Broadband Graphene-PbS Heterostructure Photodetector with High Responsivity
<p>(<b>a</b>) Optical micrograph of PbS before annealing. (<b>b</b>) SEM image of PbS before annealing. (<b>c</b>) XRD pattern of PbS before annealing. (<b>d</b>) Optical micrograph of annealed PbS. (<b>e</b>) SEM image of annealed PbS. (<b>f</b>) XRD pattern of annealed PbS.</p> "> Figure 2
<p>(<b>a</b>) The top view and (<b>b</b>) a cross-section image of the graphene-PbS photodetector. (<b>c</b>) An optical image of the device’s surface. (<b>d</b>) A band diagram of the graphene-PbS heterostructure. E<sub>C</sub>, E<sub>V</sub>, and E<sub>F</sub> represent the conduction band minimum, valence band maximum, and Fermi level of PbS, respectively. Blue arrows indicate the direction of the built-in electric field E<sub>in</sub>.</p> "> Figure 3
<p>(<b>a</b>) The transfer characteristics of the graphene field-effect transistor. (<b>b</b>) The Raman spectra of graphene (red curve: Raman spectrum of graphene on PbS surface, black curve: Raman spectrum of graphene on SiO<sub>2</sub> surface). (<b>c</b>) The shift in the 2D peak position and the changes in its FWHM. (<b>d</b>) The shift in the G peak position and the changes in the FWHM of graphene.</p> "> Figure 4
<p>(<b>a</b>) The output characteristics of devices under 792 nm laser irradiation at different laser power levels. (<b>b</b>) The dynamic output characteristics under 1064 nm (675 mWcm<sup>−2</sup>) laser irradiation: traditional graphene photodetector (red), PbS photodetector (blue), and graphene-PbS photodetector (black) with a field-effect structure. (<b>c</b>) The absorption spectra of graphene-PbS. (<b>d</b>) The band structure of the graphene-PbS heterojunction under illumination. (<b>e</b>) The device responsivity and photocurrent as a function of incident optical power. We investigated the dependence of photocurrent on device power under 792 nm laser (V<sub>DS</sub> = 0.5 V) irradiation. (<b>f</b>) The device responsivity across different wavelengths (265, 365, 520, 792, 1064, 1310, 1550, and 2200 nm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Device Fabrication
2.2. Device Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Peres, N.M.R. The electronic properties of graphene and its bilayer. Vacuum 2009, 83, 1248–1252. [Google Scholar] [CrossRef]
- Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines 2022, 13, 119. [Google Scholar] [CrossRef]
- Gao, X.Y.; Zheng, L.M.; Yao, Y.T.; Peng, H.L. Graphene Membranes for Multi-Dimensional Electron Microscopy Imaging: Preparation, Application and Prospect. Adv. Funct. Mater. 2022, 32, 2202502. [Google Scholar] [CrossRef]
- Zhang, G.J.; Wu, H.; Yang, L.; Jin, W.; Zhang, W.F.; Chang, H.X. Graphene-based spintronics. Appl. Phys. Rev. 2024, 11, 021308. [Google Scholar] [CrossRef]
- Shalini, S.; Naveen, T.B.; Durgalakshmi, D.; Balakumar, S.; Rakkesh, R.A. Progress in flexible supercapacitors for wearable electronics using graphene-based organic frameworks. J. Energy Storage 2024, 86, 111260. [Google Scholar] [CrossRef]
- Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341–1349. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef]
- Tielrooij, K.J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K.S.; Lau, C.N.; Jarillo-Herrero, P.; van Hulst, N.F.; et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 2015, 10, 437–443. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Z.; Li, J.; Tai, G.-a.; Lau, S.-P.; Yan, F. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878–5883. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, Q.; Luo, W.; Yao, W.; Yan, S.; Shen, J. InGaAs/graphene infrared photodetectors with enhanced responsivity. Mater. Res. Express 2019, 6, 116208. [Google Scholar] [CrossRef]
- Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS quantum dot hybrid structure for application in near-infrared photodetectors. Sci. Rep. 2020, 10, 12475. [Google Scholar] [CrossRef]
- Ampadu, E.K.; Kim, J.; Oh, E.; Lee, D.Y.; Kim, K.S. Direct chemical synthesis of PbS on large-area CVD-graphene for high-performance photovoltaic infrared photo-detectors. Mater. Lett. 2020, 277, 106273. [Google Scholar] [CrossRef]
- Lee, H.; Paeng, K.; Kim, I.S. A review of doping modulation in graphene. Synth. Met. 2018, 244, 36–47. [Google Scholar] [CrossRef]
- Shao, Q.G.; Qi, H.; Li, C.; Cai, K.P.; Dong, J.X.; Liu, X.H.; Cao, N.; Zang, X.B. Recent Progress of Gr/Si Schottky Photodetectors. Electron. Mater. Lett. 2023, 19, 121–137. [Google Scholar] [CrossRef]
- Gao, X.; Guo, R.; Li, B. Study on chemical bath-deposited PbS thin films with subsequent rapid thermal treatment: Treatment temperature-dependent microstructure and near-infrared absorption. Phys. Scr. 2021, 96, 125830. [Google Scholar] [CrossRef]
