Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado
"> Figure 1
<p>Venn diagram of screened phenolic compounds species present in various avocado varieties. (<b>a</b>) distribution of all the screened phenolic compounds in all avocado parts (peel, pulp and seed) from the four varieties. (<b>b</b>) distribution of phenolic acids in all parts of the four avocado varieties. (<b>c</b>) distribution of flavonoids in all parts of the four avocado varieties. (<b>d</b>) distribution of other polyphenols (including lignans and stilbenes) in all parts of the four avocado varieties.</p> "> Figure 2
<p>Venn diagram representation of the distribution of phenolic compounds in peel, pulp, and seed samples of the four varieties of avocados.</p> "> Figure 3
<p>Heat map of the distribution of 10 selected phenolic compound in the avocado samples. Increase in purple coloration indicates higher average concentration of the corresponding phenolic compound in the corresponding sample, whereas increase in green coloration indicates lower average concentration. AG: avocado sample group clusters. PC: phenolic compound clusters; PA: phenolic acids; FL: flavonoids. Avocado samples mentioned in abbreviations are: REPEL (Reed peel); REPUL (Reed pulp); RES (Reed seed); RHPEL (ripe Hass peel); RHPUL (ripe Hass pulp); RHS (ripe Hass seed); URHPEL (unripe Hass peel); URHPUL (unripe Hass pulp); URHS (unripe Hass seed); WZPEL (Wurtz peel); WZPUL (Wurtz pulp) and WZS (Wurtz seed).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Collection of Sample
2.3. Extraction of Polyphenols
2.4. Estimation of Phenolic Compounds and Antioxidant Assays
2.4.1. Total Phenolic Content (TPC)
2.4.2. Total Flavonoid Concentration (TFC)
2.4.3. Determination of Total Tannins Concentration (TTC)
2.4.4. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.4.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.6. 2,2′-Azino-bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) Assay
2.4.7. Reducing Power Assay (RPA)
2.4.8. Hydroxyl Radical Scavenging Activity (·OH-RSA) Assay
2.4.9. Ferrous Ion Chelating Activity (FICA) Assay
2.4.10. Total Antioxidant Capacity (TAC)
2.5. Identification and Characterization of Phenolic Compound by LC-ESI-QTOF-MS/MS
2.6. Quantification of Phenolic Compounds by HPLC—PDA
2.7. Statistical Analysis
3. Results and Discussion
3.1. Estimation of Phenolic Compounds (TPC, TFC and TTC)
3.2. Antioxidant Activity
3.3. Correlation of Polyphenols and Antioxidant Activities
3.4. Distribution of Polyphenols—Venn Diagram
3.5. Characterization of Polyphenols
3.5.1. Phenolic acids
3.5.2. Flavonoids
3.5.3. Lignans
3.5.4. Stilbenes
3.5.5. Other Polyphenols
3.6. Heatmap and Hierarchical Cluster Analysis Phenolic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galindo-Tovar, M.E.; Arzate-Fernández, A.M.; Ogata-Aguilar, N.; Landero-Torres, I. The avocado (Persea americana, Lauraceae) crop in Mesoamerica: 10,000 years of history. Harv. Pap. Bot. 2007, 12, 325–334. [Google Scholar] [CrossRef]
