OBIA-Based Extraction of Artificial Terrace Damages in the Loess Plateau of China from UAV Photogrammetry
<p>Terrace damages found by our field investigation. The damages generally include (<b>a</b>) collapse; (<b>b</b>) terrace sinkhole; and (<b>c</b>) ridge sinkhole.</p> "> Figure 2
<p>Study area and data: (<b>a</b>,<b>b</b>) Locations of the Loess Plateau, China and the study area; (<b>c</b>) DSM of the study area obtained from UAV photogrammetry; (<b>d</b>) Image obtained from UAV photogrammetry with reference polygons of terrace damages by artificial interpretation.</p> "> Figure 3
<p>Workflow of the proposed extraction method.</p> "> Figure 4
<p>ESP result.</p> "> Figure 5
<p>Segmentation results with different candidate scale parameters. The three values under each figure represent the scale, shape, and compactness, respectively. The actual terrace damage areas are highlighted by red lines.</p> "> Figure 6
<p>Feature ranking for kNN classification.</p> "> Figure 7
<p>Classification result. The left figure is the classification map of terrace damages, and the three figures on the right show the images without overlapping classification results within the box area of the left figure. The red arrow shows the terrace damages are continuously distributed along the slope.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. OBIA-Based Terrace Damage Extraction
2.3.1. Image Segmentation
- (1)
- Feature selection
- (2)
- Segmentation parametric optimisation
2.3.2. Terrace Damage Classification
2.3.3. Accuracy Assessment
3. Results
3.1. Segmentation Results
3.1.1. Feature Selection Result from Correlation Analysis
3.1.2. Segmentation Parametric Optimisation Result by ESP
3.1.3. Final Segmentation Results by MRS
3.2. Classification Results
3.2.1. Feature Selection Result via Importance Ranking
3.2.2. Classification Result by kNN
3.3. Accuracy Assessment Result
4. Discussion
4.1. Rationality of the Proposed Method
4.2. Spatial Distribution of Terrace Damages
4.3. Potential Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Features | R | G | B | EXG | R_Mean | R_Homo | R_Ent | R_Cor | G_Mean | G_Homo | G_Ent | G_Cor | B_Mean | B_Homo | B_Ent | B_Cor | Ele | HSh | Slp | Ele_Mean | Ele_Homo | Ele_Ent | Ele_Cor |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | 1.0000 | ||||||||||||||||||||||
G | 0.8751 | 1.0000 | |||||||||||||||||||||
B | 0.9550 | 0.8714 | 1.0000 | ||||||||||||||||||||
EXG | −0.6013 | −0.2597 | −0.6002 | 1.0000 | |||||||||||||||||||
R_Mean | 0.4950 | 0.4307 | 0.4720 | 0.1601 | 1.0000 | ||||||||||||||||||
R_Homo | 0.0335 | 0.0630 | 0.0511 | −0.3522 | −0.5707 | 1.0000 | |||||||||||||||||
R_Ent | −0.0370 | −0.0491 | −0.0498 | 0.4639 | 0.7197 | −0.8379 | 1.0000 | ||||||||||||||||
R_Cor | 0.0586 | 0.0574 | 0.0455 | −0.2558 | −0.3576 | 0.3233 | −0.4008 | 1.0000 | |||||||||||||||
G_Mean | 0.2987 | 0.3394 | 0.2967 | 0.4081 | 0.9641 | −0.6144 | 0.7824 | −0.3991 | 1.0000 | ||||||||||||||
G_Homo | 0.0596 | 0.0855 | 0.0626 | −0.3501 | −0.5455 | 0.8984 | −0.7980 | 0.3468 | −0.5935 | 1.0000 | |||||||||||||
G_Ent | −0.0507 | −0.0610 | −0.0539 | 0.4568 | 0.6992 | −0.8038 | 0.9290 | −0.4019 | 0.7635 | −0.8404 | 1.0000 | ||||||||||||
G_Cor | 0.0471 | 0.0483 | 0.0441 | −0.2659 | −0.3805 | 0.3426 | −0.4206 | 0.7816 | −0.4209 | 0.3667 | −0.4295 | 1.0000 | |||||||||||
B_Mean | 0.5126 | 0.4644 | 0.5357 | 0.1216 | 0.9869 | −0.5429 | 0.6900 | −0.3507 | 0.9521 | −0.5249 | 0.6745 | −0.3683 | 1.0000 | ||||||||||
B_Homo | −0.0453 | −0.0135 | −0.0301 | −0.3072 | −0.6066 | 0.9309 | −0.8098 | 0.3126 | −0.6370 | 0.8965 | −0.8008 | 0.3385 | −0.5836 | 1.0000 | |||||||||
