[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Nanoengineered Graphene Metasurface Surface Plasmon Resonance Sensor for Precise Hemoglobin Detection with AI-Assisted Performance Prediction

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The development of highly sensitive and reliable biosensors for hemoglobin detection is crucial for various medical and diagnostic applications. Hemoglobin, a vital protein in red blood cells responsible for oxygen transport, serves as an important biomarker for numerous health conditions. Accurate and rapid measurement of hemoglobin levels can aid in the early detection and monitoring of anemia, blood disorders, and other medical conditions. This study presents a biosensor design for hemoglobin detection, integrating a graphene-based metasurface with circular and square ring resonators constructed from silver and gold nanostructures. The proposed sensor leverages the unique plasmonic properties of plasmonic nanostructures and the remarkable optical characteristics of graphene to enhance its performance. Extensive parametric analysis and optimization are conducted to enhance detection accuracy among other performance parameters. Detection analysis demonstrated the sensor’s ability to resolve changes in hemoglobin concentration through distinct shifts in transmittance and reflectance spectra. The resulting sensor exhibits enhanced sensitivity of 3500nmRIU−1 to infrared energy, maximum FOM of 17.6, and detection limits of 0.05 among other performance parameters. Furthermore, machine learning optimization using 1D convolutional neural network regression is employed to predict the sensor’s behavior achieving high accuracy with maximum R2 scores ranging up to 1. The sensor design exhibits remarkable potential for applications requiring highly sensitive and precise hemoglobin monitoring in medical diagnostics and healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Quaye IK (2015) Extracellular hemoglobin: the case of a friend turned foe. Front Physiol 6:96. https://doi.org/10.3389/fphys.2015.00096

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alwabari M et al (2023) Can non-invasive spectrophotometric hemoglobin replace laboratory hemoglobin concentrations for preoperative anemia screening? A Diagnostic Test Accuracy Study. J Clin Med 12(17):5733. https://doi.org/10.3390/jcm12175733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li S et al (2023) Electrochemical biosensors for whole blood analysis: recent progress, challenges, and future perspectives. Chem Rev 123(12):7953–8039. https://doi.org/10.1021/acs.chemrev.1c00759

    Article  CAS  PubMed  Google Scholar 

  4. Wekalao J et al (2023) Graphene-based THz surface plasmon resonance biosensor for hemoglobin detection applicable in forensic science. Plasmonics. https://doi.org/10.1007/s11468-023-02146-8

    Article  Google Scholar 

  5. Wekalao J, Mandela N, Muheki J, Zaid A (2024) Design and analysis of a terahertz metasurface ‑ based refractive index sensor for hemoglobin detection with behaviour prediction using polynomial regression. Plasmonics, no. 123456789. https://doi.org/10.1007/s11468-024-02445-8.

  6. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Switzerland) 21(4):1–35. https://doi.org/10.3390/s21041109

    Article  CAS  Google Scholar 

  7. Kulkarni MB, Ayachit NH, Aminabhavi TM (2022) Biosensors and microfluidic biosensors: from fabrication to application. Biosensors 12(7):543. https://doi.org/10.3390/bios12070543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haleem A, Javaid M, Singh RP, Suman R, Rab S (2021) Biosensors applications in medical field: a brief review. Sens Int 2:100100. https://doi.org/10.1016/j.sintl.2021.100100

    Article  Google Scholar 

  9. Singh AK, Mittal S, Das M, Saharia A, Tiwari M (2023) Optical biosensors: a decade in review. Alex Eng J 67:673–691. https://doi.org/10.1016/j.aej.2022.12.040

    Article  Google Scholar 

  10. Uygun ZO (2023) Fundamentals of biological recognition elements. In: Fundamentals of Sensor Technology: Principles and Novel Designs 45–62. https://doi.org/10.1016/B978-0-323-88431-0.00017-X.

  11. Chadha U et al (2022) Recent progress and growth in biosensors technology: a critical review. J Ind Eng Chem 109:21–51. https://doi.org/10.1016/j.jiec.2022.02.010

    Article  CAS  Google Scholar 

  12. Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens Bioelectron 159:112214. https://doi.org/10.1016/j.bios.2020.112214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaur B, Kumar S, Kaushik BK (2023) Novel wearable optical sensors for vital health monitoring systems—a review. Biosensors 13(2):181. https://doi.org/10.3390/bios13020181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fairuz Omar A (2013) Fiber optic sensors: an introduction for engineers and scientists. Sens Rev 33(2). https://doi.org/10.1108/sr.2013.08733baa.010.

