Abstract
Mesoporous Al-doped NiO ultralong nanowires with better uniformity, dispersity and well-defined morphologies were synthesized by a simple surfactant based hydrothermal treatment of aqueous solution of Al(NO3)3, NiCl2 and NaC2O4 in the presence of ethylene glycol and polyethylene glycol through continuous open air heating at 500 °C. The sensing performances of the gas sensor’s based on bare and Al-doped NiO nanowires had been investigated towards ethanol, methanol, acetone, xylene, toluene and benzene. The results specified that the 3.2 at% Al-doped NiO nanowires display better gas sensitivity characteristics as compare to that of undoped, 1.6 at%, 2.1 at% and 4.3 at% Al-doped NiO nanowires. It has been investigated that the sensitivity features were upgraded with an increment on Al concentration into the crystallites based on NiO nanowires. The assimilation of Al3+ ions within NiO crystals modifies the carrier concentration by inducing changes in the chemisorbed and deficient oxygen of NiO nanowires. Hence, the incorporation of Al3+ into NiO nanowires would be a capable way for scheming and devising significant gas sensors.
Similar content being viewed by others
Abbreviations
- MOS:
-
Metal oxide semiconductor
- VOC:
-
Volatile organic compounds
- NWS:
-
Nanowires
- EG:
-
Ethylene glycol
- PEG:
-
Polyethylene glycol
- r.m.m:
-
Relative molecular mass
- OL :
-
Lattice oxygen
- OV :
-
Deficient oxygen
- OC :
-
Chemisorbed oxygen
- XRD:
-
X-ray diffraction
- SEM:
-
Scanning electron microscopy
- TEM:
-
Transmission electron microscopy
- EDS:
-
Energy dispersive X-ray spectroscopy
- XPS:
-
X-ray photoelectron spectroscopy
- HRTEM:
-
High-resolution transmission electron microscopy
- BET:
-
Brunauer, Emmett, and Teller method
References
X. Chen, T. Pradhan, F. Wang, J.S. Kim, J. Yoon, Chem. Rev. 112, 1910–1956 (2011)
X. Zhang, J. Yin, J. Yoon, Chem. Rev. 114, 4918–4959 (2014)
Y. Zhou, J.F. Zhang, J. Yoon, Chem. Rev. 114, 5511–5571 (2014)
S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Sens. Actuators B 96, 541–553 (2003)
Z. Lei, Y. Yang, J. Am. Chem. Soc. 136, 6594–6597 (2014)
Q. Xu, S. Lee, Y. Cho, M.H. Kim, J. Bouffard, J. Yoon, J. Am. Chem. Soc. 135, 17751–17754 (2013)
H. Haick, Y.Y. Broza, P. Mochalski, V. Ruzsanyi, A. Amann, Chem. Soc. Rev. 43, 1423–1449 (2014)
M. Plaza, S. Santoyo, L. Jaime, G.G.B. Reina, M. Herrero, F.J. Señoráns, E. Ibanez, J. Pharm. Biomed. Anal. 51, 450–455 (2010)
S. Das, V. Jayaraman, Prog. Mater Sci. 66, 112–255 (2014)
N. Afzal, L. Cioffi, L. Sabbatini, Torsi, Sens. Actuators B Chem. 171, 25–42 (2012)
X. Fang, L. Hu, C. Ye, L. Zhang, Pure Appl. Chem. 82, 2185–2198 (2010)
M.M. Arafat, B. Dinan, S.A. Akbar, A. Haseeb, Sensors 12, 7207–7258 (2012)
H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)
H. Du, J. Wang, M. Su, P. Yao, Y. Zheng, N. Yu, Sens. Actuators B 166, 746–752 (2012)
F. Teng, K. Hu, W. Ouyang, X. Fang, Adv. Mater. 30, 1706262 (2018)