- Silva, T.A.; Ledesma, N. Avocado history, biodiversity and production. In Sustainable Horticultural Systems; Springer: Cham, Switzerland, 2014; pp. 157–205. [Google Scholar]
- DAF. Avocado Varieties; DAF: Brisbane, Australia, 2018. [Google Scholar]
- Ding, H.; Chin, Y.-W.; Kinghorn, A.D.; D’Ambrosio, S.M. Chemopreventive characteristics of avocado fruit. Semin. Cancer Biol. 2007, 17, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Shoji, T.; Akazome, Y.; Kanda, T.; Ikeda, M. The toxicology and safety of apple polyphenol extract. Food Chem. Toxicol. 2004, 42, 959–967. [Google Scholar] [CrossRef]
- Hernandez, T.; Auśn, N.; Bartolome, B.; Bengoechea, L.; Estrella, I.; Gómez-Cordovés, C. Variations in the phenolic composition of fruit juices with different treatments. Z. Für Lebensm. Und-Forsch. A 1997, 204, 151–155. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Severo, J.; Tiecher, A.; Chaves, F.C.; Silva, J.A.; Rombaldi, C.V. Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem. 2011, 126, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Danying, P.; Hafza Fasiha, Z.; Said, A.; Frank, R.D.; Hafiz, A.R.S. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
- Zou, B.; Dong, X.-q.; Ge, Z.-z.; Xu, Z.; Du, J.; Li, C.-m. Development of suitable standards for quantitative determination of persimmon phenol contents in Folin-Ciocalteu and vanillin assays. Eur. Food Res. Technol. 2014, 239, 385–391. [Google Scholar] [CrossRef]
- Hasan, S.R.; Hossain, M.M.; Akter, R.; Jamila, M.; Mazumder, M.E.H.; Rahman, S. DPPH free radical scavenging activity of some Bangladeshi medicinal plants. J. Med. Plants Res. 2009, 3, 875–879. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.C.F.R.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Jan, S.; Khan, M.R.; Rashid, U.; Bokhari, J. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Public Health Res. Perspect. 2013, 4, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT Food Sci. Technol. 2016, 65, 46–52. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.H.F.; Visentainer, J.V. Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Huang, D.J.; Ou, B.X.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Shehata, M.M.; Soltan, S. Effects of bioactive component of kiwi fruit and avocado (fruit and seed) on hypercholesterolemic rats. World J. Dairy Food Sci. 2013, 8, 82–93. [Google Scholar]
- Amado, D.A.V.; Helmann, G.A.B.; Detoni, A.M.; Carvalho, S.L.C.d.; Aguiar, C.M.d.; Martin, C.A.; Tiuman, T.S.; Cottica, S.M. Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Braz. J. Food Technol. 2019, 22, e2018044. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; Pacchiarotta, T.; Mayboroda, O.A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors (APCI-TOF MS and FID). Food Res. Int. 2014, 62, 801–811. [Google Scholar] [CrossRef]