B_Ent | 0.0179 | 0.0038 | 0.0068 | 0.4316 | 0.7437 | −0.8122 | 0.9423 | −0.3868 | 0.7970 | −0.7964 | 0.9273 | −0.4173 | 0.7173 | −0.8379 | 1.0000 | ||||||||
B_Cor | 0.0889 | 0.0859 | 0.0782 | −0.2775 | −0.3471 | 0.3212 | −0.3973 | 0.8321 | −0.3943 | 0.3519 | −0.4083 | 0.7861 | −0.3376 | 0.3290 | −0.4059 | 1.0000 | |||||||
Ele | 0.1385 | 0.0850 | 0.1195 | −0.1186 | 0.0697 | −0.1873 | 0.1473 | −0.0920 | 0.0296 | −0.1938 | 0.1559 | −0.1036 | 0.0653 | −0.2001 | 0.1587 | −0.0939 | 1.0000 | ||||||
HSh | 0.0336 | 0.0590 | 0.0322 | −0.0985 | −0.1724 | 0.1667 | −0.1915 | 0.1290 | −0.1843 | 0.1518 | −0.1803 | 0.1336 | −0.1663 | 0.1578 | −0.1836 | 0.1294 | 0.0141 | 1.0000 | |||||
Slp | −0.2371 | −0.3290 | −0.2297 | −0.0080 | −0.1187 | −0.0787 | 0.0474 | −0.1261 | −0.1142 | −0.0833 | 0.0484 | −0.1184 | −0.1248 | −0.0437 | 0.0234 | −0.1337 | 0.0230 | −0.4410 | 1.0000 | ||||
Ele_Mean | 0.0063 | 0.0039 | 0.0055 | 0.5245 | 0.8701 | −0.6847 | 0.8564 | −0.4501 | 0.9402 | −0.6711 | 0.8411 | −0.4702 | 0.8450 | −0.6812 | 0.8529 | −0.4556 | 0.0452 | −0.2171 | 0.0012 | 1.0000 | |||
Ele_Homo | 0.0134 | 0.0212 | 0.0106 | 0.0195 | 0.0292 | 0.0670 | 0.0093 | 0.0570 | 0.0317 | 0.0711 | 0.0081 | 0.0532 | 0.0276 | 0.0653 | 0.0104 | 0.0557 | 0.0024 | 0.0347 | −0.0542 | 0.0260 | 1.0000 | ||
Ele_Ent | −0.0252 | −0.0407 | −0.0199 | 0.0029 | 0.0113 | −0.0507 | 0.0443 | −0.0480 | 0.0117 | −0.0514 | 0.0452 | −0.0450 | 0.0124 | −0.0453 | 0.0418 | −0.0473 | −0.0035 | −0.0706 | 0.1109 | 0.0274 | −0.5416 | 1.0000 | |
Ele_Cor | 0.0253 | 0.0392 | 0.0202 | 0.0019 | 0.0007 | 0.0644 | −0.0295 | 0.0622 | 0.0006 | 0.0663 | −0.0308 | 0.0580 | −0.0007 | 0.0595 | −0.0273 | 0.0608 | 0.0056 | 0.0588 | −0.1039 | −0.0136 | 0.7102 | −0.7954 | 1.0000 |
References
- Li, X.; Yang, J.; Zhao, C.; Wang, B. Runoff and sediment from orchard terraces in southeastern China. Land Degrad. Dev. 2014, 25, 184–192. [Google Scholar] [CrossRef]
- Socci, P.; Errico, A.; Castelli, G.; Penna, D.; Preti, F. Terracing: From agriculture to multiple ecosystem services. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Cao, Y.; Wu, Y.; Zhang, Y.; Tian, J. Landscape pattern and sustainability of a 1300-year-old agricultural landscape in subtropical mountain areas, Southwestern China. Int. J. Sustain. Dev. World Ecol. 2013, 20, 349–357. [Google Scholar] [CrossRef]
- Wickama, J.; Okoba, B.; Sterk, G. Effectiveness of sustainable land management measures in West Usambara highlands, Tanzania. Catena 2014, 118, 91–102. [Google Scholar] [CrossRef]
- Dorren, L.; Rey, F. A review of the effect of terracing on erosion. In Proceedings of the Briefing Papers of the 2nd SCAPE Workshop, Cinque Terre, Italy, 13–15 April 2004; pp. 97–108. [Google Scholar]
- Qiu, Y.; Xu, M.-x.; Shi, C.-d.; Zhang, Z.; Zhang, S. Dynamic accumulation of soil organic carbon of terrace changed from slope cropland in the hilly loess plateau of eastern Gansu Province. J. Plant Nutr. Fertil. 2014, 20, 87. [Google Scholar]
- Wang, P.; Wang, K.; Li, T.; Li, Y. Regulation effects of reverse-slope level terrace on the runoff and sediment yield in sloping farmland. Yingyong Shengtai Xuebao 2011, 22, 1261–1267. [Google Scholar]
