[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Humidity sensor based on mesoporous Al-doped NiO ultralong nanowires with enhanced ethanol sensing performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous Al-doped NiO ultralong nanowires with better uniformity, dispersity and well-defined morphologies were synthesized by a simple surfactant based hydrothermal treatment of aqueous solution of Al(NO3)3, NiCl2 and NaC2O4 in the presence of ethylene glycol and polyethylene glycol through continuous open air heating at 500 °C. The sensing performances of the gas sensor’s based on bare and Al-doped NiO nanowires had been investigated towards ethanol, methanol, acetone, xylene, toluene and benzene. The results specified that the 3.2 at% Al-doped NiO nanowires display better gas sensitivity characteristics as compare to that of undoped, 1.6 at%, 2.1 at% and 4.3 at% Al-doped NiO nanowires. It has been investigated that the sensitivity features were upgraded with an increment on Al concentration into the crystallites based on NiO nanowires. The assimilation of Al3+ ions within NiO crystals modifies the carrier concentration by inducing changes in the chemisorbed and deficient oxygen of NiO nanowires. Hence, the incorporation of Al3+ into NiO nanowires would be a capable way for scheming and devising significant gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MOS:

Metal oxide semiconductor

VOC:

Volatile organic compounds

NWS:

Nanowires

EG:

Ethylene glycol

PEG:

Polyethylene glycol

r.m.m:

Relative molecular mass

OL :

Lattice oxygen

OV :

Deficient oxygen

OC :

Chemisorbed oxygen

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

EDS:

Energy dispersive X-ray spectroscopy

XPS:

X-ray photoelectron spectroscopy

HRTEM:

High-resolution transmission electron microscopy

BET:

Brunauer, Emmett, and Teller method

References

  1. X. Chen, T. Pradhan, F. Wang, J.S. Kim, J. Yoon, Chem. Rev. 112, 1910–1956 (2011)

    Article  Google Scholar 

  2. X. Zhang, J. Yin, J. Yoon, Chem. Rev. 114, 4918–4959 (2014)

    Article  Google Scholar 

  3. Y. Zhou, J.F. Zhang, J. Yoon, Chem. Rev. 114, 5511–5571 (2014)

    Article  Google Scholar 

  4. S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Sens. Actuators B 96, 541–553 (2003)

    Article  Google Scholar 

  5. Z. Lei, Y. Yang, J. Am. Chem. Soc. 136, 6594–6597 (2014)

    Article  Google Scholar 

  6. Q. Xu, S. Lee, Y. Cho, M.H. Kim, J. Bouffard, J. Yoon, J. Am. Chem. Soc. 135, 17751–17754 (2013)

    Article  Google Scholar 

  7. H. Haick, Y.Y. Broza, P. Mochalski, V. Ruzsanyi, A. Amann, Chem. Soc. Rev. 43, 1423–1449 (2014)

    Article  Google Scholar 

  8. M. Plaza, S. Santoyo, L. Jaime, G.G.B. Reina, M. Herrero, F.J. Señoráns, E. Ibanez, J. Pharm. Biomed. Anal. 51, 450–455 (2010)

