Functionalized Optical Microcavities for Sensing Applications
<p>Schematics of the physical structure of various optical microcavities and the main physical principles used for sensing.</p> "> Figure 2
<p>(<b>a</b>) Schematics of an optical microcavity used for gamma radiation detection. The microcavity is made of porous silicon layers with a high refractive index contrast, doped with a polyvinyl alcohol, carbol fuchsin, and crystal violet (Layers A and B). The cavity itself is formed from the same polymer composition (Layer C). (<b>b</b>) Schematics of an optical microcavity made of metamaterial (LHM), SiO<sub>2</sub>, and graphene sheets at the interface between cavity and mirror.</p> "> Figure 3
<p>Schematic representation of the experimental setup of the developed fiber-optic SPR immunosensor for the detection of <span class="html-italic">E. coli.</span> Modified with permission from Kaushik et al. (2019) [<a href="#B63-nanomaterials-15-00206" class="html-bibr">63</a>], published by Elsevier, Amsterdam, The Netherlands.</p> "> Figure 4
<p>Schematic of the combination of whispering-gallery modes and nanoplasmonics for enhancing Raman spectroscopy. Reproduced from Mao et al. (2023) [<a href="#B79-nanomaterials-15-00206" class="html-bibr">79</a>], published by Springer Nature under a Creative Commons Attribution 4.0 International License <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">http://creativecommons.org/licenses/by/4.0/</a>.</p> ">
Abstract
:1. Introduction
2. Functionalized Optical Microcavities
3. Fabry–Pérot Microcavities
4. Plasmonic Microcavity-Based Sensors
5. Whispering-Gallery Mode Microcavities
6. The Advantages and Drawbacks of Different Microcavity Designs for Sensing Applications
7. Prospects
8. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.S.; Jun, S.W.; Ahn, Y.H. Developing a Novel Terahertz Fabry–Perot Microcavity Biosensor by Incorporating Porous Film for Yeast Sensing. Sensors 2023, 23, 5797. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Guo, Z.; Zhou, Y.; Guo, J.; Liu, Z.; Luo, M.; Li, Y.; Wang, Q.; Zhang, M.; Yang, X.; et al. Highly Sensitive, Modification-Free, and Dynamic Real-Time Stereo-Optical Immuno-Sensor. Biosens. Bioelectron. 2023, 237, 115477. [Google Scholar] [CrossRef]
- Uchida, Y.; Arakawa, T.; Higo, A.; Ishizaka, Y. Silicon Microring Resonator Biosensor for Detection of Nucleocapsid Protein of SARS-CoV-2. Sensors 2024, 24, 3250. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.S.; Kumar, D.; Kumar, S. Gold-Immobilized Photonic Crystal Fiber-Based SPR Biosensor for Detection of Malaria Disease in Human Body. IEEE Sens. J. 2021, 21, 17800–17807. [Google Scholar] [CrossRef]
- Aslan, K.; Lakowicz, J.R.; Geddes, C.D. Plasmon Light Scattering in Biology and Medicine: New Sensing Approaches, Visions and Perspectives. Curr. Opin. Chem. Biol. 2005, 9, 538–544. [Google Scholar] [CrossRef]
- Cai, L.; Pan, J.; Zhao, Y.; Wang, J.; Xiao, S. Whispering Gallery Mode Optical Microresonators: Structures and Sensing Applications. Phys. Status Solidi (A) 2020, 217, 1900825. [Google Scholar] [CrossRef]
- Liu, C.; Lü, J.; Liu, W.; Wang, F.; Chu, P.K. Overview of Refractive Index Sensors Comprising Photonic Crystal Fibers Based on the Surface Plasmon Resonance Effect. Chin. Opt. Lett. 2021, 19, 102202. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Chang, Y.-J.; Chuang, Y.-C.; Huang, B.-Z.; Chen, C.-C. A Plasmonic Refractive Index Sensor with an Ultrabroad Dynamic Sensing Range. Sci. Rep. 2019, 9, 5134. [Google Scholar] [CrossRef]