- Chung, K.; Wong, T.Y.; Wei, C.I.; Huang, Y.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Ge, Y.; Si, X.; Cao, J.; Zhou, Z.; Wang, W.; Ma, W. Morphological characteristics, nutritional quality, and bioactive constituents in fruits of two avocado (Persea americana) varieties from Hainan province, China. J. Agric. Sci. 2017, 9, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Ozyurek, M.; Guclu, K.; Capanoglu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Alagbaoso, C.A.; Tokunbo, I.I.; Osakwe, O.S. Comparative study of antioxidant activity and mineral composition of methanol extract of seeds of ripe and unripe avocado pear (Persea americana, Mill.). NISEB J. 2017, 15, 123–127. [Google Scholar]
- Ortega-Arellano, H.F.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Neuroprotective Effects of Methanolic Extract of Avocado Persea americana (var. Colinred) Peel on Paraquat-Induced Locomotor Impairment, Lipid Peroxidation and Shortage of Life Span in Transgenic knockdown Parkin Drosophila melanogaster. Neurochem. Res. 2019, 44, 1986–1998. [Google Scholar] [CrossRef] [PubMed]
- Kosińska, A.; Karamać, M.; Estrella, I.; Hernández, T.; Bartolomé, B.; Dykes, G.A. Phenolic Compound Profiles and Antioxidant Capacity of Persea americana Mill. Peels and Seeds of Two Varieties. J. Agric. Food Chem. 2012, 60, 4613–4619. [Google Scholar] [CrossRef]
- Soledad, C.-P.T.; Paola, H.-C.; Carlos Enrique, O.-V.; Israel, R.-L.I.; GuadalupeVirginia, N.-M.; Raúl, Á.-S. Avocado seeds (Persea americana cv. Criollo sp.): Lipophilic compounds profile and biological activities. Saudi J. Biol. Sci. 2021, 28, 3384–3390. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Campos, S.V.; Hernández-Carranza, P.; Ávila-Sosa, R.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. Effect of natural extracts addition on antioxidant, color and sensory properties of avocado (Persea americana cv. criollo sp.) puree. J. Food Meas. Charact. 2020, 14, 2623–2634. [Google Scholar] [CrossRef]
- Oboh, G.; Adelusi, T.; Akinyemi, A. Inhibitory effect of phenolic extract from leaf and fruit of avocado pear (Persea americana) on Fe2+ induced lipid peroxidation in rats’ pancreas in vitro. FUTA J. Res. Sci. 2013, 9, 276–286. [Google Scholar]
- Gülçin, İ. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef]
- Alkhalaf, M.I.; Alansari, W.S.; Ibrahim, E.A.; ELhalwagy, M.E. Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. J. King Saud Univ.-Sci. 2019, 31, 1358–1362. [Google Scholar] [CrossRef]
- Folasade, O.A.; Olaide, R.A.; Olufemi, T.A. Antioxidant properties of Persea americana M. seed as affected by different extraction solvent. J. Adv. Food Sci. Technol. 2016, 3, 101–106. [Google Scholar]
- Duresa, L.W. Phytochemical Screening and Antioxidant Activity of Selected Mango (Mangifera indica L.) and Avocado (Persea Americana) Fruits in Illu Ababor Zone, Oromia regional state, Ethiopia. IOSR J. Appl. Chem. 2017, 10, 24–28. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Lopez, N.J.; Dominguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-Gonzalez, E.; Gonzalez-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estévez, M. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2020, 37, 619–655. [Google Scholar] [CrossRef]
