgi, F.; Christensen, J.H.; Rockel, B.; Jacob, D.; Kjellström, E.; de Castro, M.; van den Hurk, B. An intercomparison ofregional climate simulations for Europe: Assessing uncertainties in modelprojections. Clim. Chang. 2007, 81, 53–70. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- De Lara, E.P. Método de Regionalización de Precipitación Basado en Análogos; Agencia Estatal de Meteorología: Madrid, Spain, 2008.
- De Lara, E.P. Método de Regionalización de Temperatura Basado en Análogos; Agencia Estatal de Meteorología: Madrid, Spain, 2008.
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgopoulou, E. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Borén, R.; Ribalaygua, J.; Balairón, L. Método Analógico de Simulación de Escenarios Climáticos a Escala Comarcal; Informe Técnico: Madrid, Spain, 1997. [Google Scholar]
- Garijo, C.; Mediero, L.; Garrote, L. Usefulness of AEMET generated climate projections for climate change impact studies on floods at national-scale (Spain). Ing. Agua 2018, 22, 153–166. [Google Scholar] [CrossRef]
- Garijo, C.; Mediero, L. Assessment of changes in annual maximum precipitations in the Iberian Peninsula under climate change. Water 2019. submitted. [Google Scholar]
- Garijo, C.; Mediero, L. Quantification of the expected changes in annual maximum daily precipitation quantiles under climate change in the Iberian Peninsula. Proceedings 2019, 7, 23. [Google Scholar] [CrossRef]
- Hakala, K.; Addor, N.; Seibert, J. Hydrological modeling to evaluate climate model simulations and their bias correction. J. Hydrometeorol. 2018, 19, 1321–1337. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Garijo, C.; Mediero, L. Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain. Acta Geophys. 2018, 66, 769–790. [Google Scholar] [CrossRef]
- Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- Álvarez, A.J.; Mediero, L.; García, C. Review and selection of statistical models to fit maximum annual peak flows distribution function in Spain. Ing 2014, 104, 5–31. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R.; Wood, E.F. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 1985, 27, 251–261. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef] [Green Version]
- Durman, C.F.; Gregory, J.M.; Hassell, D.C.; Jones, R.G.; Murphy, J.M. A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Q. J. R. Meteorol. Soc. 2001, 127, 1005–1015. [Google Scholar] [CrossRef]
- Horton, P.; Schaefli, B.; Mezghani, A.; Hingray, B.; Musy, A. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrol. Process. Int. J. 2006, 20, 2091–2109. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
- Ines, A.V.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, R.; Sharma, A. A multivariate quantile-matching bias correction approach with auto-and cross-dependence across multiple time scales: Implications for downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
Catchment Descriptors | Barrios de Luna | Camporredondo | Porma | Riaño |
---|---|---|---|---|
Area (km2) | 491.86 | 230 | 249.64 | 593 |
River Length (km) | 36.23 | 28.43 | 23.12 | 36.16 |
Maximum altitude (m) | 2409.58 | 2532.23 | 2160.91 | 2492.52 |
Minimum altitude (m) | 1084.11 | 1285 | 1091.99 | 1081.5 |
Acronym | CGM | RCM |
---|---|---|
ICH-CCL | ICHEC-EC-EARTH | CCLM4-8-17 |
MPI-CCL | MPI-ESM-LR | CCLM4-8-17 |
MOH-RAC | MOHC-HadGEM2-ES | RACMO22E |
CNR-CCL | CNRM-CMS | CCLM4-8-17 |
ICH-RAC | ICHEC-EC-EARTH | RACMO22E |
MOH-CCL | MOHC-HadGEM2-ES | CCLM4-8-17 |
IPS-WRF | IPSL-CMSA-MR | WRF331F |
IPS-RCA | IPSL-CM5A-MR | RCA4 |
MOH-RCA | MOHC-HadGEM2-ES | RCA4 |
ICH-RCA | ICHEC-EC-EARTH | RCA4 |
CNR-RCA | CNRM-CM5 | RCA4 |
MPI-RCA | MPI-ESM-LR | RCA4 |
Barrios de Luna | |||||||||
Tr (Years) | 2 | 5 | 10 | 25 | 50 | 100 | 200 | 500 | 1000 |
Absolute error (m3/s) | 44.72 | 38.04 | 28.65 | 11.08 | −6.21 | −27.15 | −51.96 | −91.19 | −126.16 |
Relative error (%) | 55.36 | 32.03 | 19.43 | 5.88 | −2.79 | −10.45 | −17.27 | −25.22 | −30.55 |
Camporredondo | |||||||||
Tr (years) | 2 | 5 | 10 | 25 | 50 | 100 | 200 | 500 | 1000 |
Absolute error (m3/s) | −11.19 | −18.35 | −23.79 | −30.92 | −35.89 | −39.89 | −42.12 | −40.41 | −33.48 |
Relative error (%) | −20.28 | −20.98 | −20.99 | −20.33 | −19.29 | −17.73 | −15.63 | −11.93 | −8.36 |
Porma | |||||||||
Tr (years) | 2 | 5 | 10 | 25 | 50 | 100 | 200 | 500 | 1000 |
Absolute error (m3/s) | −29.58 | −43.56 | −49.06 | −51.09 | −48.51 | −41.95 | −30.85 | −7.93 | 16.85 |
Relative error (%) | −41.71 | −42.17 | −39.72 | −34.56 | −29.41 | −23.14 | −15.67 | −3.67 | −7.31 |
Riaño | |||||||||
Tr (years) | 2 | 5 | 10 | 25 | 50 | 100 | 200 | 500 | 1000 |
Absolute error (m3/s) | 45.45 | 31.64 | 20.30 | 3.76 | −9.78 | −23.88 | −38.07 | −55.80 | −67.19 |
Relative error (%) | 42.60 | 16.76 | 8.03 | 1.08 | −2.29 | −4.62 | −6.16 | −7.22 | −7.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano, E.; Mediero, L.; Garijo, C. Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water 2019, 11, 2266. https://doi.org/10.3390/w11112266
Soriano E, Mediero L, Garijo C. Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water. 2019; 11(11):2266. https://doi.org/10.3390/w11112266
Chicago/Turabian StyleSoriano, Enrique, Luis Mediero, and Carlos Garijo. 2019. "Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves" Water 11, no. 11: 2266. https://doi.org/10.3390/w11112266
APA StyleSoriano, E., Mediero, L., & Garijo, C. (2019). Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water, 11(11), 2266. https://doi.org/10.3390/w11112266