Real-Time Detection of Yeast Growth on Solid Medium through Passive Microresonator Biosensor
<p>3D structure of the proposed biosensor with its equivalent circuit model and structure of air bridge section.</p> "> Figure 2
<p>Performance of different design of biosensors: (<b>a</b>) different electric field density of (<b>a.i</b>) Design 1, (<b>a.ii</b>) Design 2, (<b>a.iii</b>) Design 3, and (<b>a.iv</b>) Design 4; (<b>b</b>) different electric field density of (<b>b.i</b>) Design 1, (<b>b.ii</b>) Design 2, (<b>b.iii</b>) Design 3, and (<b>b.iv</b>) Design 4 at the height of 0.4 mm; and (<b>c</b>) the variation of electric field density with height for Design 1 to Design 4.</p> "> Figure 3
<p>Proposed biosensors: (<b>a</b>) capacitive biosensor and (<b>b</b>) microwave biosensor.</p> "> Figure 4
<p>Experimental environment for pre-experiment and used capacitive biosensor: (<b>a</b>) experimental environment setup; (<b>b</b>) bonded petri dish of capacitive biosensor; and (<b>c</b>) structure and equivalent circuits of capacitive biosensors.</p> "> Figure 5
<p>Record of growth of yeast: Growth situation of yeast on (<b>a</b>) biosensor and (<b>b</b>) petri dish with scale bar. (<b>c</b>) Measured ΔCp for 1 µL of yeast growth and the fitted Gompertz model curve at constant time intervals. (<b>d</b>) ΔCp measurements of yeasts every 4 h during the growth period with linear fit results with error bar. Note: error bars generated by fitting multiple measurement data using standard deviation (SD < 3.8%).</p> "> Figure 6
<p>Experimental environment and used biosensor: (<b>a</b>) experimental environment setup; (<b>b</b>) microscope photo of IPD-based biosensor; (<b>c</b>) top view and (<b>d</b>) side view of the final test fixture; and (<b>e</b>) measured and simulated S11 parameters of biosensor.</p> "> Figure 7
<p>Weight of the biosensor at different stages: (<b>a</b>) weight of capacitive biosensor (<b>a.i</b>) before adding medium, (<b>a.ii</b>) after adding medium, and (<b>a.iii</b>) after 100 h of yeast growth; (<b>b</b>) weight of IPD-based biosensor (<b>b.i</b>) before adding medium, (<b>b.ii</b>) after adding medium, and (<b>b.iii</b>) after 100 h of yeast growth; and (<b>c</b>) weight changes and percentage of weight loss summarized in a bar chart.</p> "> Figure 8
<p>Record of experimental data and growth of yeast: (<b>a</b>) growth situation of yeast on biosensor with scale bar; (<b>b</b>) measured ΔAmplitude for 1 µL of yeast growth and the fitted Gompertz model curve at constant time intervals; and (<b>c</b>) measured ΔAmplitude of yeast every 4 h during the growth period with linear fit results with error bar. Note: error bars generated by fitting multiple measurement data using standard deviation (SD < 3.8%).</p> "> Figure 9
<p>Mechanism diagrams for real-time monitoring of yeast growth: (<b>a</b>) 3D view of yeast growth on the biosensor; side view of yeast (<b>b</b>) before and (<b>c</b>) after growth; and (<b>d</b>) S11 parameters for yeast colony heights of 0.05, 0.10, 0.15, 0.20 mm, and without yeast colony on medium in simulation.</p> ">
Abstract
:1. Introduction
2. Biosensor Design and Analysis
3. Experiment and Discussion
3.1. Biological Sample Preparation
3.2. Biosensors Used for Detection
3.3. Pre-Experimental Environments and Capacitive Biosensor
3.4. Pre-Experimental Results and Analysis
3.5. Experimental Environment and IPD-Based Biosensor