- Sobeh, M.; Rezq, S.; Sabry, O.; Abdelfattah, M.; El-Raey, M.; El-Kashak, W.; El Sahzly, A.; Mahmoud, M.; Wink, M. Albizia anthelmintica: HPLC-MS/MS profiling and in vivo anti-inflammatory, pain killing and antipyretic activities of its leaf extract. Biomed. Pharmacother. 2019, 115, 108882. [Google Scholar] [CrossRef]
- Liu, T.; Li, Z.; Li, R.; Cui, Y.; Zhao, Y.; Yu, Z. Composition analysis and antioxidant activities of the Rhus typhina L. stem. J. Pharm. Anal. 2019, 9, 332–338. [Google Scholar] [CrossRef]
- Magana, A.A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Cobo, A.; Gomez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernandez-Gutierrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. Lwt-Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Prabha, T.; Ravindranath, B.; Patwardhan, M.V. Anthocyanins of avocado (Persea americana) peel. J. Food Sci. Technol. 1980, 17, 241–242. [Google Scholar]
- Karaaslan, N.M.; Yaman, M. Anthocyanin profile of strawberry fruit as affected by extraction conditions. Int. J. Food Prop. 2017, 20, S2313–S2322. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
- Cabrera, J.; Saavedra, E.; del Rosario, H.; Perdomo, J.; Loro, J.F.; Cifuente, D.A.; Tonn, C.E.; García, C.; Quintana, J.; Estévez, F. Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species. Chem. Interact. 2016, 256, 220–227. [Google Scholar] [CrossRef]
- Eklund, P.C.; Backman, M.J.; Kronberg, L.Å.; Smeds, A.I.; Sjöholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2008, 43, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Penalvo, J.L.; Adlercreutz, H.; Uehara, M.; Ristimaki, A.; Watanabe, S. Lignan content of selected foods from Japan. J. Agric. Food Chem. 2008, 56, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Konar, N. Non-isoflavone phytoestrogenic compound contents of various legumes. Eur. Food Res. Technol. 2013, 236, 523–530. [Google Scholar] [CrossRef]
- Flamini, R. Recent applications of mass spectrometry in the study of grape and wine polyphenols. ISRN Spectrosc. 2013, 2013, 813563. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Stefano, V.; Avellone, G.; Bongiorno, D.; Indelicato, S.; Massenti, R.; Lo Bianco, R. Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high-performance liquid chromatography-heated electrospray-mass spectrometry. Int. J. Food Prop. 2017, 20, 1302–1312. [Google Scholar] [CrossRef] [Green Version]
- Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. Food Res. Int. 2011, 44, 1231–1237. [Google Scholar] [CrossRef]
Assays | Avocado Peel | Avocado Seed | Avocado Pulp | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hass (Ripe) | Hass (Unripe) | Reed | Wurtz | Hass (Ripe) | Hass (Unripe) | Reed | Wurtz | Hass (Ripe) | Hass (Unripe) | Reed | Wurtz | |