- Granizo, E.; Kriukova, I.; Escudero-Villa, P.; Samokhvalov, P.; Nabiev, I. Microfluidics and Nanofluidics in Strong Light–Matter Coupling Systems. Nanomaterials 2024, 14, 1520. [Google Scholar] [CrossRef] [PubMed]
- Akil-Jradi, S.; Jradi, S.; Plain, J.; Adam, P.-M.; Bijeon, J.-L.; Royer, P.; Bachelot, R. Micro/Nanoporous Polymer Chips as Templates for Highly Sensitive SERS Sensors. RSC Adv. 2012, 2, 7837. [Google Scholar] [CrossRef]
- Lu, M.; Zhu, H.; Lin, M.; Wang, F.; Hong, L.; Masson, J.-F.; Peng, W. Comparative Study of Block Copolymer-Templated Localized Surface Plasmon Resonance Optical Fiber Biosensors: CTAB or Citrate-Stabilized Gold Nanorods. Sens. Actuators B Chem. 2021, 329, 129094. [Google Scholar] [CrossRef]
- Makela, M.; Lin, Z.; Coté, G.L.; Lin, P.T. Fluorescence Enhanced Biomolecule Detection Using Direct Laser Written Micro-Ring Resonators. Opt. Laser Technol. 2024, 174, 110629. [Google Scholar] [CrossRef]
- Lv, J.; Wang, J.; Yang, L.; Liu, W.; Fu, H.; Chu, P.K.; Liu, C. Recent Advances of Optical Fiber Biosensors Based on Surface Plasmon Resonance: Sensing Principles, Structures, and Prospects. Sens. Diagn. 2024, 3, 1369–1391. [Google Scholar] [CrossRef]
- Patel, S.K.; Alsalman, O. Design and Development of Graphene-Based Double Split Ring Resonator Metasurface Biosensor Using MgF2-Gold Materials for Blood Cancer Detection. Opt. Quant. Electron. 2024, 56, 1120. [Google Scholar] [CrossRef]
- Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7, 2758–2763. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhong, H.; Xu, Z.; He, T.; Kim, J.S.; Han, S.; Kim, S.; Park, S.; Shen, Y.; Gong, M.; et al. Functionalizing Nanophotonic Structures with 2D van Der Waals Materials. Nanoscale Horiz. 2023, 8, 1345–1365. [Google Scholar] [CrossRef]
- Ma, Q.; Su, X. Recent Advances and Applications in QDs-Based Sensors. Analyst 2011, 136, 4883. [Google Scholar] [CrossRef]
- Zou, T.; Choi, T.; Liu, A.; Zhu, H.; Noh, Y.-Y. Printed Quantum Dot Photodetectors for Applications from the High-Energy to the Infrared Region. Nano Energy 2024, 125, 109539. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Y.; Wang, Q.; Wu, Z.; Zhang, X.; Li, B.; Lin, L. Recent Advances in Quantum Dots-Based Biosensors for Antibiotics Detection. J. Pharm. Anal. 2022, 12, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Gorai, P.; Shrivastav, A.; Pathak, A. Label-Free Biochemical Sensing Using Processed Optical Fiber Interferometry: A Review. ACS Omega 2024, 9, 3037–3069. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Nedoma, J.; Martinek, R.; Marques, C. Advancements in Optical Biosensing Techniques: From Fundamentals to Future Prospects. APL Photonics 2024, 9, 091102. [Google Scholar] [CrossRef]
- Nifontova, G.; Gerasimovich, E.; Fleury, F.; Sukhanova, A.; Nabiev, I. Photonic Crystal Surface Mode Imaging for Multiplexed Real-Time Detection of Antibodies, Oligonucleotides, and DNA Repair Proteins. EPJ Web Conf. 2023, 287, 03007. [Google Scholar] [CrossRef]
- Suthar, B.; Kumar, N.; Taya, S.A. Design and Analysis of Tunable Multichannel Transmission Filters with a Binary Photonic Crystal of Silver/Silicon. Eur. Phys. J. Plus 2022, 137, 1301. [Google Scholar] [CrossRef]