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash Tamang, J.; Sonam, L. Probiotic properties of yeasts in traditional fermented foods and beverages. J. Appl. Microbiol. 2022, 132, 3533–3542. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Li, X.; Jiang, X. Biological functions of yeast hydrolysate and its application in pig production. Chin. J. Anim. Nutr. 2022, 34, 3435–3442. [Google Scholar]
- Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 2020, 235, 5867–5881. [Google Scholar] [CrossRef] [PubMed]
- Belini, V.L.; Suhr, H.; Wiedemann, P. Online monitoring of the morphology of an industrial sugarcane biofuel yeast strain via in situ microscopy. J. Microbiol. Methods 2020, 175, 105973. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.C.; Ellersiek, D.; Kensy, F.; Büchs, J.; Mokwa, W.; Schnakenberg, U. Galvanic decoupled sensor for monitoring biomass concentration during fermentation processes. Sens. Actuators B-Chem. 2005, 111, 370–375. [Google Scholar] [CrossRef]
- Hirsch, E.; Pataki, H.; Domján, J.; Farkas, A.; Vass, P.; Fehér, C.; Barta, Z.; Nagy, Z.K.; Marosi, G.J.; Csontos, I. Inline noninvasive raman monitoring and feedback control of glucose concentration during ethanol fermentation. Biotechnol. Prog. 2019, 35, e2848. [Google Scholar] [CrossRef] [PubMed]
- Schalk, R.; Braun, F.; Frank, R.; Rädle, M.; Gretz, N.; Methner, F.J.; Beuermann, T. Non-contact raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations. Bioprocess Biosyst. Eng. 2017, 40, 1519–1527. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.D.; Ding, Y.H.; Chen, Q.S. Quantitative analysis of yeast fermentation process using Raman spectroscopy: Comparison of CARS and VCPA for variable selection. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2020, 228, 117781. [Google Scholar] [CrossRef]
- Marbà-Ardébol, A.M.; Emmerich, J.; Muthig, M.; Neubauer, P.; Junne, S. Real-time monitoring of the budding index in Saccharomyces Cerevisiae batch cultivations with in situ microscopy. Microb. Cell Factories 2018, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Belini, V.L.; Caurin, G.A.P.; Wiedemann, P.; Suhr, H. Yeast fermentation of sugarcane for ethanol production: Can it be monitored by using in situ microscopy? Braz. J. Chem. Eng. 2017, 34, 949–959. [Google Scholar] [CrossRef]
- Oudebrouckx, G.; Goossens, J.; Bormans, S.; Vandenryt, T.; Wagner, P.; Thoelen, R. Integrating thermal sensors in a microplate format: Simultaneous real-time quantification of cell number and metabolic activity. ACS Appl. Mater. Interfaces 2022, 14, 2440–2451. [Google Scholar] [CrossRef]
- He, Y.; Chen, K.Y.; Wang, T.T.; Jia, M.; Bai, L.H.; Wang, X.; Bu, Y.Y.; Ao, J.P. MiRNA-155 biosensors based on AlGaN/GaN heterojunction field effect transistors with an Au-SH-RNA probe gate. IEEE Trans. Electron Devices 2023, 70, 1860–1864. [Google Scholar] [CrossRef]
- Asami, K. Characterization of biological cells by dielectric spectroscopy. J. Non-Cryst. Solids 2002, 305, 268–277. [Google Scholar] [CrossRef]
- Noble, P.A.; Dziuba, M.; Harrison, D.J.; Albritton, W.L. Factors influencing capacitance-based monitoring of microbial growth. J. Microbiol. Methods 1999, 37, 51–64. [Google Scholar] [CrossRef]
- Geng, Y.Y.; Zhu, Z.; Zhang, Z.; Xu, F.; Marchisio, M.A.; Wang, Z.X.; Pan, D.J.; Zhao, X.W.; Huang, Q.A. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Electrophoresis 2021, 42, 1996–2009. [Google Scholar] [CrossRef]
- Guha, S.; Jamal, F.I.; Wenger, C. A review on passive and integrated near-field microwave biosensors. Biosensors 2017, 7, 42. [Google Scholar] [CrossRef]