TPC (mg GAE/g) | 77.85 ± 3.20 a | 45.74 ± 2.08 b | 29.22 ± 0.47 c | 49.18 ± 2.23 b | 36.82 ± 2.58 b | 26.93 ± 2.21 c | 36.20 ± 0.52 b | 44.91 ± 4.44 a | 0.26 ± 0.02 ab | 0.20 ± 0.01 b | 0.28 ± 0.01 a | 0.25 ± 0.05 ab |
TFC (mg QE/g) | 1.06 ± 0.06 b | 3.44 ± 0.03 a | 0.38 ± 0.01 d | 0.91 ± 0.04 c | 0.39 ± 0.01 b | 2.75 ± 0.24 a | 0.06 ± 0.01 c | 0.26 ± 0.01 b | 0.09 ± 0.01 a | 0.04 ± 0.01 b | 0.02 ± 0.01 c | 0.01 ± 0.01 c |
TTC (mg CE/g) | 148.98 ± 9.20 a | 85.84 ± 2.70 b | 29.34 ± 2.57 d | 53.60 ± 0.72 c | 58.26 ± 4.30 a | 40.85 ± 1.16 c | 42.94 ± 1.10 c | 51.73 ± 2.09 b | - | - | - | - |
DPPH (mg AAE/g) | 71.03 ± 3.05 a | 57.82 ± 1.22 c | 41.53 ± 0.25 d | 66.13 ± 2.34 b | 47.97 ± 3.96 b | 39.36 ± 1.40 c | 49.97 ± 2.34 b | 56.00 ± 1.84 a | 0.10 ± 0.01 c | 0.13 ± 0.01 b | 0.08 ± 0.01 d | 0.16 ± 0.01 a |
FRAP (mg AAE/g) | 3.05 ± 0.27 a | 1.00 ± 0.06 b | 0.19 ± 0.01 c | 0.20 ± 0.01 c | 0.98 ± 0.08 c | 0.87 ± 0.07 c | 1.29 ± 0.05 b | 3.69 ± 0.10 a | 0.08 ± 0.01 a | 0.06 ± 0.01 b | 0.06 ± 0.01 b | 0.02 ± 0.01 c |
ABTS (mg AAE/g) | 75.77 ± 2.47 a | 39.05 ± 1.05 c | 38.30 ± 1.99 c | 66.04 ± 4.44 b | 74.14 ± 2.66 a | 28.29 ± 2.62 c | 27.42 ± 0.40 c | 55.87 ± 3.17 b | 0.40 ± 0.04 a | 0.40 ± 0.02 a | 0.34 ± 0.02 b | 0.35 ± 0.03 b |
RPA (mg AAE/g) | 24.45 ± 1.21 a | 11.32 ± 1.43 c | 14.78 ± 2.12 b | 9.37 ± 2.94 d | 13.07 ± 2.31 a | 7.35 ± 0.29 b | 5.52 ± 1.31 b | 14.28 ± 3.12 a | 1.47 ± 0.09 a | 0.91 ± 0.12 c | 0.17 ± 0.09 d | 0.97 ± 0.03 b |
·OH-RSA (mg AAE/g) | 7.29 ± 0.07 c | 9.75 ± 0.31 a | 8.14 ± 0.12 b | 3.68 ± 0.47 d | 4.24 ± 0.12 c | 1.47 ± 0.09 d | 13.25 ± 0.41 a | 7.48 ± 0.09 b | 0.78 ± 0.04 b | 1.14 ± 0.11 a | 0.34 ± 0.13 c | 0.14 ± 0.04 d |
FICA (mg EDTA/g) | 4.12 ± 0.38 a | 2.41 ± 0.14 b | 2.17 ± 0.04 b | 1.91 ± 0.24 c | 5.39 ± 0.12 b | 3.14 ± 0.09 c | 9.68 ± 0.12 a | 1.97 ± 0.21 d | 0.17 ± 0.09 c | 0.47 ± 0.01 b | 1.02 ± 0.04 a | 0.42 ± 0.13 b |
TAC (mg AAE/g) | 34.05 ± 0.96 a | 9.25 ± 0.22 b | 11.85 ± 0.34 b | 35.02 ± 1.27 a | 27.49 ± 1.04 a | 13.26 ± 0.28 c | 6.58 ± 0.25 d | 19.48 ± 0.35 b | 0.26 ± 0.01 b | 0.25 ± 0.01 b | 0.31 ± 0.02 a | 0.33 ± 0.01 a |
Variables | TPC | TFC | TTC | DPPH | FRAP | ABTS | RPA | ·OH-RSA | FICA |
---|---|---|---|---|---|---|---|---|---|
TFC | 0.403 | ||||||||
TTC | 0.948 ** | 0.478 | |||||||
DPPH | 0.964 ** | 0.449 | 0.851 ** | ||||||
FRAP | 0.714 ** | 0.113 | 0.690 ** | 0.631 * | |||||
ABTS | 0.907 ** | 0.253 | 0.814 ** | 0.910 ** | 0.609 * | ||||
RPA | 0.909 ** | 0.294 | 0.891 ** | 0.839 ** | 0.711 ** | 0.878 ** | |||
·OH-RSA | 0.657 * | 0.204 | 0.560 | 0.709 ** | 0.506 | 0.482 | 0.553 | ||
FICA | 0.490 | 0.040 | 0.423 | 0.543 | 0.338 | 0.423 | 0.323 | 0.722 ** | |
TAC | 0.853 ** | 0.201 | 0.760 ** | 0.836 ** | 0.512 | 0.954 ** | 0.797 ** | 0.279 | 0.297 |
No. | Molecular Formula | Proposed Compounds | RT (min) | Ionization (ESI+/ESI−) | Molecular Weight | Theoretical (m/z) | Observed (m/z) | Error (ppm) | MS/MS Production | Avocado |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acid | ||||||||||