  15. Lininger A et al (2023) Chirality in light–matter interaction. Adv Mater 35(34):2107325. https://doi.org/10.1002/adma.202107325

    Article  CAS  Google Scholar 

  16. Patel SK, Wekalao J, Mandela N, Al-Zahrani FA (2024) Design of encoded graphene-gold metasurface-based circular ring and square sensors for brain tumor detection and optimization using XGBoost algorithm. Diam Relat Mater 148:111439. https://doi.org/10.1016/j.diamond.2024.111439

    Article  CAS  Google Scholar 

  17. Yahya AM, Salim ET, Hassan AI, Addie AJ (2023) Ag@graphene hybrid plasmonic nanocomposites by spray pyrolysis: synthesis, characterization and improved properties. J Opt. https://doi.org/10.1007/s12596-023-01467-5

    Article  Google Scholar 

  18. Shah M, AlidoustGhatar A, Hayat A, Akhavan O, Jahani D (2023) Surface plasmon resonances in anisotropic strained graphene. J Opt Soc Am B 40(9):2315. https://doi.org/10.1364/josab.494514

    Article  CAS  Google Scholar 

  19. Wekalao J, Alsalman O, Patel H, Manvani R, Patel SK (2024) Swift detection of heavy metals in water by encoded graphene–gold-metasurface sensor. Opt Quantum Electron 56(7):1199. https://doi.org/10.1007/s11082-024-07140-w

    Article  CAS  Google Scholar 

  20. Xiao X, Zhang Y, Zhou L, Li B, Gu L (2022) Photoluminescence and fluorescence quenching of graphene oxide: a review. Nanomaterials 12(14):2444. https://doi.org/10.3390/nano12142444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Long Y-T, Jing C (2014) Localized surface plasmon resonance based nanobiosensors. Springer Berlin Heidelberg

  22. Wen C, Wang L, Liu L, Shen XC, Chen H (2022) Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 17(7):e202200014. https://doi.org/10.1002/asia.202200014

    Article  CAS  PubMed  Google Scholar 

  23. Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK (2023) Designing a graphene metasurface organic material sensor for detection of organic compounds in wastewater. Biosensors 13(8):1806739. https://doi.org/10.3390/bios13080759

    Article  CAS  Google Scholar 

  25. Wang AX, Kong X (2015) Review of recent progress of plasmonic materials and nano-structures for surface-enhanced raman scattering. Materials 8(6):3024–3052. https://doi.org/10.3390/ma8063024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Langer J et al (2020) Present and future of surface-enhanced Raman scattering. ACS Nano 14(1):28–117. https://doi.org/10.1021/acsnano.9b04224

    Article  CAS  PubMed  Google Scholar 

  27. Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK (2023) Designing a graphene metasurface organic material sensor for detection of organic compounds in wastewater. Biosensors 13(8):759. https://doi.org/10.3390/bios13080759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Almawgani AHM, Wekalao J, Patel SK, Alzahrani A, Gumaih HS, Armghan A (2024) Optimization of graphene-based square slotted surface plasmon resonance refractive index biosensor for accurate detection of pregnancy. Plasmonics. https://doi.org/10.1007/s11468-024-02290-9.

  29. A. H. M. Almawgani, J. Wekalao, S. K. Patel, A. Alzahrani, and H. S. Gumaih, 2024 “Design and development of a split ring resonator and circular disc metasurface based graphene / gold surface plasmon resonance sensor for illicit drugs detection,” Plasmonics 123456789 https://doi.org/10.1007/s11468-024-02306-4.

  30. Wekalao J, AKU, Albargi HB, Jalalah M, Almawgani AHM, Armghan A (2024) Graphene and gold metasurface-based terahertz surface plasmon resonance sensor for explosive detection. Plasmonics. https://doi.org/10.1007/s11468-024-02229-0.

  31. Wekalao J, Albargi HB, Patel SK, Jalalah M, Almawgani AHM (2024) Terahertz optical ultrasensitive glucose detection using graphene and silver surface plasmon resonance metasurfaces for biomedical applications. Plasmonics, no. 123456789. https://doi.org/10.1007/s11468-024-02278-5.