- Ramos, M.C.; Cots-Folch, R.; Martínez-Casasnovas, J.A. Effects of land terracing on soil properties in the Priorat region in Northeastern Spain: A multivariate analysis. Geoderma 2007, 142, 251–261. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Arévalo, J.R.; Tejedor, M.; Jiménez, C.; Reyes-Betancort, J.A.; Díaz, F.J. Plant species composition and richness in abandoned agricultural terraces vs. natural soils on Lanzarote (Canary Islands). J. Arid Environ. 2016, 124, 165–171. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Varotto, M. Terraced Landscapes Regeneration in the Perspective of the Circular Economy. Sustainability 2021, 13, 4347. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Y.; Hu, W.; Su, S. Analysis of the landscape pattern and aesthetic characteristics of the Hani terraced fields. Geogr. Res. 2006, 4, 624–632. [Google Scholar]
- Varotto, M.; Bonardi, L.; Tarolli, P. World Terraced Landscapes: History, Environment, Quality of Life; Springer: Berlin/Heidelberg, Germany, 2018; Volume 9. [Google Scholar]
- Terkenli, T.S.; Castiglioni, B.; Cisani, M. The challenge of tourism in terraced landscapes. In World Terraced Landscapes: History, Environment, Quality of Life; Springer: Berlin/Heidelberg, Germany, 2019; pp. 295–309. [Google Scholar]
- Van Dijk, A.; Bruijnzeel, L.; Wiegman, S. Measurements of rain splash on bench terraces in a humid tropical steepland environment. Hydrol. Process. 2003, 17, 513–535. [Google Scholar] [CrossRef]
- Díaz, A.R.; Sanleandro, P.M.; Soriano, A.S.; Serrato, F.B.; Faulkner, H. The causes of piping in a set of abandoned agricultural terraces in southeast Spain. Catena 2007, 69, 282–293. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Cammeraat, L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landf. 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
- Stavi, I.; Gusarov, Y.; Halbac-Cotoara-Zamfir, R. Collapse and failure of ancient agricultural stone terraces: On-site geomorphic processes, pedogenic mechanisms, and soil quality. Geoderma 2019, 344, 144–152. [Google Scholar] [CrossRef]
- Kizos, T.; Dalaka, A.; Petanidou, T. Farmers’ attitudes and landscape change: Evidence from the abandonment of terraced cultivations on Lesvos, Greece. Agric. Hum. Values 2010, 27, 199–212. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Cots-Folch, R. Influence of the EU CAP on terrain morphology and vineyard cultivation in the Priorat region of NE Spain. Land Use Policy 2010, 27, 11–21. [Google Scholar] [CrossRef]
- Moreno-de-las-Heras, M.; Lindenberger, F.; Latron, J.; Lana-Renault, N.; Llorens, P.; Arnáez, J.; Romero-Díaz, A.; Gallart, F. Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology 2019, 333, 73–91. [Google Scholar] [CrossRef]
- Wen, Y.; Kasielke, T.; Li, H.; Zhang, B.; Zepp, H. May agricultural terraces induce gully erosion? A case study from the Black Soil Region of Northeast China. Sci. Total Environ. 2021, 750, 141715. [Google Scholar] [CrossRef]
- Paliaga, G.; Luino, F.; Turconi, L.; De Graff, J.V.; Faccini, F. Terraced landscapes on Portofino Promontory (Italy): Identification, geo-hydrological hazard and management. Water 2020, 12, 435. [Google Scholar] [CrossRef] [Green Version]
- Cicinelli, E.; Caneva, G.; Savo, V. A Review on Management Strategies of the Terraced Agricultural Systems and Conservation Actions to Maintain Cultural Landscapes around the Mediterranean Area. Sustainability 2021, 13, 4475. [Google Scholar] [CrossRef]
- Sabir, M. The Terraces of the Anti-Atlas: From Abandonment to the Risk of Degradation of a Landscape Heritage. Water 2021, 13, 510. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Li, Z.; Zhang, J.; Wang, L.; Wang, Z. Influence of land terracing on agricultural and ecological environment in the loess plateau regions of China. Environ. Earth Sci. 2011, 62, 797–807. [Google Scholar] [CrossRef]