- Kumar, N.; Suthar, B.; Nayak, C.; Bhargava, A. Analysis of a Gas Sensor Based on One-Dimensional Photonic Crystal Structure with a Designed Defect Cavity. Phys. Scr. 2023, 98, 065506. [Google Scholar] [CrossRef]
- Tran, K.N.; Tran, H.N.Q.; Lim, S.Y.; Abell, A.D.; Law, C.S.; Santos, A. Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities. ACS Appl. Mater. Interfaces 2024, 16, 24961–24975. [Google Scholar] [CrossRef]
- Krzempek, K.; Jaworski, P.; Tenbrake, L.; Giefer, F.; Meschede, D.; Hofferberth, S.; Pfeifer, H. Photothermal Gas Detection Using a Miniaturized Fiber Fabry-Perot Cavity. Sens. Actuators B Chem. 2024, 401, 135040. [Google Scholar] [CrossRef]
- Gowda, R.B.; Saara, K.; Sharan, P. Detection of Oral Cancerous Cells Using Highly Sensitive One-Dimensional Distributed Bragg’s Reflector Fabry Perot Microcavity. Optik 2021, 244, 167599. [Google Scholar] [CrossRef]
- Li, W.; Zhao, W.; Cheng, S.; Zhang, H.; Yi, Z.; Sun, T.; Wu, P.; Zeng, Q.; Raza, R. Tunable Metamaterial Absorption Device Based on Fabry–Perot Resonance as Temperature and Refractive Index Sensing. Opt. Lasers Eng. 2024, 181, 108368. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Al-Dossari, M.; Hendy, A.S.; Zayed, M.; Aly, A.H. Gamma Radiation Detector Using Cantor Quasi-Periodic Photonic Crystal Based on Porous Silicon Doped with Polymer. Int. J. Mod. Phys. B 2024, 38, 2450409. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Ahmed, A.M.; Aly, A.H.; Eissa, M.F.; Tammam, M.T. Detection of Low-Concentration Heavy Metal Exploiting Tamm Resonance in a Porous TiO2 Photonic Crystal. RSC Adv. 2024, 14, 26050–26058. [Google Scholar] [CrossRef]
- Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Kavokin, A.V.; Shelykh, I.A. Tamm Plasmon-Polaritons: Possible Electromagnetic States at the Interface of a Metal and a Dielectric Bragg Mirror. Phys. Rev. B 2007, 76, 165415. [Google Scholar] [CrossRef]
- Jena, S.; Tokas, R.B.; Thakur, S.; Udupa, D.V. Rabi-like Splitting and Refractive Index Sensing with Hybrid Tamm Plasmon-Cavity Modes. J. Phys. D Appl. Phys. 2022, 55, 175104. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Wang, T.; De Leon, I.; Zaccaria, R.P.; Qian, H.; Chen, H.; Wang, G. Strong Coupling of Tamm Plasmons and Fabry-Perot Modes in a One-Dimensional Photonic Crystal Heterostructure. Phys. Rev. Appl. 2022, 18, 014056. [Google Scholar] [CrossRef]
- Ankita; Suthar, B.; Bissa, S.; Bhargava, A. Revolutionizing Optical Biosensor with Nanocomposite/Defect/Nanocomposite Multilayer 1D Photonic Crystals. Opt. Quant. Electron. 2024, 56, 1116. [Google Scholar] [CrossRef]
- Ramanujam, N.R.; Amiri, I.S.; Taya, S.A.; Olyaee, S.; Udaiyakumar, R.; Pasumpon Pandian, A.; Joseph Wilson, K.S.; Mahalakshmi, P.; Yupapin, P.P. Enhanced Sensitivity of Cancer Cell Using One Dimensional Nano Composite Material Coated Photonic Crystal. Microsyst. Technol. 2019, 25, 189–196. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Rao, Z.; Zheng, Z.; Song, C.; Chen, Y.; Xiong, K.; Chen, P.; Zhang, C.; Wu, W.; et al. Tunable Quantum Dots in Monolithic Fabry-Perot Microcavities for High-Performance Single-Photon Sources. Light Sci. Appl. 2024, 13, 33. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, S.; Wang, J.; Jia, Z.; Lv, X.; Huang, X. Enhanced Biosensor Based on Assembled Porous Silicon Microcavities Using CdSe/ZnS Quantum Dots. IEEE Photonics J. 2021, 13, 6801106. [Google Scholar] [CrossRef]