    Article  Google Scholar 

  9. S. Das, V. Jayaraman, Prog. Mater Sci. 66, 112–255 (2014)

    Article  Google Scholar 

  10. N. Afzal, L. Cioffi, L. Sabbatini, Torsi, Sens. Actuators B Chem. 171, 25–42 (2012)

    Article  Google Scholar 

  11. X. Fang, L. Hu, C. Ye, L. Zhang, Pure Appl. Chem. 82, 2185–2198 (2010)

    Article  Google Scholar 

  12. M.M. Arafat, B. Dinan, S.A. Akbar, A. Haseeb, Sensors 12, 7207–7258 (2012)

    Article  Google Scholar 

  13. H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)

    Article  Google Scholar 

  14. H. Du, J. Wang, M. Su, P. Yao, Y. Zheng, N. Yu, Sens. Actuators B 166, 746–752 (2012)

    Article  Google Scholar 

  15. F. Teng, K. Hu, W. Ouyang, X. Fang, Adv. Mater. 30, 1706262 (2018)

    Article  Google Scholar 

  16. J.H. Lee, Sens. Actuators B 140, 319–336 (2009)

    Article  Google Scholar 

  17. M. Bao, Y. Chen, F. Li, J. Ma, T. Lv, Y. Tang, T. Wang, Nanoscale 6, 4063–4066 (2014)

    Article  Google Scholar 

  18. J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, ACS Appl. Mater. Interfaces 5, 7410–7416 (2013)

    Article  Google Scholar 

  19. P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li, Z. Zhong, Langmuir 28, 14090–14099 (2012)

    Article  Google Scholar 

  20. H.J. Kim, J.W. Yoon, K.I. Choi, H.W. Jang, A. Umar, J.H. Lee, Nanoscale 5, 7066–7073 (2013)

    Article  Google Scholar 

  21. J.W. Yoon, H.J. Kim, I.D. Kim, J.H. Lee, Nanotechnology 24, 444005 (2013)

    Article  Google Scholar 

  22. C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, G. Lu, Sens. Actuators B 220, 59–67 (2015)

    Article  Google Scholar 

  23. S. Morteza Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Mater. Res. Exp. 6, 015023 (2018)

    Article  Google Scholar 

  24. H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, J. Alloys Compd. 459, 98–102 (2008)

    Article  Google Scholar 

  25. N. Dharmaraj, P. Prabu, S. Nagarajan, C.H. Kim, J.H. Park, H.Y. Kim, Mater. Sci. Eng. B 128, 111–114 (2006)

    Article  Google Scholar 

  26. C. Shi, G. Wang, N. Zhao, X. Du, J. Li, Chem. Phys. Lett. 454, 75–79 (2008)

    Article  Google Scholar 

  27. Y. Qiu, J. Yu, C. Tan, J. Yin, Mater. Lett. 63, 200–202 (2009)

    Article  Google Scholar 

  28. B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V. Chowdari, A.T. Wee, C.T. Lim, C.H. Sow, Chem. Mater. 20, 3360–3367 (2008)

    Article  Google Scholar 

  29. W. Zhou, M. Yao, L. Guo, Y. Li, J. Li, S. Yang, J. Am. Chem. Soc. 131, 2959–2964 (2009)

    Article  Google Scholar 

  30. X. Ni, Y. Zhang, D. Tian, H. Zheng, X. Wang, J. Cryst. Growth 306, 418–421 (2007)

    Article  Google Scholar 

  31. M.M. Natile, A. Glisenti, Chem. Mater. 15, 2502–2510 (2003)

    Article  Google Scholar 

  32. M. Borgström, E. Blart, G. Boschloo, E. Mukhtar, A. Hagfeldt, L. Hammarström, F. Odobel, J. Phys. Chem. B 109, 22928–22934 (2005)

    Article  Google Scholar 

  33. K.C. Liu, M.A. Anderson, J. Electrochem. Soc. 143, 124–130 (1996)

    Article  Google Scholar 

  34. H. Kamal, E.K. Elmaghraby, S.A. Ali, K. Abdel-Hady, J. Cryst. Growth 262, 424–434 (2004)

    Article  Google Scholar 

  35. S.D. Tiwari, K.P. Rajeev, Thin Solid Films 505, 113–117 (2006)

    Article  Google Scholar 

  36. C.Y. Lee, C.M. Chiang, Y.H. Wang, R.H. Ma, Sens. Actuators B 122, 503–510 (2007)

    Article  Google Scholar 

  37. C. Luyo, R. Ionescu, L.F. Reyes, Z. Topalian, W. Estrada, E. Llobet, C.G. Granqvist, P. Heszler, Sens. Actuators B 138, 14–20 (2009)

    Article  Google Scholar 

  38. P. Sun, X. Mei, Y. Cai, J. Ma, Y. Sun, X. Liang, F. Liu, G. Lu, Sens. Actuators B 187, 301–307 (2013)

    Article  Google Scholar 

  39. H.Y. Lai, T.H. Chen, C.H. Chen, CrystEngComm 14, 5589–5595 (2012)

    Article  Google Scholar 

  40. H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D. Kim, H. Kim, S.K. Hong, J. Mater. Chem. 22, 1127–1134 (2012)

    Article  Google Scholar 

  41. C. Wang, R. Sun, X. Li, Y. Sun, P. Sun, F. Liu, G. Lu, Sens. Actuators B 204, 224–230 (2014)

    Article  Google Scholar 

  42. K.Y. Wu, C.C. Wang, D.H. Chen, Nanotechnology 18, 305604 (2007)

    Article  Google Scholar 

  43. L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, J. Phys. Chem. C 112, 9061–9065 (2008)

    Article  Google Scholar 

  44. H.L. Tuller, S.R. Bishop, Ann. Rev. Mater. Res. 41, 369–398 (2011)

    Article  Google Scholar 

  45. C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, ACS Sens. 1, 131–136 (2015)

    Article  Google Scholar 

  46. Y. Huang, Q. Zhang, J. Xi, Z. Ji, Appl. Surf. Sci. 258, 7435–7439 (2012)

    Article  Google Scholar 

  47. J.W. Kim, S.M. Park, J. Electrochem. Soc. 150, E560–E566 (2003)

    Article  Google Scholar 

  48. L.G. Bloor, J. Manzil, R. Binions, I.P. Parkin, D. Pugh, A. Afonja, C.S. Blackman, S. Sathasivam, C.J. Carmalt, Chem. Mater. 24, 2864–2871 (2012)