- Deshours, F.; Alquié, G.; Kokabi, H.; Rachedi, K.; Tlili, M.; Hardinata, S.; Koskas, F. Improved microwave biosensor for non-invasive dielectric characterization of biological tissues. Microelectron. J. 2019, 88, 137–144. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, C.; Meng, F.Y.; Zhou, Z.L.; Zhao, M.; Yan, G.F.; Kim, E.S.; Kim, N.Y. High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection. Sensors 2020, 20, 4024. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Daneshmand, M. A phase-noise reduced microwave oscillator sensor with enhanced limit of detection using active filter. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 837–839. [Google Scholar] [CrossRef]
- Tharsika, T.; Thanihaichelvan, M.; Haseeb, A.S.M.A.; Akbar, S.A. Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis. Front. Mater. 2019, 6, 122. [Google Scholar] [CrossRef]
- Haq, M.U.; Zhang, Z.; Wen, Z.; Khan, S.; ud Din, S.; Rahman, N.; Zhu, L. Humidity sensor based on mesoporous Al-doped NiO ultralong nanowires with enhanced ethanol sensing performance. J. Mater. Sci. Mater. Electron. 2019, 30, 7121–7134. [Google Scholar] [CrossRef]
- Yoo, M.; Kim, H.K.; Lim, S. Electromagnetic-based ethanol chemical sensor using metamaterial absorber. Sens. Actuators B Chem. 2016, 222, 173–180. [Google Scholar] [CrossRef]
- Abbasi, Z.; Shariaty, P.; Nosrati, M.; Hashisho, Z.; Daneshmand, M. Dual-band microwave circuits for selective binary gas sensing system. IEEE Trans. Microw. Theory Tech. 2019, 67, 4206–4219. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. J. Mater. Chem. C 2019, 7, 13367–13383. [Google Scholar] [CrossRef]
- Bailly, G.; Rossignol, J.; de Fonseca, B.; Pribetich, P.; Stuerga, D. Microwave gas sensing with hematite: Shape effect on ammonia detection using pseudocubic, rhombohedral, and spindlelike particles. ACS Sens. 2016, 1, 656–662. [Google Scholar] [CrossRef]
- Sorocki, J.; Rydosz, A.; Staszek, K. Wideband microwave multiport-based system for low gas concentration sensing and its application for acetone detection. Sens. Actuators B Chem. 2020, 323, 128710. [Google Scholar] [CrossRef]
- Tamra, A.; Zedek, A.; Rols, M.P.; Dubuc, D.; Grenier, K. Single cell microwave biosensor for monitoring cellular response to electrochemotherapy. IEEE Trans. Biomed. Eng. 2022, 69, 3407–3414. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Jun, S.W.; Ahn, Y.H. Developing a novel terahertz Fabry-Perot microcavity biosensor by incorporating porous film for yeast sensing. Sensors 2023, 23, 5797. [Google Scholar] [CrossRef]
- Mohammadi, S.; Nadaraja, A.V.; Luckasavitch, K.; Jain, M.C.; Roberts, D.J.; Zarifi, M.H. A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 2–11. [Google Scholar] [CrossRef]
- Wang, C.; Kim, N.Y. Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology. Microelectron. J. 2012, 43, 176–181. [Google Scholar] [CrossRef]
- Qiang, T.; Wang, C.; Kim, N.Y. A compact high-reliability high-performance 900-MHz WPD using GaAs-IPD technology. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 498–500. [Google Scholar] [CrossRef]
- Mohan, S.S.; Hershenson, M.D.; Boyd, S.P.; Lee, T.H. Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 1999, 34, 1419–1424. [Google Scholar] [CrossRef]
- Wang, Z.J.; Kim, E.S.; Liang, J.G.; Kim, N.Y. QFN-packaged bandpass filter with intertwined circular spiral inductor and integrated center-located capacitors using integrated passive device technology. IEEE Access 2019, 7, 13597–13607. [Google Scholar] [CrossRef]
- Yue, C.P.; Wong, S.S. Physical modeling of spiral inductors on silicon. IEEE Trans. Electron Devices 2000, 47, 560–568. [Google Scholar] [CrossRef]
- Chen, J. On-Chip Spiral Inductor Transformer Design and Modeling for RF Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2006. [Google Scholar]