- Firouzi, F.; Vahedi, A.; Hagipour, S. Ternary One-Dimensional Photonic Crystal Biosensors for Efficient Bacteria Detection: Role of Quantum Dots and Material Combinations. Phys. B Condens. Matter 2025, 698, 416766. [Google Scholar] [CrossRef]
- Chen, F.; Li, Y.; Yang, W.; Wang, B.; Xiao, S. WS2 Monolayer in Fabry–Perot Cavity Support for Plasmonic Fano Resonance. Plasmonics 2023, 18, 1371–1380. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D.; Wu, F.; Belhadj, W. Graphene-Based 1D Defective Photonic Crystal Biosensor for Real-Time Detection of Cancer Cells. Eur. Phys. J. Plus 2021, 136, 809. [Google Scholar] [CrossRef]
- Panda, A.; Van Nguyen, C.; Pukhrambam, P.D.; Dhasarathan, V. Employing Metamaterial and Ti3C2Tx (MXene) Material for Cancer Cells Detection Using Defective 1D Photonic Crystal. Opt. Quant. Electron. 2023, 55, 480. [Google Scholar] [CrossRef]
- Elblbeisi, M.; Taya, S.A.; Almawgani, A.H.M.; Hindi, A.T.; Alhamss, D.N.; Colak, I.; Patel, S.K. Absorption Properties of a Defective Binary Photonic Crystal Consisting of a Metamaterial, SiO2, and Two Graphene Sheets. Plasmonics 2024, 19, 1431–1442. [Google Scholar] [CrossRef]
- Zhan, K.; Jiang, Y.; Qin, P.; Chen, Y.; Heinke, L. A Colorimetric Label-Free Sensor Array of Metal–Organic-Framework-Based Fabry–Pérot Films for Detecting Volatile Organic Compounds and Food Spoilage. Adv. Mater. Inter. 2023, 10, 2300329. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Tian, Y.; Li, H.; Lu, Z.; Yang, L. Fabry–Pérot Cavity Based on Metal–Organic Framework/Graphene Oxide Heterostructure Membranes for Humidity Sensing. ACS Appl. Nano Mater. 2024, 7, 6148–6158. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Wang, Q.; Chen, S.; Wang, F.; Wang, J.; Wang, G.; Yang, W.; Huang, M. Integrated and Robust Fabry–Perot Humidity Sensor Based on Metal–Organic Framework onto Fiber-Optic Facet. IEEE Sens. J. 2023, 23, 12906–12914. [Google Scholar] [CrossRef]
- Rho, D.; Kim, S. Demonstration of a Label-Free and Low-Cost Optical Cavity-Based Biosensor Using Streptavidin and C-Reactive Protein. Biosensors 2020, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Sypabekova, M.; Hagemann, A.; Kleiss, J.; Morlan, C.; Kim, S. Optimizing an Optical Cavity-Based Biosensor for Enhanced Sensitivity. IEEE Sens. J. 2023, 23, 25911–25918. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Chen, Q.; Chen, Y.-C.; Li, X.; Tong, L.; Fan, X. High-Q, Low-Mode-Volume Microsphere-Integrated Fabry–Perot Cavity for Optofluidic Lasing Applications. Photon. Res. 2019, 7, 50. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.; Luo, M.; Li, Y.; Liu, J.; Wu, X. High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing. Photonic Sens. 2024, 14, 240414. [Google Scholar] [CrossRef]
- Awawdeh, K.; Buttkewitz, M.A.; Bahnemann, J.; Segal, E. Enhancing the Performance of Porous Silicon Biosensors: The Interplay of Nanostructure Design and Microfluidic Integration. Microsyst. Nanoeng. 2024, 10, 100. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Y.; Li, P.; Li, Z. High Performance SERS Boosting by Fabry-Pérot Cavities of Silica-Gold-Silicon Multilayers. Opt. Express 2024, 32, 42569. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, K.; Fahad, A.K.; Wang, H.; Zheng, X.; Ruan, C. The Enhancement Detection Method Based on the Fabry–Pérot Cavity Using Terahertz Frequency-Domain Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 327, 125293. [Google Scholar] [CrossRef] [PubMed]