Hydroxybenzoic acids | ||||||||||
1 | C14H6O8 | Ellagic acid | 5.872 | [M-H]− | 302.0063 | 300.9990 | 301.0004 | 4.7 | 284, 229, 201 | * URHPUL, WZPUL |
2 | C7H6O4 | 2,3-Dihydroxybenzoic acid | 11.036 | ** [M-H]− | 154.0266 | 153.0193 | 153.0195 | 1.3 | 109 | * RES, RHS, URHS |
3 | C13H16O9 | Protocatechuic acid 4-O-glucoside | 11.086 | ** [M-H]− | 316.0794 | 315.0721 | 315.0718 | −1.0 | 153 | * RES, REPEL, RHPEL, RHPUL, URHS, WZPEL |
4 | C13H16O8 | 4-Hydroxybenzoic acid 4-O-glucoside | 11.103 | ** [M-H]− | 300.0845 | 299.0772 | 299.0766 | −2.0 | 255, 137 | * RES, URHPEL, URHS |
5 | C8H8O5 | 4-O-Methylgallic acid | 12.847 | [M+H]+ | 184.0372 | 185.0445 | 185.0447 | 1.1 | 170, 142 | * WZS, REPEL, RES, RHPEL, WZPEL |
6 | C13H16O10 | Galloyl glucose | 12.908 | ** [M-H]− | 332.0743 | 331.0670 | 331.0682 | 3.6 | 169, 125 | * RES, RHPEL, RHPUL, WZPUL |
7 | C7H6O5 | Gallic acid | 12.958 | ** [M-H]− | 170.0215 | 169.0142 | 169.0136 | −3.6 | 125 | * RES, REPEL, URHPEL, URHS |
8 | C9H10O5 | 3,4-O-Dimethylgallic acid | 19.870 | ** [M+H]+ | 198.0528 | 199.0601 | 199.0598 | −1.5 | 153, 139, 125, 111 | * WZS, REPEL, RHPEL, RHS, URHPEL, URHS, WZPEL |
9 | C7H6O3 | 2-Hydroxybenzoic acid | 21.117 | ** [M-H]− | 138.0317 | 137.0244 | 137.0245 | 0.7 | 93 | * WZS, RES, RHPEL, RHPUL, RHS, URHS, WZPUL |
10 | C23H28O11 | Paeoniflorin | 40.792 | ** [M-H]− | 480.1632 | 479.1559 | 479.1556 | −0.6 | 449, 357, 327 | * RHPEL, REPEL, RES, URHPEL, WZPEL |
Hydroxycinnamic acids | ||||||||||
11 | C16H20O9 | Ferulic acid 4-O-glucoside | 4.198 | ** [M-H]− | 356.1107 | 355.1034 | 355.1026 | −2.3 | 193, 178, 149,134 | * WZPEL, REPEL, URHPEL, WZS |
12 | C33H40O18 | 1-Sinapoyl-2-feruloylgentiobiose | 4.455 | ** [M-H]− | 724.2215 | 723.2142 | 723.2164 | 3.0 | 529, 499 | * WZPUL, RHPUL, URHPEL, URHPUL |
13 | C9H8O5 | Hydroxycaffeic acid | 5.288 | [M-H]− | 196.0372 | 195.0299 | 195.0295 | −2.1 | 151 | * RES |
14 | C43H48O21 | 1-Sinapoyl-2,2′-diferuloylgentiobiose | 7.114 | [M-H]− | 900.2688 | 899.2615 | 899.2643 | 3.1 | 613, 201 | * REPUL |
15 | C9H8O2 | Cinnamic acid | 12.544 | ** [M-H]− | 148.0524 | 147.0451 | 147.0458 | 4.8 | 103 | * RES, REPEL, RHPUL, RHS, URHPEL, URHPUL, WZPEL, WZPUL |
16 | C13H12O8 | p-Coumaroyl tartaric acid | 14.300 | ** [M-H]− | 296.0532 | 295.0459 | 295.0446 | −4.4 | 115 | * RES, REPEL, RHPEL, URHPEL, WZPEL, WZS |
17 | C16H18O9 | 3-Caffeoylquinic acid | 16.837 | ** [M-H]− | 354.0951 | 353.0878 | 353.0875 | −0.8 | 253, 190, 144 | * URHS, REPEL, RES, RHPEL, RHS, URHPEL, URHPUL, WZPEL, WZS |
18 | C9H8O4 | Caffeic acid | 16.854 | ** [M-H]− | 180.0423 | 179.0350 | 179.0351 | 0.6 | 143, 133 | * URHS, RHPEL, URHPEL |
19 | C18H22O10 | 3-Sinapoylquinic acid | 17.799 | ** [M-H]− | 398.1213 | 397.1140 | 397.1155 | 3.8 | 233, 179 | * WZPEL, REPEL, RHPEL, RHPUL, RHS, URHPEL, WZPUL |
20 | C15H18O9 | Caffeoyl glucose | 18.676 | [M-H]− | 342.0951 | 341.0878 | 341.0882 | 1.2 | 179, 161 | * RHPEL, WZPUL |