- Kamchatka, M.I.; Chashchinov, Y.M.; Chesnokova, D.B. Effect of oxidation conditions on the phase composition, structure, and properties of photosensitive lead sulfide layers. Inorg. Mater. 2001, 37, 910–914. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, Y.; Zhang, G.; Shi, K.; Li, Y.; Luo, Y. Modified vapor phase deposition technology for high-performance uncooled MIR PbSe detectors. Rsc Adv. 2021, 11, 34908–34914. [Google Scholar] [CrossRef]
- He, M.Y.; Han, J.Y.; Han, X.W.; Gou, J.; Yang, M.; Wu, Z.M.; Jiang, Y.D.; Wang, J. Organic thin film thickness-dependent photocurrents polarity in graphene heterojunction phototransistor. Carbon 2021, 178, 506–514. [Google Scholar] [CrossRef]
- Yang, Y.; Brenner, K.; Murali, R. The influence of atmosphere on electrical transport in graphene. Carbon 2012, 50, 1727–1733. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.J.; Xu, B.; Shi, S.Q.; Ouyang, C.Y. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys. 2012, 112, 104316. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B 2009, 79, 235440. [Google Scholar] [CrossRef]
- Docherty, C.J.; Lin, C.-T.; Joyce, H.J.; Nicholas, R.J.; Herz, L.M.; Li, L.-J.; Johnston, M.B. Extreme sensitivity of graphene photoconductivity to environmental gases. Nat. Commun. 2012, 3, 1228. [Google Scholar] [CrossRef]
- Mueller, N.S.; Heeg, S.; Alvarez, M.P.; Kusch, P.; Wasserroth, S.; Clark, N.; Schedin, F.; Parthenios, J.; Papagelis, K.; Galiotis, C.; et al. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials 2018, 5, 015016. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef] [PubMed]
- Verberck, B.; Partoens, B.; Peeters, F.M.; Trauzettel, B. Strain-induced band gaps in bilayer graphene. Phys. Rev. B 2012, 85, 125403. [Google Scholar] [CrossRef]
- Luo, M.; Chen, R.; Zhu, Z.; Cheng, C.; Ning, X.; Huang, B. A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity. Nanomaterials 2023, 13, 1996. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Chen, J. Photoresponsivity-Enhanced PbS Quantum Dots/Graphene/Silicon Near-Infrared Photodetectors. IEEE Trans. Nanotechnol. 2023, 22, 525–530. [Google Scholar] [CrossRef]
- Wang, J.F.; Chen, J. Ag nanoparticles enhanced PbS QDs/graphene/Si near-infrared photodetector. Phys. E-Low-Dimens. Syst. Nanostructures 2023, 154, 115793. [Google Scholar] [CrossRef]
- Wang, C.; Dong, Y.; Lu, Z.; Chen, S.; Xu, K.; Ma, Y.; Xu, G.; Zhao, X.; Yu, Y. High responsivity and high-speed 1.55 μm infrared photodetector from self-powered graphene/Si heterojunction. Sens. Actuators A: Phys. 2019, 291, 87–92. [Google Scholar] [CrossRef]
- Casalino, M. Design of Resonant Cavity-Enhanced Schottky Graphene/Silicon Photodetectors at 1550 nm. J. Light. Technol. 2018, 36, 1766–1774. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Chen, D.; Guo, Q.; Feng, X.; Niu, T.; Liu, X.; Li, A.; Lai, J.; Sun, D.; et al. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 2018, 9, 5168. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, J. Graphene/Al2O3/InGaAs-based nanostructures for near-infrared photodetectors passivated by InP layer. Opt. Mater. 2023, 136, 113408. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, T.J.; Kwon, M.G.; Chang, K.E.; Hwang, H.J.; Lee, B.H. High-performance near-infrared photodetectors based on gate-controlled graphene-germanium Schottky junction with split active junction. Nanophotonics 2022, 11, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Cottam, N.D.; Zhang, C.X.; Turyanska, L.; Eaves, L.; Kudrynskyi, Z.; Vdovin, E.E.; Patanè, A.; Makarovsky, O. Defect-Assisted High Photoconductive UV-Visible Gain in Perovskite-Decorated Graphene Transistors. Acs Appl. Electron. Mater. 2020, 2, 147–154. [Google Scholar] [CrossRef]
Device Structure | Responsivity | Wavelength | Reference |
---|---|---|---|
Graphene-PbS | 5.8 A/W | 1550 nm | This work |
Graphene-PbS QDs | 183 mA/W | 1550 nm | [31] |
Graphene-PbS QDs | 0.16 A/W | 1550 nm | [32] |
Graphene-PbS QDs | 0.15 A/W | 1550 nm | [33] |
Graphene-Si | 39.5 mA/W | 1550 nm | [34] |
Graphene-Si | 0.43 A/W | 1550 nm | [35] |
Graphene p-n junction | 1.4 A/W | 1550 nm | [36] |
Graphene-AlO-InGaAs | 1.32 A/W | 1550 nm | [37] |
Graphene-Ge | 2.02 A/W | 1550 nm | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, X.; Su, J.; Zhou, W.; Chang, P.; Deng, J.; Liu, Y.; Ma, Z.; Xie, Y. Broadband Graphene-PbS Heterostructure Photodetector with High Responsivity. Nanomaterials 2025, 15, 207. https://doi.org/10.3390/nano15030207
Mu X, Su J, Zhou W, Chang P, Deng J, Liu Y, Ma Z, Xie Y. Broadband Graphene-PbS Heterostructure Photodetector with High Responsivity. Nanomaterials. 2025; 15(3):207. https://doi.org/10.3390/nano15030207
Chicago/Turabian StyleMu, Xinbo, Jinbao Su, Wenjuan Zhou, Pengying Chang, Jun Deng, Ying Liu, Zhengtai Ma, and Yiyang Xie. 2025. "Broadband Graphene-PbS Heterostructure Photodetector with High Responsivity" Nanomaterials 15, no. 3: 207. https://doi.org/10.3390/nano15030207
APA StyleMu, X., Su, J., Zhou, W., Chang, P., Deng, J., Liu, Y., Ma, Z., & Xie, Y. (2025). Broadband Graphene-PbS Heterostructure Photodetector with High Responsivity. Nanomaterials, 15(3), 207. https://doi.org/10.3390/nano15030207