- Koirala, G.R.; Kim, E.S.; Dhakal, R.; Chuluunbaatar, Z.; Jo, Y.H.; Kim, S.S.; Kim, N.Y. Microfabricated passive resonator biochip for sensitive radiofrequency detection and characterization of glucose. RSC Adv. 2018, 8, 33072–33079. [Google Scholar] [CrossRef] [PubMed]
- Tjorve, K.M.C.; Tjorve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Qiang, T.; Wang, C.; Adhikari, K.K.; Lv, X.; Wu, Y.L. GaAs-based IPD-fabricated center-frequency-controllable bandpass filter with asymmetrical differential inductor and air-bridge enhanced capacitor. IEEE Access 2019, 7, 137784–137793. [Google Scholar] [CrossRef]
- Jain, M.C.; Nadaraja, A.V.; Mohammadi, S.; Vizcaino, B.M.; Zarifi, M.H. Passive microwave biosensor for real-time monitoring of subsurface bacterial growth. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Ghafar-Zadeh, E.; Sawan, M.; Chodavarapu, V.P.; Hosseini-Nia, T. Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 232–238. [Google Scholar] [CrossRef]
- Kishore, P.; Dinakar, D.; Babu, P.R.; Devi, V.R.; Soujanya, P.; Maunika, T.; Padmavathi, M. Laser light intensity-modulated cell growth rate monitoring biosensor. J. Opt.-India 2021, 50, 28–34. [Google Scholar] [CrossRef]
- Kernbach, S.; Kernbach, O.; Kuksin, I.; Kernbach, A.; Nepomnyashchiy, Y.; Dochow, T.; Bobrov, A.V. The biosensor based on electrochemical dynamics of fermentation in yeast Saccharomyces Cerevisiae. Environ. Res. 2022, 213, 113535. [Google Scholar] [CrossRef] [PubMed]
Model | |
---|---|
A | 19.9229 ± 0.05258 |
KG | 0.062 ± 0.00048 |
Ti | 39.3111 ± 0.22076 |
R2 | 0.9961 |
Model | |
---|---|
A | 0.2658 ± 0.00172 |
KG | 0.0398 ± 0.00046 |
Ti | 45.4135 ± 0.22076 |
R2 | 0.9917 |
Reference and Structure | Microbial Species and Environment | Maximum Signal Change | Size of Biosensor | Advantages |
---|---|---|---|---|
[29] LC Resonator | E. coli Solid Medium | 0.025 dB 0.3 MHz | 20 × 10 mm2 | High quality factor |
[39] LC Resonator | E. coli Solid Medium | 0.18 dB 0.09 dB | 20 × 12 mm2 | High linearity |
[40] Capacitive Sensor | E. coli Liquid Medium | 128 fF | 2 mm2 | Portable |
[41] Light Intensity-modulated Biosensor | E. coli, Yeast Liquid Medium | 4 V | Not Given cm2 | Low cost and complexity |
[42] Electrochemical Dynamics Biosensor | Yeast Liquid Medium | 100 Om | Not Given cm2 | High anti-interference capability |
This Work IPD-Based Biosensor | Yeast Solid Medium | 0.21 dB | 980 × 800 μm2 | Highly integrated and small in size |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.-W.; Zhao, J.-M.; Wang, Y.-K.; Wang, Y.-X.; Jiang, Y.-F.; Yang, G.-L.; Wang, J.; Qiang, T. Real-Time Detection of Yeast Growth on Solid Medium through Passive Microresonator Biosensor. Biosensors 2024, 14, 216. https://doi.org/10.3390/bios14050216
Shi B-W, Zhao J-M, Wang Y-K, Wang Y-X, Jiang Y-F, Yang G-L, Wang J, Qiang T. Real-Time Detection of Yeast Growth on Solid Medium through Passive Microresonator Biosensor. Biosensors. 2024; 14(5):216. https://doi.org/10.3390/bios14050216
Chicago/Turabian StyleShi, Bo-Wen, Jun-Ming Zhao, Yi-Ke Wang, Yan-Xiong Wang, Yan-Feng Jiang, Gang-Long Yang, Jicheng Wang, and Tian Qiang. 2024. "Real-Time Detection of Yeast Growth on Solid Medium through Passive Microresonator Biosensor" Biosensors 14, no. 5: 216. https://doi.org/10.3390/bios14050216
APA StyleShi, B.-W., Zhao, J.-M., Wang, Y.-K., Wang, Y.-X., Jiang, Y.-F., Yang, G.-L., Wang, J., & Qiang, T. (2024). Real-Time Detection of Yeast Growth on Solid Medium through Passive Microresonator Biosensor. Biosensors, 14(5), 216. https://doi.org/10.3390/bios14050216