21 | C29H36O15 | Verbascoside | 19.887 | ** [M-H]− | 624.2054 | 623.1981 | 623.1976 | −0.8 | 477, 461, 315, 135 | * REPUL, URHS |
22 | C15H16O10 | Caffeic acid 3-O-glucuronide | 21.989 | ** [M-H]− | 356.0743 | 355.0670 | 355.0662 | −2.3 | 179 | * RHPEL, RES, RHS, URHS |
23 | C16H18O8 | 3-p-Coumaroylquinic acid | 22.205 | ** [M-H]− | 338.1002 | 337.0929 | 337.0911 | −5.3 | 265, 173, 162 | * URHS, REPEL, REPUL, RES, RHS, URHPEL, URHPUL, WZPUL, WZS, WZPEL |
24 | C10H10O4 | Isoferulic acid | 23.304 | ** [M-H]− | 194.0579 | 193.0506 | 193.0502 | −2.1 | 178, 149, 134 | * WZS, REPEL, RES, RHPUL, RHS, URHPEL, URHS, WZPEL, WZPUL |
25 | C18H17NO5 | p-Coumaroyl tyrosine | 25.151 | [M-H]− | 327.1107 | 326.1034 | 326.1020 | −4.3 | 282 | * RES, WZPEL |
26 | C17H20O9 | 3-Feruloylquinic acid | 25.259 | ** [M-H]− | 368.1107 | 367.1034 | 367.1026 | −2.2 | 298, 288, 192, 191 | * WZS, REPEL, RES, RHPEL, RHS, URHS, WZPEL |
27 | C15H18O8 | p-Coumaric acid 4-O-glucoside | 25.347 | [M-H]− | 326.1002 | 325.0929 | 325.0941 | 3.7 | 163 | * REPEL |
28 | C11H12O5 | Sinapic acid | 26.021 | ** [M-H]− | 224.0685 | 223.0612 | 223.0613 | 0.4 | 205, 163 | * WZS, REPEL, REPUL, RES, RHPEL, RHPUL, RHS, URHPEL, URHS, WZPEL, WZPUL |
29 | C9H8O3 | m-Coumaric acid | 31.217 | ** [M-H]− | 164.0473 | 163.0400 | 163.0403 | 1.8 | 119 | * RHPEL, REPEL, REPUL, RES, RHS, URHPEL, URHS, WZPEL, WZPUL, WZS |
30 | C18H16O8 | Rosmarinic acid | 32.802 | ** [M-H]− | 360.0845 | 359.0772 | 359.0787 | 4.2 | 179 | * REPEL, RHS, URHPEL, URHS, WZS |
31 | C25H24O12 | 1,5-Dicaffeoylquinic acid | 50.465 | ** [M-H]− | 516.1268 | 515.1195 | 515.1212 | 3.3 | 353, 335, 191, 179 | * RES, REPEL, RHPEL, WZPEL |
Hydroxyphenylacetic acids | ||||||||||
32 | C8H8O4 | 3,4-Dihydroxyphenylacetic acid | 14.004 | ** [M-H]− | 168.0423 | 167.0350 | 167.0353 | 1.8 | 149, 123 | * URHS, REPEL, RES, RHPEL, RHS, URHPEL, WZPEL, WZS |
33 | C8H8O3 | 2-Hydroxy-2-phenylacetic acid | 24.027 | ** [M-H]− | 152.0473 | 151.0400 | 151.0396 | −2.6 | 136, 92 | * URHS, REPUL, RES, RHPEL, RHPUL, RHS, URHPUL, WZPUL, WZS |
Hydroxyphenylpropanoic acids | ||||||||||
34 | C10H12O7S | Dihydroferulic acid 4-sulfate | 4.082 | ** [M-H]− | 276.0304 | 275.0231 | 275.0225 | −2.2 | 195, 177, 151 | * WZPEL, REPEL, WZS |
35 | C16H20O10 | Dihydroferulic acid 4-O-glucuronide | 16.479 | [M-H]− | 372.1056 | 371.0983 | 371.0991 | 2.2 | 195 | * WZS, RES, RHS, URHS |
36 | C9H10O4 | 3-Hydroxy-3-(3-hydroxyphenyl)propionic acid | 31.233 | [M-H]− | 182.0579 | 181.0506 | 181.0512 | 3.3 | 163, 135, 119 | * RHPEL |
Flavonoid | ||||||||||
Anthocyanins | ||||||||||
37 | C27H31O14 | Pelargonidin 3-O-rutinoside | 10.679 | [M+H]+ | 579.1714 | 580.1787 | 580.1794 | 1.2 | 433, 271 | * WZPUL |
38 | C27H31O17 | Delphinidin 3-O-glucosyl-glucoside | 37.230 | ** [M+H]+ | 627.1561 | 628.1634 | 628.1619 | −2.4 | 465, 303 | * WZPEL, REPEL, RHPEL, RHS, URHPEL, URHS, WZS, |
39 | C28H33O17 | Petunidin 3,5-O-diglucoside | 40.846 | [M+H]+ | 641.1718 | 642.1791 | 642.1794 | 0.5 | 479, 317 | * URHPEL, RHS |