- Kausaite-Minkstimiene, A.; Popov, A.; Ramanaviciene, A. Ultra-Sensitive SPR Immunosensors: A Comprehensive Review of Labeling and Interface Modification Using Nanostructures. TrAC Trends Anal. Chem. 2024, 170, 117468. [Google Scholar] [CrossRef]
- Zhao, J.; Das, A.; Zhang, X.; Schatz, G.C.; Sligar, S.G.; Van Duyne, R.P. Resonance Surface Plasmon Spectroscopy: Low Molecular Weight Substrate Binding to Cytochrome P450. J. Am. Chem. Soc. 2006, 128, 11004–11005. [Google Scholar] [CrossRef] [PubMed]
- Koya, A.N. Plasmonic Nanoarchitectures for Single-Molecule Explorations: An Overview. Adv. Photonics Res. 2022, 3, 2100325. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, S.; Kumar, A.; Sharan, P. Effect of 2-D Nanomaterials on Sensitivity of Plasmonic Biosensor for Efficient Urine Glucose Detection. Front. Mater. 2023, 9, 1106251. [Google Scholar] [CrossRef]
- Kumar Gupta, V.; Choudhary, K.; Kumar, S. Two-Dimensional Materials-Based Plasmonic Sensors for Health Monitoring Systems—A Review. IEEE Sens. J. 2023, 23, 11324–11335. [Google Scholar] [CrossRef]
- Chaity, A.C. Highly Sensitive Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance for Six Distinct Types of Cancer Detection. Plasmonics 2024, 19, 1891–1902. [Google Scholar] [CrossRef]
- Chao, C.-T.C.; Chen, S.-H.; Huang, H.J.; Kooh, M.R.R.; Lim, C.M.; Thotagamuge, R.; Mahadi, A.H.; Chau, Y.-F.C. Improving Temperature-Sensing Performance of Photonic Crystal Fiber via External Metal-Coated Trapezoidal-Shaped Surface. Crystals 2023, 13, 813. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D.; Pandey, B.P.; Kumar, S. Advances in Photonic Crystal Fiber-Based Sensor for Detection of Physical and Biochemical Parameters—A Review. IEEE Sens. J. 2023, 23, 1012–1023. [Google Scholar] [CrossRef]
- Vatani, S.; Biney, J.; Faramarzi, V.; Jabbour, G.; Park, J. Advances in Plasmonic Photonic Crystal Fiber Biosensors: Exploring Innovative Materials for Bioimaging and Environmental Monitoring. ChemistrySelect 2024, 9, e202401265. [Google Scholar] [CrossRef]
- Yang, X.; Hou, S.; Xie, C.; Wu, G.; Yan, Z. High-Performance Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance for Early Cancer Detection. Plasmonics 2024, 19, 675–685. [Google Scholar] [CrossRef]
- Bing, P.; Zhao, J.; Zhang, X.; Li, Z.; Zhang, H.; Wang, J.; Yao, J. Highly Sensitive Photonic Crystal Fiber Optic Sensor for Cancer Cell Detection. Eur. Phys. J. Plus 2024, 139, 543. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Zhang, Q.; Tong, Y.; Qi, X.; Duan, Y.; Zhang, X.; Luo, Z.; Li, Y. Recent Advance on Fiber Optic SPR/LSPR-Based Ultra-Sensitive Biosensors Using Novel Structures and Emerging Signal Amplification Strategies. Opt. Laser Technol. 2024, 175, 110783. [Google Scholar] [CrossRef]
- Paul, A.K.; Mollah, M.d.A.; Hassan, M.d.Z.; Gomez-Cardona, N.; Reyes-Vera, E. Graphene-Coated Highly Sensitive Photonic Crystal Fiber Surface Plasmon Resonance Sensor for Aqueous Solution: Design and Numerical Analysis. Photonics 2021, 8, 155. [Google Scholar] [CrossRef]