  32. Patel SK, Alsalman O, Taya SA, Parmar J (2023) Skin cancer detection using tunable graphene SPR optical sensor designed using circular ring resonator. Plasmonics. https://doi.org/10.1007/s11468-023-01957-z

    Article  Google Scholar 

  33. Wekalao J, Alsalman O, Shobhit RM (2024) Graphene biosensor design based on glass substrate for forensic detection of illicit drugs. Opt Quantum Electron. https://doi.org/10.1007/s11082-024-06690-3

    Article  Google Scholar 

  34. Muheki J, Wekalao J, Albargi HB, Jalalah M, Almawgani AHM (2024) A graphene gold metasurface inspired surface plasmon resonance sensor designed for terahertz applications in sensing and detection of heavy metals in water.

  35. Patel SK, Wekalao J, Albargi HB, Jalalah M, AHM Almawgani (2024) Design and simulation of metasurface ‑ enhanced graphene biosensors for cancer biomarker detection. Plasmonics, no. 123456789. https://doi.org/10.1007/s11468-024-02224-5.

  36. Alsalman O, Wekalao J, Arun Kumar U, Agravat D, Parmar J, Patel SK (2023) Design of split ring resonator graphene metasurface sensor for efficient detection of brain tumor. Plasmonics, no. 123456789. https://doi.org/10.1007/s11468-023-02002-9.

  37. Patel SK, Wekalao J, Alsalman O, Surve J, Parmar J, Taya SA (2023) Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection. Opt Quantum Electron 55(11):1001. https://doi.org/10.1007/s11082-023-05265-y

    Article  Google Scholar 

  38. Wekalao J, Patel SK, Alsalman O, Surve J, Anushkannan NK, Parmar J (2023) Waterborne bacteria detecting highly sensitive graphene metasurface based cost-efficient and efficient refractive index sensors. Plasmonics 19(1):347–61

    Article  Google Scholar 

  39. Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK (2023) Designing a graphene metasurface organic material sensor for detection of organic compounds in wastewater. Biosensors 13(8):1–16. https://doi.org/10.3390/bios13080759

    Article  CAS  Google Scholar 

  40. Wekalao J, Alsalman O, Natraj NA, Surve J, Parmar J, Patel SK (2023) Design of graphene metasurface sensor for efficient detection of COVID-19. Plasmonics 18(6):2335–45. https://doi.org/10.1007/s11468-023-01946-2

    Article  CAS  Google Scholar 

  41. Wekalao J, Patel SK, Anushkannan NK, Alsalman O, Surve J, Parmar J (2023) Design of ring and cross shaped graphene metasurface sensor for efficient detection of malaria and 2 bit encoding applications. Diam Relat Mater 139:110401. https://doi.org/10.1016/j.diamond.2023.110401

    Article  CAS  Google Scholar 

  42. Hma Salah N (2023) Sensitivity enhancement of the surface plasmon resonance–based gas sensing by few layers of black phosphorus. Plasmonics 18(6):2225–2233. https://doi.org/10.1007/s11468-023-01951-5

    Article  CAS  Google Scholar 

  43. Anushkannan NK, Wekalao J, Patel SK, Al-Zahrani FA (2024) Design of encoded and tunable graphene-gold metasurface-based surface plasmon resonance sensors for glucose detection in the terahertz regime. Plasmonics, no. 123456789. https://doi.org/10.1007/s11468-024-02452-9.

  44. Ben Soltane I, Dierick F, Stout B, Bonod N (2024) Generalized Drude-Lorentz model complying with the singularity expansion method. Adv Opt Mater 12(12):2400093. https://doi.org/10.1002/adom.202400093

    Article  CAS  Google Scholar 

  45. Patel SK, Parmar J, Katkar V (2022) Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning. Sci Rep 12(1):1–14. https://doi.org/10.1038/s41598-022-14509-y

    Article  CAS  Google Scholar 

  46. Alsaif H et al. (2024) Design and optimization of a MXene-based terahertz surface plasmon resonance sensor for malaria detection. Plasmonics, no. 123456789. https://doi.org/10.1007/s11468-024-02455-6.

  47. Twayana K, Rebolledo-Salgado I, Deriushkina E, Schröder J, Karlsson M, Torres-Company V (2022) Spectral interferometry with frequency combs. Micromachines 13(4). https://doi.org/10.3390/mi13040614.

  48. Li L, Lei J, Wu L, Pan F (2021) Spectroscopic ellipsometry. In Handbook of Modern Coating Technologies: Advanced Characterization Methods, pp. 45–83. https://doi.org/10.1016/B978-0-444-63239-5.00002-0.

