Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau
"> Figure 1
<p>(<b>a</b>) Location of the Loess Plateau; (<b>b</b>) 21 sites for plant biomass sampling, 22 study counties, 5 bioclimatic zones: arid deserts (DES) zone, arid and semi-arid desert-grasslands (DES-GRASS) zone, semi-arid typical grasslands (GRASS) zone, sub-humid to semi-arid forest-grasslands (FOR-GRASS) zone, sub-humid forests (FOR) zone.</p> "> Figure 2
<p>Percentage of counties with no trends, downward trends, and upward trends derived from Mann–Kendall test results in different bioclimatic zone (deserts (DES) zone, desert-grasslands (DES-GRASS) zone, typical grasslands (GRASS) zone, forest-grasslands (FOR-GRASS) zone). (<b>a</b>) mean annual precipitation; (<b>b</b>) mean annual temperature; (<b>c</b>) total of above-ground biomass (AGB); (<b>d</b>) mean of AGB; and, (<b>e</b>) grassland area.</p> "> Figure 3
<p>Final model results reveal the direct and indirect effects of human activities and climate change on the dynamics of grassland vegetation cover. Solid arrows represent significant positive or negative pathways, and grey dashed arrows indicate non-significant pathways. Bold numbers indicate the standard path coefficients. Arrow width is proportional to the strength of the relationship (significance levels are as follows: *** <span class="html-italic">P</span> < 0.001, ** <span class="html-italic">P</span> < 0.01, * <span class="html-italic">P</span> < 0.05). <span class="html-italic">R</span><sup>2</sup> represents the coefficient of determination of endogenous latent variable. (<b>a</b>) The path coefficients, describing the strength and sign of the relationships among the latent variables, for the entire Loess Plateau. The inset bar graphs show standardized total (direct + indirect) effects of agriculture and economy, population and urbanization, as well as temperature and humidity on the dynamics of grassland vegetation for entire Loess Plateau, based on structural equation model. (<b>b</b>–<b>e</b>) The path coefficients and standardized total effects for deserts zone, desert-grasslands zone, typical grasslands zone, and forest-grasslands zone, respectively.</p> "> Figure 3 Cont.
<p>Final model results reveal the direct and indirect effects of human activities and climate change on the dynamics of grassland vegetation cover. Solid arrows represent significant positive or negative pathways, and grey dashed arrows indicate non-significant pathways. Bold numbers indicate the standard path coefficients. Arrow width is proportional to the strength of the relationship (significance levels are as follows: *** <span class="html-italic">P</span> < 0.001, ** <span class="html-italic">P</span> < 0.01, * <span class="html-italic">P</span> < 0.05). <span class="html-italic">R</span><sup>2</sup> represents the coefficient of determination of endogenous latent variable. (<b>a</b>) The path coefficients, describing the strength and sign of the relationships among the latent variables, for the entire Loess Plateau. The inset bar graphs show standardized total (direct + indirect) effects of agriculture and economy, population and urbanization, as well as temperature and humidity on the dynamics of grassland vegetation for entire Loess Plateau, based on structural equation model. (<b>b</b>–<b>e</b>) The path coefficients and standardized total effects for deserts zone, desert-grasslands zone, typical grasslands zone, and forest-grasslands zone, respectively.</p> "> Figure 4
<p>Standardized direct effects of agriculture and economy, population and urbanization, as well as temperature and humidity on the dynamics of grassland vegetation in 1992–1997, 1998–2002, 2003–2007, and 2008–2013, based on structural equation model.</p> "> Figure 5
<p>The mean value of nighttime light of study counties in forest-grasslands zone (red line), and other bioclimatic zones (deserts, desert-grasslands zone, and typical grasslands zone) (green line).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources and Preprocessing
2.2.1. Remotely Sensed Vegetation Indices