- An, P.; Inoue, T.; Zheng, M.; Eneji, A.E.; Inanaga, S. Agriculture on the loess plateau. In Restoration and Development of the Degraded Loess Plateau, China; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–74. [Google Scholar]
- Fu, B. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 1989, 5, 76–82. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Li, P.; Jia, L.; Zhang, X. Quantitative study on influences of terraced field construction and check-dam siltation on soil erosion. J. Geogr. Sci. 2012, 22, 946–960. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Qiu, Y.; Wang, J.; Meng, Q. Land Use Structure and Ecological Processes in the Loess Hilly Area, China; Commercial Press: Beijing, China, 2002. [Google Scholar]
- Feng, Z.; Yang, Y.; Zhang, Y.; Zhang, P.; Li, Y. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy 2005, 22, 301–312. [Google Scholar] [CrossRef]
- Li, L.; Tonts, M. The impacts of temporary labour migration on farming systems of the Loess Plateau, Gansu Province, China. Popul. Space Place 2014, 20, 316–332. [Google Scholar] [CrossRef]
- Tsunekawa, A.; Liu, G.; Yamanaka, N.; Du, S. Restoration and Development of the Degraded Loess Plateau, China; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wei, J.-Z.; Zheng, K.; Zhang, F.; Fang, C.; Zhou, Y.-Y.; Li, X.-C.; Li, F.-M.; Ye, J.-S. Migration of rural residents to urban areas drives grassland vegetation increase in China’s Loess Plateau. Sustainability 2019, 11, 6764. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Xu, C.; Chen, L.; Wang, X. Attitudes of farmers in China’s northern Shaanxi Province towards the land-use changes required under the Grain for Green Project, and implications for the project’s success. Land Use Policy 2009, 26, 1182–1194. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X.; Wei, H.; Fu, B.; Wang, J.; Uriarte-Ruiz, M. Trade-offs between local farmers’ demand for ecosystem services and ecological restoration of the Loess Plateau, China. Ecosyst. Serv. 2021, 49, 101295. [Google Scholar] [CrossRef]
- Tsermegas, I.; Ewski, M.; Biejat, K.; Szynkiewicz, A. Function of Agricultural Terraces in Mediterranean Conditions-Selected Examples From the Island of Ikaria (The Southern Sporades, Greece). Misc. Geogr.-Reg. Stud. Dev. 2011, 15, 65–78. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of terraced slopes to a very intense rainfall event and relationships with land abandonment: A case study from Cinque Terre (Italy). Land Degrad. Dev. 2018, 29, 630–642. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.; Na, J.; Huang, X.; Xue, Z.; Yan, X.; Li, F. Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. Int. J. Geo-Inf. 2016, 5, 238. [Google Scholar] [CrossRef]
- d’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021, 31, 456–476. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Pijl, A.; Quarella, E.; Vogel, T.A.; D’Agostino, V.; Tarolli, P. Remote sensing vs. field-based monitoring of agricultural terrace degradation. Int. Soil Water Conserv. Res. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Ressl, C.; Brockmann, H.; Mandlburger, G.; Pfeifer, N. Dense Image Matching vs. Airborne Laser Scanning—Comparison of two methods for deriving terrain models. Photogramm.-Fernerkund.-Geoinf. 2016, 2016, 57–73. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Na, J.; Xue, K.; Xiong, L.; Tang, G.; Pfeifer, N. UAV-Based Terrain Modeling under Vegetation in the Chinese Loess Plateau: A Deep Learning and Terrain Correction Ensemble Framework. Remote Sens. 2020, 12, 3318. [Google Scholar] [CrossRef]