- Xia, F.; Song, H.; Zhao, Y.; Zhao, W.-M.; Wang, Q.; Wang, X.-Z.; Wang, B.-T.; Dai, Z.-X. Ultra-High Sensitivity SPR Fiber Sensor Based on Multilayer Nanoparticle and Au Film Coupling Enhancement. Measurement 2020, 164, 108083. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Rash-Ahmadi, S. A Surface Plasmon Resonance Sensor Based on Photonic Crystal Fiber Composed of Magnesium Fluoride and Graphene Layers to Detect Aqueous Solutions. Opt. Quant. Electron. 2024, 56, 915. [Google Scholar] [CrossRef]
- Kaushik, S.; Tiwari, U.K.; Pal, S.S.; Sinha, R.K. Rapid Detection of Escherichia Coli Using Fiber Optic Surface Plasmon Resonance Immunosensor Based on Biofunctionalized Molybdenum Disulfide (MoS2) Nanosheets. Biosens. Bioelectron. 2019, 126, 501–509. [Google Scholar] [CrossRef]
- Hajiani, T.; Shirkani, H.; Sadeghi, Z. Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: Utilizing Silver-Phosphorene Nanoribbons for Near-IR Detection. Opt. Commun. 2024, 569, 130801. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, X.; Zhang, Q.; Xue, Z.; Shang, Q.; Lu, Y.; Yan, W. High Sensitivity Refractive Index Sensor Based on TiO2-Ag Double-Layer Coated Photonic Crystal Fiber. In Plasmonics; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Basha, A.J.; Maheshwari, R.U.; Pandey, B.K.; Pandey, D. Ultra-Sensitive Photonic Crystal Fiber–Based SPR Sensor for Cancer Detection Utilizing Hybrid Nanocomposite Layers. In Plasmonics; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Puspita, I.; Irawati, N.; Madurani, K.A.; Kurniawan, F.; Koentjoro, S.; Hatta, A.M. Graphene- and Multi-Walled Carbon Nanotubes-Coated Tapered Plastic Optical Fiber for Detection of Lard Adulteration in Olive Oil. Photonic Sens. 2022, 12, 220411. [Google Scholar] [CrossRef]
- Chen, X.; Lin, W.; Xu, P.; Chen, L.; Meng, W.; Hu, X.; Qu, H.; Cui, Y.; Sun, J. FM-Level Detection of Glucose Using a Grating Based Sensor Enhanced With Graphene Oxide. J. Light. Technol. 2023, 41, 4145–4152. [Google Scholar] [CrossRef]
- Tao, Y.; Ye, H.; Ding, Y.; Ren, X.; Liu, X. Refractive Index Sensing Simulations of CsPbBr3 Quantum Dots/Gold Bilayer Coated Triangular-Lattice Photonic Crystal Fibers. Photonic Sens. 2022, 12, 220309. [Google Scholar] [CrossRef]
- Qiu, H.; Yao, Y.; Dong, Y.; Tian, J. Fiber-Optic Immunosensor Based on a Fabry–Perot Interferometer for Single-Molecule Detection of Biomarkers. Biosens. Bioelectron. 2024, 255, 116265. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Singh, R.; Zhang, B.; Kumar, S.; Li, G. S-Tapered WaveFlex Biosensor Based on Multimode Fiber and Seven-Core Fiber Composite Structure for Detection of Alpha-Fetoprotein. IEEE Sens. J. 2024, 24, 4480–4487. [Google Scholar] [CrossRef]
- Gu, C.; Singh, R.; Li, G.; Wang, Q.; Liu, F.-Z.; Min, R.; Tosi, D.; Zhang, B.; Kumar, S. Development of W-Type Four-Core Fiber-Based WaveFlex Sensor for Enhanced Detection of Shigella Sonnei Bacteria Using Engineered Nanomaterials. J. Light. Technol. 2024, 42, 5055–5067. [Google Scholar] [CrossRef]
- Arasu, P.T.; Noor, A.S.M.; Shabaneh, A.A.; Yaacob, M.H.; Lim, H.N.; Mahdi, M.A. Fiber Bragg Grating Assisted Surface Plasmon Resonance Sensor with Graphene Oxide Sensing Layer. Opt. Commun. 2016, 380, 260–266. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Lei, M.; Ma, Y.; Wang, X.; Wang, R.; Sun, J.; Wang, R. Microcavity-Based SERS Chip for Ultrasensitive Immune Detection of Cardiac Biomarkers. Microchem. J. 2021, 171, 106875. [Google Scholar] [CrossRef]