J.H. Lee, Sens. Actuators B 140, 319–336 (2009)
M. Bao, Y. Chen, F. Li, J. Ma, T. Lv, Y. Tang, T. Wang, Nanoscale 6, 4063–4066 (2014)
J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, ACS Appl. Mater. Interfaces 5, 7410–7416 (2013)
P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li, Z. Zhong, Langmuir 28, 14090–14099 (2012)
H.J. Kim, J.W. Yoon, K.I. Choi, H.W. Jang, A. Umar, J.H. Lee, Nanoscale 5, 7066–7073 (2013)
J.W. Yoon, H.J. Kim, I.D. Kim, J.H. Lee, Nanotechnology 24, 444005 (2013)
C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, G. Lu, Sens. Actuators B 220, 59–67 (2015)
S. Morteza Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Mater. Res. Exp. 6, 015023 (2018)
H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, J. Alloys Compd. 459, 98–102 (2008)
N. Dharmaraj, P. Prabu, S. Nagarajan, C.H. Kim, J.H. Park, H.Y. Kim, Mater. Sci. Eng. B 128, 111–114 (2006)
C. Shi, G. Wang, N. Zhao, X. Du, J. Li, Chem. Phys. Lett. 454, 75–79 (2008)
Y. Qiu, J. Yu, C. Tan, J. Yin, Mater. Lett. 63, 200–202 (2009)
B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V. Chowdari, A.T. Wee, C.T. Lim, C.H. Sow, Chem. Mater. 20, 3360–3367 (2008)
W. Zhou, M. Yao, L. Guo, Y. Li, J. Li, S. Yang, J. Am. Chem. Soc. 131, 2959–2964 (2009)
X. Ni, Y. Zhang, D. Tian, H. Zheng, X. Wang, J. Cryst. Growth 306, 418–421 (2007)
M.M. Natile, A. Glisenti, Chem. Mater. 15, 2502–2510 (2003)
M. Borgström, E. Blart, G. Boschloo, E. Mukhtar, A. Hagfeldt, L. Hammarström, F. Odobel, J. Phys. Chem. B 109, 22928–22934 (2005)
K.C. Liu, M.A. Anderson, J. Electrochem. Soc. 143, 124–130 (1996)
H. Kamal, E.K. Elmaghraby, S.A. Ali, K. Abdel-Hady, J. Cryst. Growth 262, 424–434 (2004)
S.D. Tiwari, K.P. Rajeev, Thin Solid Films 505, 113–117 (2006)
C.Y. Lee, C.M. Chiang, Y.H. Wang, R.H. Ma, Sens. Actuators B 122, 503–510 (2007)
C. Luyo, R. Ionescu, L.F. Reyes, Z. Topalian, W. Estrada, E. Llobet, C.G. Granqvist, P. Heszler, Sens. Actuators B 138, 14–20 (2009)
P. Sun, X. Mei, Y. Cai, J. Ma, Y. Sun, X. Liang, F. Liu, G. Lu, Sens. Actuators B 187, 301–307 (2013)
H.Y. Lai, T.H. Chen, C.H. Chen, CrystEngComm 14, 5589–5595 (2012)
H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D. Kim, H. Kim, S.K. Hong, J. Mater. Chem. 22, 1127–1134 (2012)
C. Wang, R. Sun, X. Li, Y. Sun, P. Sun, F. Liu, G. Lu, Sens. Actuators B 204, 224–230 (2014)
K.Y. Wu, C.C. Wang, D.H. Chen, Nanotechnology 18, 305604 (2007)
L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, J. Phys. Chem. C 112, 9061–9065 (2008)
H.L. Tuller, S.R. Bishop, Ann. Rev. Mater. Res. 41, 369–398 (2011)
C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, ACS Sens. 1, 131–136 (2015)
Y. Huang, Q. Zhang, J. Xi, Z. Ji, Appl. Surf. Sci. 258, 7435–7439 (2012)
J.W. Kim, S.M. Park, J. Electrochem. Soc. 150, E560–E566 (2003)
L.G. Bloor, J. Manzil, R. Binions, I.P. Parkin, D. Pugh, A. Afonja, C.S. Blackman, S. Sathasivam, C.J. Carmalt, Chem. Mater. 24, 2864–2871 (2012)
B. Miao, W. Zeng, L. Lin, S. Xu, Physica E 52, 40–45 (2013)
Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai, Z. Ye, Sens. Actuators B 208, 112–121 (2015)
M. Haq, Z. Wen, Z. Zhang, S. Khan, Z. Lou, Z. Ye, L. Zhu, Sci. Rep. 8, 1705 (2018)
J. Cao, S.X. Tao, P.A. Bobbert, C.P. Wong, N. Zhao, Adv. Mater. 30, 1707350 (2018)
H. Ali, R.R. Kadhim, Int. J. Appl. Innov. Eng. Manag. 4, 2319–4847 (2015)
Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, ACS Appl. Mater. Interfaces 5, 12310–12316 (2013)
D. Gao, J. Zhang, G. Yang, J. Zhang, Z. Shi, J. Qi, Z. Zhang, D. Xue, J. Phys. Chem. C 114, 13477–13481 (2010)
J.H. Pan, Q. Huang, Z.Y. Koh, D. Neo, X.Z. Wang, Q. Wang, ACS Appl. Mater. Interfaces 5, 6292–6299 (2013)
L. Li, S. He, M. Liu, C. Zhang, W. Chen, Anal. Chem. 87, 1638–1645 (2015)
L. Chang-Bai, L. Xing-Yi, W. Sheng-Lei, Chin. Phys. B 24, 018503 (2015)
A. Wisitsoraat, E. Tuantranont, G. Comini, W. Sberveglieri, Wlodarski, Thin Solid Films 517, 2775–2780 (2009)
M. Haq, Z. Zhang, X. Chen, N. Rahman, S. Khan, R. Khatoon, S.S. Hassan, Z. Ye, L. Zhu, J. Alloys Compd. 777, 73–83 (2019)
G. Heiland, D. Kohl, Chem. Sens. Technol. 1, 15–38 (1988)
R. Miao, W. Zeng, Q. Gao, Appl. Surf. Sci. 384, 304–310 (2016)
X. Sun, X. Hu, Y. Wang, R. Xiong, X. Li, J. Liu, H. Ji, X. Li, S. Cai, C. Zheng, J. Phys. Chem. C 119, 3228–3237 (2015)
X. Song, L. Gao, S. Mathur, J. Phys. Chem. C 115, 21730–21735 (2011)
X. San, G. Wang, B. Liang, J. Ma, D. Meng, Y. Shen, J. Alloys Compd. 636, 357–362 (2015)
Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Mater. Lett. 68, 168–170 (2012)
L. Li, M. Liu, S. He, W. Chen, Anal. Chem. 86, 7996–8002 (2014)
M. Najafi, H. Eshghi, Sci. Iran. 22, 1317 (2015)
D. Auvergne, J. Camassel, H. Mathieu, Phys. Rev. B 11, 2251 (1975)
D. Kohl, J. Phys. D 34, R125 (2001)
M. Yang, H. Pu, Q. Zhou, Q. Zhang, Thin Solid Films 520, 5884–5888 (2012)
H.J. Kim, H.M. Jeong, T.H. Kim, J.H. Chung, Y.C. Kang, J.H. Lee, ACS Appl. Mater. Interfaces 6, 18197–18204 (2014)
M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Beliatis, S.J. Henley, S.R.P. Silva, J. Phys. Chem. C 117, 17850–17858 (2013)
Acknowledgements
This work was supported by National Natural Science Foundation of China (51572239, 51372224 and 91333203), Program for Innovative Research Team in University of Ministry of Education of China (IRT13037). Dr. Z. Wen specially acknowledges the support from State Key Laboratory of Silicon Materials, Zhejiang University (SKL2018-03).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
We do not have any competing financial interests. All the work is based for the interests of Science and Technology.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
ul Haq, M., Zhang, Z., Wen, Z. et al. Humidity sensor based on mesoporous Al-doped NiO ultralong nanowires with enhanced ethanol sensing performance. J Mater Sci: Mater Electron 30, 7121–7134 (2019). https://doi.org/10.1007/s10854-019-01030-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-019-01030-8