2.2.2. Climate and Topography Data
2.2.3. Indicators of Human Activities
2.3. Methods
2.3.1. Extracting Grassland Pixel from Remote Sensing Images
2.3.2. Above-Ground Grassland Biomass Model
2.3.3. Conceptual Structural Equation Model (SEM)
2.3.4. Principal Component Regression Model
3. Results
3.1. Annual Climate, Grassland AGB, and Area
3.1.1. Trends in Annual Climate
3.1.2. Trends in Grassland AGB and Area
3.2. Spatiotemporal Effects of Human and Climate Factors
3.2.1. Correlation Between the Dynamics of Grassland Vegetation and Human Activities
3.2.2. Spatial Effects of Human and Climate Factors on Grassland Vegetation Dynamics
3.2.3. Temporal Changes in the Effects of Human and Climate Factors on Grassland Vegetation Dynamics
3.3. Effects Based on PCA
3.4. The Night-Time Lights in Different Bioclimatic Zones
4. Discussion
4.1. The Role of Urban Population and Urbanization
4.2. Dominant Driving Factors at Spatiotemporal Scales
4.3. The Response Mechanisms of Grassland Vegetation Dynamics to Urbanization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Esser, G. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus B 1987, 39B, 245–260. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Li, J.J.; Peng, S.Z.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Piao, S.L.; Friedlingstein, P.; Ciais, P.; Zhou, L.M.; Chen, A.P. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 2006, 33, 265–288. [Google Scholar] [CrossRef]
- Wu, J.S.; Feng, Y.F.; Zhang, X.Z.; Wurst, S.; Tietjen, B.; Tarolli, P.; Song, C.Q. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Sci. Rep. 2017, 7, 15202. [Google Scholar] [CrossRef]
- Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E.W.; Borer, E.T.; Reich, P.B. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 2015, 348, 336–340. [Google Scholar] [CrossRef]
- Wu, J.X.; Zhao, Y.; Yu, C.Q.; Luo, L.M.; Pan, Y. Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China. J. Environ. Manag. 2017, 193, 70–78. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Wu, P.T.; Zhao, X.N.; Wang, Y.B.; Gao, X.D. Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environ. Earth Sci. 2013, 68, 2427–2438. [Google Scholar] [CrossRef]
- Li, S.S.; Yang, S.N.; Liu, X.F.; Liu, Y.X.; Shi, M.M. NDVI-Based Analysis on the Influence of Climate Change and Human Activities on Vegetation Restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Lu, N.; Zeng, Y.; Wu, B.F. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gan, Y.T.; Wiesmeier, M.; Zhao, G.Q.; Zhang, R.Y.; Han, G.D.; Siddique, K.H.M.; Hou, F.J. Grazing exclusion—An effective approach for naturally restoring degraded grasslands in Northern China. Land Degrad. Dev. 2018, 29, 4439–4456. [Google Scholar] [CrossRef]
- Zhang, R.P.; Liang, T.G.; Guo, J.; Xie, H.J.; Feng, Q.S.; Aimaiti, Y. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef]
- Hovenden, M.J.; Newton, P.C.D.; Wills, K.E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 2014, 511, 583–586. [Google Scholar] [CrossRef]
- Dietz, T.; Ostrom, E.; Stern, P.C. The Struggle to Govern the Commons. Science 2003, 302, 1907–1912. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef]
- Golubiewski, N.E. Urbanization Increases Grassland Carbon Pools: Effects of Landscaping in Colorado’s Front Range. Ecol. Appl. 2006, 16, 555–571. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.G.; Huang, J.H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Musel, A. Human appropriation of net primary production in the United Kingdom, 1800–2000: Changes in society’s impact on ecological energy flows during the agrarian–industrial transition. Ecol. Econ. 2009, 69, 270–281. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and Mapping the Human Appropriation of Net Primary Production in Earth’s Terrestrial Ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- Rojstaczer, S.; Sterling, S.M.; Moore, N.J. Human Appropriation of Photosynthesis Products. Science 2001, 294, 2549–2552. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.X.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Jiapaer, G.; Bao, A.M.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Nd, T.B.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Zhang, F.B.; Bai, Y.J.; Xie, L.Y.; Yang, M.Y.; Li, Z.B.; Wu, X.R. Runoff and soil loss characteristics on loess slopes covered with aeolian sand layers of different thicknesses under simulated rainfall. J. Hydrol. 2017, 549, 244–251. [Google Scholar] [CrossRef]