- Sun, J.; Wang, R.; Wang, L.; Wang, X.; Wang, J.; Shi, Z.; Chen, Z.; Wang, M.; Xu, C. Visual/Quantitative SERS Biosensing Chip Based on Au-Decorated Polystyrene Sphere Microcavity Arrays. Sens. Actuators B Chem. 2023, 388, 133869. [Google Scholar] [CrossRef]
- Sun, J.; Shi, Z.; Wang, L.; Zhang, X.; Luo, C.; Hua, J.; Feng, M.; Chen, Z.; Wang, M.; Xu, C. Construction of a Microcavity-Based Microfluidic Chip with Simultaneous SERS Quantification of Dual Biomarkers for Early Diagnosis of Alzheimer’s Disease. Talanta 2023, 261, 124677. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Sukhanova, A.; Ivanov, A.V.; Bykov, I.V.; Bakholdin, N.V.; Vasina, D.V.; Gushchin, V.A.; Tkachuk, A.P.; Nifontova, G.; Samokhvalov, P.S.; et al. Label-Free Detection of the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein at Physiologically Relevant Concentrations Using Surface-Enhanced Raman Spectroscopy. Biosensors 2022, 12, 300. [Google Scholar] [CrossRef]
- Bannur Nanjunda, S.; Seshadri, V.N.; Krishnan, C.; Rath, S.; Arunagiri, S.; Bao, Q.; Helmerson, K.; Zhang, H.; Jain, R.; Sundarrajan, A.; et al. Emerging Nanophotonic Biosensor Technologies for Virus Detection. Nanophotonics 2022, 11, 5041–5059. [Google Scholar] [CrossRef]
- Mao, W.; Li, Y.; Jiang, X.; Liu, Z.; Yang, L. A Whispering-Gallery Scanning Microprobe for Raman Spectroscopy and Imaging. Light Sci. Appl. 2023, 12, 247. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Zhao, D.; Tang, X.; Zhang, Y.; Liu, Z.; Yuan, L. Review of Different Coupling Methods with Whispering Gallery Mode Resonator Cavities for Sensing. Opt. Laser Technol. 2023, 159, 108955. [Google Scholar] [CrossRef]
- Tkach, A.P.; Miropoltsev, M.A.; Kundelev, E.V.; Sokolova, A.V.; Khorkina, S.A.; Rogach, A.L.; Bogdanov, K.V. The Impact of the Gain Medium Properties and the Resonator Morphology on the Whispering Gallery Mode Spectrum of Polystyrene Microspheres Coated with AgInS2/ZnS Quantum Dots. Opt. Laser Technol. 2024, 179, 111359. [Google Scholar] [CrossRef]
- Ji, L.; Yang, S.; Shi, R.; Fu, Y.; Su, J.; Wu, C. Polymer Waveguide Coupled Surface Plasmon Refractive Index Sensor: A Theoretical Study. Photonic Sens. 2020, 10, 353–363. [Google Scholar] [CrossRef]
- Zhang, D.; Men, L.; Chen, Q. Femtosecond Laser Fabricated Polymer Microring Resonator for Sensing Applications. Electron. Lett. 2018, 54, 888–890. [Google Scholar] [CrossRef]
- Bianki, M.-A.; Guertin, R.; Lemieux-Leduc, C.; Peter, Y.-A. Suspended Whispering Gallery Mode Resonators Made of Different Polymers and Fabricated Using Drop-on-Demand Inkjet Printing for Gas Sensing Applications. Sens. Actuators B Chem. 2024, 420, 136460. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Yang, S.; Huang, G.; Mei, Y. 2D-Material-Integrated Whispering-Gallery-Mode Microcavity. Photon. Res. 2019, 7, 905. [Google Scholar] [CrossRef]