    Article  Google Scholar 

  49. B. Miao, W. Zeng, L. Lin, S. Xu, Physica E 52, 40–45 (2013)

    Article  Google Scholar 

  50. Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai, Z. Ye, Sens. Actuators B 208, 112–121 (2015)

    Article  Google Scholar 

  51. M. Haq, Z. Wen, Z. Zhang, S. Khan, Z. Lou, Z. Ye, L. Zhu, Sci. Rep. 8, 1705 (2018)

    Article  Google Scholar 

  52. J. Cao, S.X. Tao, P.A. Bobbert, C.P. Wong, N. Zhao, Adv. Mater. 30, 1707350 (2018)

    Article  Google Scholar 

  53. H. Ali, R.R. Kadhim, Int. J. Appl. Innov. Eng. Manag. 4, 2319–4847 (2015)

    Google Scholar 

  54. Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, ACS Appl. Mater. Interfaces 5, 12310–12316 (2013)

    Article  Google Scholar 

  55. D. Gao, J. Zhang, G. Yang, J. Zhang, Z. Shi, J. Qi, Z. Zhang, D. Xue, J. Phys. Chem. C 114, 13477–13481 (2010)

    Article  Google Scholar 

  56. J.H. Pan, Q. Huang, Z.Y. Koh, D. Neo, X.Z. Wang, Q. Wang, ACS Appl. Mater. Interfaces 5, 6292–6299 (2013)

    Article  Google Scholar 

  57. L. Li, S. He, M. Liu, C. Zhang, W. Chen, Anal. Chem. 87, 1638–1645 (2015)

    Article  Google Scholar 

  58. L. Chang-Bai, L. Xing-Yi, W. Sheng-Lei, Chin. Phys. B 24, 018503 (2015)

    Article  Google Scholar 

  59. A. Wisitsoraat, E. Tuantranont, G. Comini, W. Sberveglieri, Wlodarski, Thin Solid Films 517, 2775–2780 (2009)

    Article  Google Scholar 

  60. M. Haq, Z. Zhang, X. Chen, N. Rahman, S. Khan, R. Khatoon, S.S. Hassan, Z. Ye, L. Zhu, J. Alloys Compd. 777, 73–83 (2019)

    Article  Google Scholar 

  61. G. Heiland, D. Kohl, Chem. Sens. Technol. 1, 15–38 (1988)

    Article  Google Scholar 

  62. R. Miao, W. Zeng, Q. Gao, Appl. Surf. Sci. 384, 304–310 (2016)

    Article  Google Scholar 

  63. X. Sun, X. Hu, Y. Wang, R. Xiong, X. Li, J. Liu, H. Ji, X. Li, S. Cai, C. Zheng, J. Phys. Chem. C 119, 3228–3237 (2015)

    Article  Google Scholar 

  64. X. Song, L. Gao, S. Mathur, J. Phys. Chem. C 115, 21730–21735 (2011)

    Article  Google Scholar 

  65. X. San, G. Wang, B. Liang, J. Ma, D. Meng, Y. Shen, J. Alloys Compd. 636, 357–362 (2015)

    Article  Google Scholar 

  66. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Mater. Lett. 68, 168–170 (2012)

    Article  Google Scholar 

  67. L. Li, M. Liu, S. He, W. Chen, Anal. Chem. 86, 7996–8002 (2014)

    Article  Google Scholar 

  68. M. Najafi, H. Eshghi, Sci. Iran. 22, 1317 (2015)

    Google Scholar 

  69. D. Auvergne, J. Camassel, H. Mathieu, Phys. Rev. B 11, 2251 (1975)

    Article  Google Scholar 

  70. D. Kohl, J. Phys. D 34, R125 (2001)

    Article  Google Scholar 

  71. M. Yang, H. Pu, Q. Zhou, Q. Zhang, Thin Solid Films 520, 5884–5888 (2012)

    Article  Google Scholar 

  72. H.J. Kim, H.M. Jeong, T.H. Kim, J.H. Chung, Y.C. Kang, J.H. Lee, ACS Appl. Mater. Interfaces 6, 18197–18204 (2014)

    Article  Google Scholar 

  73. M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Beliatis, S.J. Henley, S.R.P. Silva, J. Phys. Chem. C 117, 17850–17858 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51572239, 51372224 and 91333203), Program for Innovative Research Team in University of Ministry of Education of China (IRT13037). Dr. Z. Wen specially acknowledges the support from State Key Laboratory of Silicon Materials, Zhejiang University (SKL2018-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhu.

Ethics declarations

Competing interests

We do not have any competing financial interests. All the work is based for the interests of Science and Technology.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ul Haq, M., Zhang, Z., Wen, Z. et al. Humidity sensor based on mesoporous Al-doped NiO ultralong nanowires with enhanced ethanol sensing performance. J Mater Sci: Mater Electron 30, 7121–7134 (2019). https://doi.org/10.1007/s10854-019-01030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01030-8

Navigation