- Aplin, P.; Smith, G.M. Introduction to object-based landscape analysis. Int. J. Geogr. Inf. Sci. 2011, 25, 869–875. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Fang, X.; Ding, H.; Josef, S.; Xiong, L.; Na, J.; Tang, G. Extraction of terraces on the Loess Plateau from high-resolution DEMs and imagery utilizing object-based image analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Strobl, J. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Z. Geoinf. 2015, 6, 12–17. [Google Scholar]
- Frohn, R.C.; Autrey, B.C.; Lane, C.R.; Reif, M. Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+imagery. Int. J. Remote Sens. 2011, 32, 1471–1489. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.; Zhu, A.X.; Yang, X.; Sheng, J.; Cao, J. An object-based approach for two-level gully feature mapping using high-resolution DEM and imagery: A case study on hilly loess plateau region, China. Chin. Geogr. Sci. 2017, 27, 415–430. [Google Scholar] [CrossRef]
- Na, J.; Ding, H.; Zhao, W.; Liu, K.; Tang, G.; Pfeifer, N. Object-based large-scale terrain classification combined with segmentation optimization and terrain features: A case study in China. Trans. GIS 2021. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Tassetti, A.N.; Mancini, A.; Zingaretti, P.; Frontoni, E.; Bemardini, A. Hybrid object-based approach for land use/land cover mapping using high spatial resolution imagery. Int. J. Geogr. Inf. Ence 2011, 25, 1025–1043. [Google Scholar] [CrossRef]
- Rau, J.Y.; Hsiao, K.W.; Jhan, J.P.; Wang, S.H.; Wang, J.L. Bridge crack detection using multi-potary UAV and object-based image analysis. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Wouters, L.; Moel, H.D.; Ruiter, M.D.; Couasnon, A.; Teklesadik, A. Improving flood damage assessments in data-scarce areas by retrieving building characteristics through automated UAV image processing. In Proceedings of the Advances in Geomatics Research Conference (AGRC2019), Kampala, Uganda, 1–2 August 2019. [Google Scholar]
- Boonpook, W.; Tan, Y.; Xu, B. Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry. Int. J. Remote Sens. 2021, 42, 1–19. [Google Scholar] [CrossRef]
- Burdziakowski, P.; Specht, C.; Dabrowski, P.S.; Specht, M.; Lewicka, O.; Makar, A. Using UAV photogrammetry to analyse changes in the coastal zone based on the sopot tombolo (Salient) measurement project. Sensors 2020, 20, 4000. [Google Scholar] [CrossRef]
- Som-Ard, J.; Hossain, M.; Ninsawat, S.; Veerachitt, V. Pre-harvest Sugarcane Yield Estimation Using UAV-Based RGB Images and Ground Observation. Sugar Tech 2018, 20, 645–657. [Google Scholar] [CrossRef]
- Comert, R.; Avdan, U.; Gorum, T.; Nefeslioglu, H.A. Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data. Eng. Geol. 2019, 260, 105264. [Google Scholar] [CrossRef]
- Karantanellis, E.; Marinos, V.; Vassilakis, E. 3D Hazard analysis and object-based characterization of landslide motion mechanism using UAV imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42(2W/13), 425–430. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Na, J.; Jiang, S.; Zhu, J.; Li, F. Evaluation of Three Different Machine Learning Methods for Object-Based Artificial Terrace Mapping—A Case Study of the Loess Plateau, China. Remote Sens. 2021, 13, 1021. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Q.; Cao, X.; Li, Y. Assessment of the Soil Erosion Response to Land Use and Slope in the Loess Plateau—A Case Study of Jiuyuangou. Water 2020, 12, 529. [Google Scholar] [CrossRef] [Green Version]