- Tan, T.; Yuan, Z.; Zhang, H.; Yan, G.; Zhou, S.; An, N.; Peng, B.; Soavi, G.; Rao, Y.; Yao, B. Multispecies and Individual Gas Molecule Detection Using Stokes Solitons in a Graphene Over-Modal Microresonator. Nat. Commun. 2021, 12, 6716. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, P.; Wang, H.; Li, Z.; Liang, Z.; Ma, Q. The Luminescent Nb2C MXene Nanosheet-Based Whispering Gallery Mode-Enhanced ECL Strategy for miRNA-214 Detection. Talanta 2024, 279, 126627. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Yang, L. Multimode Sensing by Optical Whispering-Gallery-Mode Barcodes: A New Route to Expand Dynamic Range for High-Resolution Measurement. IEEE Trans. Instrum. Meas. 2024, 73, 7008310. [Google Scholar] [CrossRef]
- Mochalov, K.E.; Vaskan, I.S.; Dovzhenko, D.S.; Rakovich, Y.P.; Nabiev, I. A Versatile Tunable Microcavity for Investigation of Light–Matter Interaction. Rev. Sci. Instrum. 2018, 89, 053105. [Google Scholar] [CrossRef] [PubMed]
- Saetchnikov, A.V.; Tcherniavskaia, E.A.; Saetchnikov, V.A.; Ostendorf, A. Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electron. Adv. 2020, 3, 200048. [Google Scholar] [CrossRef]
- Suebka, S.; McLeod, E.; Su, J. Ultra-High-Q Free-Space Coupling to Microtoroid Resonators. Light Sci. Appl. 2024, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Balaji, V.R.; Ibrar Jahan, M.A.; Sridarshini, T.; Geerthana, S.; Thirumurugan, A.; Hegde, G.; Sitharthan, R.; Dhanabalan, S.S. Machine Learning Enabled 2D Photonic Crystal Biosensor for Early Cancer Detection. Measurement 2024, 224, 113858. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Baz, A.; Parmar, Y. Optimization of Novel 2D Material Based SPR Biosensor Using Machine Learning. IEEE Trans.Nanobioscience 2024, 23, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Badloe, T.; Rho, J. Enabling New Frontiers of Nanophotonics with Metamaterials, Photonic Crystals, and Plasmonics. Nanophotonics 2024, 13, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Wekalao, J.; Mandela, N.; Apochi, O.; Lefu, C.; Topisia, T. Nanoengineered Graphene Metasurface Surface Plasmon Resonance Sensor for Precise Hemoglobin Detection with AI-Assisted Performance Prediction. In Plasmonics; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Rasheed, S.; Kanwal, T.; Ahmad, N.; Fatima, B.; Najam-ul-Haq, M.; Hussain, D. Advances and Challenges in Portable Optical Biosensors for Onsite Detection and Point-of-Care Diagnostics. TrAC Trends Anal. Chem. 2024, 173, 117640. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, B.; Li, C.; Yang, D. Multimode Sensing Based on Optical Microcavities. Front. Optoelectron. 2023, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Yang, Y.; Ma, W.; Zhang, H.; Zhang, D.; Lan, X.; Gao, L.; Zhang, J.; Tang, J. Advances in Miniaturized Computational Spectrometers. Adv. Sci. 2024, 11, 2404448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granizo, E.; Samokhvalov, P.; Nabiev, I. Functionalized Optical Microcavities for Sensing Applications. Nanomaterials 2025, 15, 206. https://doi.org/10.3390/nano15030206
Granizo E, Samokhvalov P, Nabiev I. Functionalized Optical Microcavities for Sensing Applications. Nanomaterials. 2025; 15(3):206. https://doi.org/10.3390/nano15030206
Chicago/Turabian StyleGranizo, Evelyn, Pavel Samokhvalov, and Igor Nabiev. 2025. "Functionalized Optical Microcavities for Sensing Applications" Nanomaterials 15, no. 3: 206. https://doi.org/10.3390/nano15030206
APA StyleGranizo, E., Samokhvalov, P., & Nabiev, I. (2025). Functionalized Optical Microcavities for Sensing Applications. Nanomaterials, 15(3), 206. https://doi.org/10.3390/nano15030206