- Jiao, J.Y.; Tzanopoulos, J.; Xofis, P.; Mitchley, J. Factors Affecting Distribution of Vegetation Types on Abandoned Cropland in the Hilly-Gullied Loess Plateau Region of China. Pedosphere 2008, 18, 24–33. [Google Scholar] [CrossRef]
- Li, J.J.; Li, Z.; Lü, Z.M. Analysis of spatiotemporal variations in land use on the Loess Plateau of China during 1986–2010. Environ. Earth Sci. 2016, 75, 997. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.; Wu, G.; Wang, K.; Shangguan, Z. Large-scale soil organic carbon mapping based on multivariate modelling: The case of grasslands on the Loess Plateau. Land Degrad. Dev. 2018, 29, 26–37. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Deng, L.; Tang, Z.; Wang, K.; Sun, W.; Shangguan, Z. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm. Sci. Rep. 2017, 7, 6940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Shao, M. Soil and water loss from the Loess Plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Lü, M.Q.; Xia, Z.L.; Wang, J.J. Recent Changes on the Loess Plateau: Land Resource Development and Rapid Urbanization. In Restoration and Development of the Degraded Loess Plateau, China; Tsunekawa, A., Liu, G., Yamanaka, N., Du, S., Eds.; Springer: Tokyo, Japan, 2014; pp. 255–265. [Google Scholar]
- Wang, Q.; Fan, X.; Qin, Z.; Wang, M. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob. Planet. Chang. 2012, 92–93, 138–147. [Google Scholar] [CrossRef]
- Zhao, A.Z.; Zhang, A.B.; Liu, X.F.; Cao, S. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theor. Appl. Climatol. 2017, 132, 555–567. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Borthwick, A.G.L.; Lei, X.H.; Li, H. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: Possible causes and potential impacts. Environ. Sci. Pollut. Res. Int. 2018, 25, 13633–13644. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Zhao, A.Z.; Zhang, A.B.; Lu, C.Y.; Wang, D.L.; Wang, H.F.; Liu, H.X. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecol. Eng. 2017, 104, 13–22. [Google Scholar] [CrossRef]
- Zhang, B.Q.; He, C.S.; Burnham, M.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef]
- Lü, Y.H.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.Y.; Sun, G.; Wu, B.F. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- An, P.; Inoue, T.; Zheng, M.Q.; Eneji, A.E.; Inanaga, S. Agriculture on the Loess Plateau. In Restoration and Development of the Degraded Loess Plateau, China; Tsunekawa, A., Liu, G., Yamanaka, N., Du, S., Eds.; Springer: Tokyo, Japan, 2014; pp. 61–74. [Google Scholar]
- Hao, F.H.; Zhang, X.; Ouyang, W.; Skidmore, A.K.; Toxopeus, A.G. Vegetation NDVI Linked to Temperature and Precipitation in the Upper Catchments of Yellow River. Environ. Model. Assess. 2012, 17, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Fang, J.Y.; Liu, H.Y.; Zhu, B. NDVI indicated decline in desertification in China in the past two decades. Geophys Res. Lett. 2005, 32, L06402. [Google Scholar] [CrossRef]
- Josefsson, T.; Hörnberg, G.; Östlund, L. Long-Term Human Impact and Vegetation Changes in a Boreal Forest Reserve: Implications for the Use of Protected Areas as Ecological References. Ecosystems 2009, 12, 1017–1036. [Google Scholar] [CrossRef]
- Liu, W.; Lu, F.; Luo, Y.; Bo, W.; Kong, L.; Zhang, L.; Liu, B.; Ouyang, Z.; Wang, X. Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China. Ecol. Evol. 2017, 7, 6220–6230. [Google Scholar] [CrossRef] [Green Version]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Bengston, D.N.; Potts, R.S.; Fan, D.P.; Goetz, E.G. An analysis of the public discourse about urban sprawl in the United States: Monitoring concern about a major threat to forests. For. Policy Econ. 2005, 7, 745–756. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, K.; Zhao, S.Q.; Fang, J.Y. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ. 2011, 75, 946–952. [Google Scholar] [CrossRef]