- Baatz, M.; Schape, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angew. Geogr. Inf. 2000. [Google Scholar]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Ding, H.; Liu, K.; Chen, X.; Xiong, L.; Strobl, J. Optimized Segmentation Based on the Weighted Aggregation Method for Loess Bank Gully Mapping. Remote Sens. 2020, 12, 793. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: Advantages and limitations. Nat. Hazards 2015, 79, 291–314. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; McDonnell, R.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- d’Oleire-Oltmanns, S.; Eisank, C.; Drăgut, L.; Blaschke, T. An object-based workflow to extract landforms at multiple scales from two distinct data types. IEEE Geosci. Remote Sens. Lett. 2013, 10, 947–951. [Google Scholar] [CrossRef]
- Shruthi, R.B.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology 2011, 134, 260–268. [Google Scholar] [CrossRef]
- Shruthi, R.B.; Kerle, N.; Jetten, V.; Stein, A. Object-based gully system prediction from medium resolution imagery using Random Forests. Geomorphology 2014, 216, 283–294. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Mezaal, M.R.; Pradhan, B.; Rizeei, H.M. Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sens. 2018, 10, 1029. [Google Scholar] [CrossRef] [Green Version]
- Summerfield, M. Sub-aerial denudation of passive margins: Regional elevation versus local relief models. Earth Planet. Sci. Lett. 1991, 102, 460–469. [Google Scholar] [CrossRef]
- Bohlin, J.; Wallerman, J.; Fransson, J.E. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M.d.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- El Bastawesy, M.; Cherif, O.; Sultan, M. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images. J. Afr. Earth Sci. 2017, 136, 252–261. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jacobson, P.J. Water and nutrient discharge to a high-value terrace–floodplain fen: Resilience and risk. Ecohydrology 2016, 9, 1196–1207. [Google Scholar] [CrossRef]
- Gibson, C.A.; Koch, B.J.; Compson, Z.G.; Hungate, B.A.; Marks, J.C. Ecosystem responses to restored flow in a travertine river. Freshw. Sci. 2018, 37, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, D.; Zinck, J.; Van Ranst, E. Modelling land degradation in the Nepalese Himalaya. Catena 2004, 57, 135–156. [Google Scholar] [CrossRef]
- Ma, H.; Li, J.; He, X.; Liu, X.; Wang, F. The status and sediment reduction effects of level terrace in the Loess Plateau. Yellow River 2015, 37, 89–93. (In Chinese) [Google Scholar]
- Guo, J.; He, L.; Pei, Z.; Lv, D.; Lei, S.; Zhang, X. Investigation and Analysis of Damage of Horizontal Terraced Fields Under Extreme Rainstorm Conditions in the Loess Plateau—Taking the 7.26 Torrential Rain in the Chabagou Watershed as an Example. Res. Soil Water Conserv. 2019, 26, 111–117. (In Chinese) [Google Scholar]
Type | Features | Abbreviation | Description |
---|---|---|---|
Spectrum | Red | R | The intensity value of the pixel within red, green, and blue bands, respectively. |
Green | G | ||
Blue | B | ||
EXG | EXG | Excess green index by Woebbecke (1995) [75] provided a near-binary intensity image outlining a plant region of interest, which has been widely cited and used in recent UAV photogrammetry based studies: EXG = 2G − R − B, where R, G, and B stand for the intensity value of the pixel within red, green, and blue bands, respectively. | |
Topography | Elevation | Ele | Original height from the DSM. |
Hillshade | HSh | The simulation of a light source in a certain direction and a certain height of the sun [76]. | |
Slope | Slp | The tangent of the angle of that surface to the horizontal terrain [76]. | |