  49. Surve J, Jadeja R, Parmar T, Parmar J, Parmar J (2022) A terahertz-based graphene metasurface sensor for hemoglobin detection with high Q factor and low figure of merit. In: Terahertz Devices, Circuits and Systems: Materials, Methods and Applications, pp. 41–51. https://doi.org/10.1007/978-981-19-4105-4_3.

  50. SC, Trupti Kamani TS, Patel SK, Anushkannan NK, Khalifa SB (2024) Design and development of surface plasmon resonance biosensor for early detection of cervical cancer utilizing nucleus and cytoplasm. Pasmonics

  51. Saadatmand B, Haji Najafi Chemerkouh MJ, Ahmadi V, Hamidi SM (2023) Graphene-based integrated plasmonic sensor with application in biomolecule detection. J Opt Soc Am B 40(1):1. https://doi.org/10.1364/josab.472734

  52. Nashaat D, Elsadek HA, Abdallah E, Elhenawy H, Iskander MF, Communication A (2009) Using metamaterial structures. Technology 1:7–10

    Google Scholar 

  53. Patel SK et al (2022) Encoding and tuning of THz metasurface-based refractive index sensor with behavior prediction using XGBoost regressor. IEEE Access 10:24797–24814. https://doi.org/10.1109/ACCESS.2022.3154386

    Article  Google Scholar 

  54. Saadatmand SB, Chemerkouh MJHN, Ahmadi V, Hamidi SM (2023) Design and analysis of highly sensitive plasmonic sensor based on 2-D inorganic Ti-MXene and SrTiO3interlayer. IEEE Sens J 23(12):12727–12735. https://doi.org/10.1109/JSEN.2023.3270133

    Article  CAS  Google Scholar 

  55. Mohammad Javad Haji Najafi Chemerkouh MH, Seyedeh Bita Saadatmand (2022) Ultra-high-sensitive biosensor based on SrTiO3 and two-dimensional materials: ellipsometric concepts. Opt Mater Express 7

  56. Tombe R, Viriri S (2022) Effective processing of convolutional neural networks for computer vision: a tutorial and survey. IETE Tech Rev (Institution of Electronics and Telecommunication Engineers, India) 39(1):49-62. https://doi.org/10.1080/02564602.2020.1823252

  57. Cordeiro JR, Raimundo A, Postolache O, Sebastião P, (2021) Neural architecture search for 1d cnns Different approaches tests and measurements. Sensors 21(23). https://doi.org/10.3390/s21237990.

  58. Parmar J, Patel SK, Katkar V (2022) Graphene-based metasurface solar absorber design with absorption prediction using machine learning. Sci Rep 12(1):2609. https://doi.org/10.1038/s41598-022-06687-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Babu GS, Zhao P, Li XL (2016) Deep convolutional neural network based regression approach for estimation of remaining useful life. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 214–228. https://doi.org/10.1007/978-3-319-32025-0_14.

  60. Wang X et al (2021) Deep spatiotemporal convolutional-neural-network-based remaining useful life estimation of bearings Chinese J Mech Eng (English Ed. 34(1). https://doi.org/10.1186/s10033-021-00576-1.

  61. Babu GS, Zhao P, Li X (2016) Deep convolutional neural network based regression approach for estimation. In: Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016 Dallas, TX, USA, April 16–19, 2016 Proceedings, Part I, pp. 214–228.

  62. Learning D (2016) Deep Learning - Goodfellow. Nature 26(7553):436

    Google Scholar 

  63. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010, pp. 807–814.

  64. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on Machine Learning, ICML 2015, pp. 448–456.

  65. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

    Google Scholar 

  66. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. New York: Springer. https://doi.org/10.1117/1.2819119

Download references

Acknowledgements

The authors would like to express their gratitude to the National Forensic Sciences University for granting access to the digital computer laboratory for this research, as well as to the ICCR for their scholarship support.

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization, JW,NM; Methodology,JW,NM,OA; Software.JW,CL,OA; Validation, all authors; Writing—original draft preparation, All authors; Formal Analysis, JW,TT,CL; Writing—review and editing, All Authors; All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Jacob Wekalao.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekalao, J., Mandela, N., Apochi, O. et al. Nanoengineered Graphene Metasurface Surface Plasmon Resonance Sensor for Precise Hemoglobin Detection with AI-Assisted Performance Prediction. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02489-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02489-w

Keywords

Navigation