- Xin, Z.B.; Xu, J.X.; Wei, Z. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau(1981―2006):Impacts of climate changes and human activities. Sci. Chin. 2008, 51, 67–78. [Google Scholar] [CrossRef]
- Chen, P.; Shang, J.; Qian, B.; Jing, Q.; Liu, J. A New Regionalization Scheme for Effective Ecological Restoration on the Loess Plateau in China. Remote Sens. 2017, 9, 1323. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Jia, X.; Qin, Z.; Shen, J.; Chang, Q. Vegetation dynamics and climate change on the Loess Plateau, China: 1982–2011. Reg. Environ. Chang. 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.B.; Lian, J.J. Spatial distributions of optimal plant coverage for the dominant tree and shrub species along a precipitation gradient on the central Loess Plateau. Agric. For. Meteorol. 2015, 206, 69–84. [Google Scholar] [CrossRef]
- Zhang, H.H.; Huang, Z.B. Bio-climatic Division and Restoration of the Degraded Ecosystem on the Loess Plateau(in Chinese with English abstract). J. Arid Land Resour. Environ. 2001, 15, 64–71. [Google Scholar]
- Fu, B.J.; Yu, L.; Lü, Y.H.; He, C.S.; Yuan, Z.; Wu, B.F. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Fu, B.J. Soil erosion and its control in the loess plateau of China. Soil Use Manag. 1989, 5, 76–82. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Yang, S.; Feng, Q.; Liu, B.; Zhang, R.; Huang, X.; Xie, H. Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China. Remote Sens. Environ. 2016, 186, 164–172. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.K.; Zhou, C.H.; Haynie, S.S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Pachauri, S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy 2010, 38, 5661–5670. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Yagi, H.; Naoki, K.; Tana, G.; Nishio, F.; Shuhei, O. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects. Int. J. Remote Sens. 2010, 31, 4443–4458. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Li, X.C.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Smith, S.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.; Zhang, X.S.; He, C.Y.; Elvidge, C. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Li, X.C.; Zhou, Y.Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Li, X.C.; Zhou, Y.Y. A Stepwise Calibration of Global DMSP/OLS Stable Nighttime Light Data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar]
- Grace, J.B.; Michael, A.T.; Han, O.; Scheiner, S.M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Ringle, C.M.; Wende, S.; Becker, J.M. SmartPLS 3. Boenningstedt: SmartPLS GmbH. Available online: http://www.smartpls.com (accessed on 28 November 2019).
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Grimm, N.; Foster, D.; Groffman, P.; Grove, M.; Hopkinson, C.; Nadelhoffer, K.; Pataki, D.; Peters, D. The Changing Landscape: Ecosystem Responses to Urbanization and Pollution Across Climatic and Societal Gradients. Front. Ecol. Environ. 2008, 6. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Cheng, G.D.; Xu, Z.M.; Yin, Y.Y.; Xu, W. Social, economic, and ecological impacts of the Grain for Green project in China: A preliminary case in Zhangye, Northwest China. J. Environ. Manag. 2007, 85, 774–784. [Google Scholar] [CrossRef]
- Hou, C.X.; Zhou, L.H.; Wen, Y.; Chen, Y. Farmers’ adaptability to the policy of ecological protection in China—A case study in Yanchi County, China. Soc. Sci. J. 2018, 55, 404–412. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, P.; Yao, G.R. Exploring the Dynamic Mechanisms of Farmland Abandonment Based on a Spatially Explicit Economic Model for Environmental Sustainability: A Case Study in Jiangxi Province, China. Sustainability 2014, 6, 1260–1282. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycle. 2005, 19, GB2027. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.; Monteiro, A.M.V.; Camara, G.; Quintanilha, J.A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 2006, 27, 855–870. [Google Scholar] [CrossRef]