GLCM Texture | Homogeneity | Homo | The GLCM measures how often different combinations of pixel grey levels occur in a scene. In this study, the terrain texture features were derived from GLCM based on five topographic layers. The detail for calculating GLCM was taken from the study by Haralick et al. (1973) [74]. |
Entropy | Ent | ||
Mean | Mean | ||
Correlation | Cor |
Type | Features (Abb.) | Description |
---|---|---|
Spectrum (4) | EXG | The mean intensity (_Mean) and standard deviation (_Std) of all pixels forming an image object within each band calculated by Table 1, where Ci denotes the intensity value at the pixel in an image object; and n is the total number of an object. |
MaxDiff | Spectrum difference of all layers, where i, j are image layers; B(v) is the brightness of the image object k; is the mean intensity of image layer i of image object k; and is the mean intensity of image layer j of image object k. | |
Brg | The mean value of the of all layers, where denotes the mean intensity value of layer i; and nL is the total number of layers. | |
Topography (6) | Ele | The mean intensity (_Mean) and standard deviation (_Std) of all pixels forming an image object within elevation and hillshade. |
HSh | ||
Slp | ||
GLCM Texture (6) | G_Mean | The mean intensity (_Mean) and standard deviation (_Std) of all pixels forming an image object within each feature calculated by the Table 1. |
G_Cor | ||
Ele_Cor | ||
Geometry (3) | PA | The number of pixels forming an image object. |
LW | A length-to-width ratio of an image object, where ; a and b are the length and width of the bounding box of the image object k. Pk is the total number of pixels contained in object k. | |
Shp | Shape index is the smoothness of an image object border, where bk is the border length of an image object k, which is defined as the sum of the edges of the object k. Pk is the total number of pixels contained in object k. The smoother the border of an image object, the lower its shape index. |
Actual Terrace Sinkhole | Actual Ridge Sinkhole | Actual Collapse | Actual Other | Total | |
---|---|---|---|---|---|
Predicted Terrace Sinkhole | 227.29 | 0 | 5.46 | 18.24 | 250.99 |
Predicted Ridge Sinkhole | 1.99 | 118.25 | 1.25 | 7.52 | 129.01 |
Predicted Collapse | 14.9 | 1.53 | 472.12 | 100.45 | 589 |
Predicted Other | 38.56 | 8.09 | 84.39 | 79,921.47 | 80,052.51 |
Total | 282.74 | 127.87 | 563.22 | 80,047.68 | 81,021.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Li, J.; Zhu, Y.; Cao, J.; Na, J.; Jiang, S.; Ding, H. OBIA-Based Extraction of Artificial Terrace Damages in the Loess Plateau of China from UAV Photogrammetry. ISPRS Int. J. Geo-Inf. 2021, 10, 805. https://doi.org/10.3390/ijgi10120805
Fang X, Li J, Zhu Y, Cao J, Na J, Jiang S, Ding H. OBIA-Based Extraction of Artificial Terrace Damages in the Loess Plateau of China from UAV Photogrammetry. ISPRS International Journal of Geo-Information. 2021; 10(12):805. https://doi.org/10.3390/ijgi10120805
Chicago/Turabian StyleFang, Xuan, Jincheng Li, Ying Zhu, Jianjun Cao, Jiaming Na, Sheng Jiang, and Hu Ding. 2021. "OBIA-Based Extraction of Artificial Terrace Damages in the Loess Plateau of China from UAV Photogrammetry" ISPRS International Journal of Geo-Information 10, no. 12: 805. https://doi.org/10.3390/ijgi10120805
APA StyleFang, X., Li, J., Zhu, Y., Cao, J., Na, J., Jiang, S., & Ding, H. (2021). OBIA-Based Extraction of Artificial Terrace Damages in the Loess Plateau of China from UAV Photogrammetry. ISPRS International Journal of Geo-Information, 10(12), 805. https://doi.org/10.3390/ijgi10120805