- Zhuo, L.L.; Ichinose, T.; Zheng, J.Y.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Zhen, N.H.; Fu, B.J.; Lü, Y.H.; Zheng, Z.M. Changes of livelihood due to land use shifts: A case study of Yanchang County in the Loess Plateau of China. Land Use Policy 2014, 40, 28–35. [Google Scholar] [CrossRef]
- Cao, S.X.; Xu, C.G.; Chen, L.; Wang, X.Q. Attitudes of farmers in China’s northern Shaanxi Province towards the land-use changes required under the Grain for Green Project, and implications for the project’s success. Land Use Policy 2009, 26, 1182–1194. [Google Scholar] [CrossRef]
- Yin, R.S.; Liu, C.; Zhao, M.J.; Yao, S.B.; Liu, H. The implementation and impacts of China’s largest payment for ecosystem services program as revealed by longitudinal household data. Land Use Policy 2014, 40, 45–55. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, B.; Zhang, H.; Zhang, D.Y.; Dai, S.P.; Ma, Z.H. Landscape Pattern Change and Soil Erosion Research—Take Malian River Basin in Loess Plateau as an Example (in Chinese with English abstract). J. Nat. Resour. 2011, 26, 1513–1525. [Google Scholar]
Variable | NI Per Capita | LOH Density | AGDP/GDP | TPOAM Per Capita | AP Density | UP Density | Urbanization Rate | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | P | r | P | r | P | r | P | r | P | r | P | r | P | |
AGBT density | 0.12 * | 0.02 | −0.04 | 0.44 | −0.37 ** | 0.00 | −0.17 ** | 0.00 | −0.03 | 0.53 | 0.30 ** | 0.00 | 0.49 ** | 0.00 |
AGBm | 0.18 * | 0.00 | 0.20 ** | 0.00 | −0.26 ** | 0.00 | −0.29 ** | 0.00 | 0.35 ** | 0.00 | 0.57 ** | 0.00 | 0.53 ** | 0.00 |
GA/TA | 0.00 | 0.98 | −0.23 ** | 0.00 | −0.24 ** | 0.00 | 0.19 ** | 0.00 | −0.39 ** | 0.00 | −0.22 ** | 0.00 | 0.08 | 0.09 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
---|---|---|---|---|---|---|
Sunshine percentage | 0.84 | 0.02 | −0.36 | 0.12 | −0.15 | −0.05 |
Sunshine hour | 0.84 | 0.02 | −0.37 | 0.12 | −0.15 | −0.05 |
Days with daily precipitation > 0.1 mm | −0.64 | −0.07 | 0.32 | −0.23 | 0.32 | −0.44 |
Mean annual precipitation | −0.55 | 0.15 | 0.23 | −0.24 | 0.62 | −0.18 |
Mean relative humidity | −0.39 | −0.29 | 0.52 | −0.31 | 0.29 | −0.33 |
Urbanization rate | 0.03 | 0.91 | −0.24 | 0.14 | 0.001 | 0.11 |
Density of urban population | 0.02 | 0.84 | 0.37 | 0.09 | 0.02 | 0.25 |
Density of livestock on hand | 0.59 | 0.59 | 0.25 | 0.15 | −0.08 | −0.16 |
Density of agricultural population | −0.15 | 0.08 | 0.90 | −0.04 | 0.03 | 0.23 |
TPOAM per capita | 0.19 | −0.12 | −0.23 | 0.87 | −0.07 | 0.15 |
Net income per capita of rural residents | 0.02 | 0.44 | 0.16 | 0.80 | −0.05 | 0.05 |
AGDP/GDP | 0.45 | −0.54 | 0.20 | −0.46 | 0.13 | −0.07 |
SPEI | 0.06 | −0.04 | −0.03 | 0.02 | 0.97 | −0.06 |
Mean annual temperature | −0.11 | 0.08 | 0.2 | 0.06 | −0.07 | 0.92 |
Eigenvalue | 4.64 | 2.98 | 1.49 | 1.34 | 0.96 | 0.79 |
% of variance | 33.15 | 21.31 | 10.60 | 9.59 | 6.86 | 5.66 |
Cumulative % | 33.15 | 54.46 | 65.06 | 74.65 | 81.51 | 87.17 |
Principal Component Regression Model | R2 | RMSE | r |
---|---|---|---|
0.45 | 0.22 | 0.67 | |
0.56 | 0.31 | 0.75 | |
0.30 | 0.12 | 0.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.-Z.; Zheng, K.; Zhang, F.; Fang, C.; Zhou, Y.-Y.; Li, X.-C.; Li, F.-M.; Ye, J.-S. Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau. Sustainability 2019, 11, 6764. https://doi.org/10.3390/su11236764
Wei J-Z, Zheng K, Zhang F, Fang C, Zhou Y-Y, Li X-C, Li F-M, Ye J-S. Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau. Sustainability. 2019; 11(23):6764. https://doi.org/10.3390/su11236764
Chicago/Turabian StyleWei, Jian-Zhou, Kai Zheng, Feng Zhang, Chao Fang, Yu-Yu Zhou, Xue-Cao Li, Feng-Min Li, and Jian-Sheng Ye. 2019. "Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau" Sustainability 11, no. 23: 6764. https://doi.org/10.3390/su11236764
APA StyleWei, J. -Z., Zheng, K., Zhang, F., Fang, C., Zhou, Y. -Y., Li, X. -C., Li, F. -M., & Ye, J. -S. (2019). Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau. Sustainability, 11(23), 6764. https://doi.org/10.3390/su11236764