40 | C27H31O16 | Cyanidin 3,5-O-diglucoside | 42.367 | ** [M+H]+ | 611.1612 | 612.1685 | 612.1664 | −3.4 | 449, 287 | * REPEL, RHPEL, URHPEL, WZPEL, |
41 | C21H21O12 | Delphinidin 3-O-glucoside | 45.306 | ** [M+H]+ | 465.1033 | 466.1106 | 466.1098 | −1.7 | 303 | * RES, REPEL, RHPEL, RHS, URHPEL, URHS, WZPEL, WZS |
42 | C21H21O11 | Cyanidin 3-O-galactoside | 48.907 | ** [M+H]+ | 449.1084 | 450.1157 | 450.1143 | −3.1 | 287 | * WZPEL, REPEL, RES, URHPEL, URHS, WZS |
43 | C21H21O10 | Isopeonidin 3-O-arabinoside | 52.693 | [M+H]+ | 433.1135 | 434.1208 | 434.1200 | −1.8 | 271, 253, 243 | * RES, REPUL |
44 | C24H25O13 | Petunidin 3-O-(6″-acetyl-glucoside) | 61.318 | [M+H]+ | 521.1295 | 522.1368 | 522.1372 | 0.8 | 317 | * URHPEL |
45 | C30H27O13 | Cyanidin 3-O-(6″-p-coumaroyl-glucoside) | 84.651 | ** [M+H]+ | 595.1452 | 596.1525 | 596.1510 | −2.5 | 287 | * WZPEL |
Dihydrochalcones | ||||||||||
46 | C21H24O11 | 3-Hydroxyphloretin 2′-O-glucoside | 19.046 | ** [M-H]− | 452.1319 | 451.1246 | 451.1249 | 0.7 | 289, 273 | * WZS, REPEL, REPUL, RES, RHPEL, RHPUL, RHS, URHPEL, URHS, WZPEL, WZPUL |
47 | C21H24O10 | Phloridzin | 46.862 | ** [M-H]− | 436.1369 | 435.1296 | 435.1308 | 2.8 | 273 | * WZS, REPEL, RES, RHPEL, RHPUL, RHS, URHPEL, URHS |
Dihydroflavonols | ||||||||||
48 | C15H12O7 | Dihydroquercetin | 26.462 | ** [M-H]− | 304.0583 | 303.0510 | 303.0502 | −2.6 | 285, 275, 151 | * URHS, REPUL, RES, RHPEL, RHS, URHPEL, WZPEL, WZS |
49 | C21H22O12 | Dihydromyricetin 3-O-rhamnoside | 35.541 | ** [M-H]− | 466.1111 | 465.1038 | 465.1035 | −0.6 | 301 | * URHS, REPEL, REPUL, RES, RHPEL, RHS, URHPEL, WZPEL, WZPUL, WZS |
50 | C21H22O11 | Dihydroquercetin 3-O-rhamnoside | 53.449 | ** [M-H]− | 450.1162 | 449.1089 | 449.1095 | 1.3 | 303 | * URHS, RES, RHPEL, WZS |
Flavanols | ||||||||||
51 | C30H26O14 | Prodelphinidin dimer B3 | 15.427 | ** [M+H]+ | 610.1323 | 611.1396 | 611.1409 | 2.1 | 469, 311, 291 | * RHPEL, REPEL, RHS, URHPEL, WZPEL |
52 | C22H18O10 | (+)-Catechin 3-O-gallate | 22.318 | ** [M-H]− | 442.0900 | 441.0827 | 441.0840 | 2.9 | 289, 169, 125 | * RES, REPEL, RHPEL |
53 | C15H14O7 | (-)-Epigallocatechin | 25.027 | ** [M-H]− | 306.0740 | 305.0667 | 305.0674 | 2.3 | 261, 219 | * WZS, REPEL, URHPEL, URHS, WZPEL |
54 | C30H26O12 | Procyanidin dimer B1 | 26.192 | ** [M-H]− | 578.1424 | 577.1351 | 577.1368 | 2.9 | 451 | * REPEL, RES, RHPEL, RHS, URHPEL, URHS, WZPEL, WZS |
55 | C60H50O24 | Cinnamtannin A2 | 29.030 | ** [M-H]− | 1154.2692 | 1153.2619 | 1153.2673 | 4.7 | 739 | * RHPEL, REPEL, RES, RHS, URHPEL, URHS, WZPEL, WZS |
56 | C22H18O11 | (+)-Gallocatechin 3-O-gallate | 29.655 | [M-H]− | 458.0849 | 457.0776 | 457.0777 | 0.2 | 305, 169 | * REPEL, RHS, URHPEL |
57 | C15H14O6 | (-)-Epicatechin | 31.233 | ** [M-H]− | 290.0790 | 289.0717 | 289.0728 | 3.8 | 245, 205, 179 | * URHS, REPEL, RES, RHPEL, URHPEL, URHPUL, WZPEL, WZPUL, WZS |
58 | C45H38O18 | Procyanidin trimer C1 | 33.608 | ** [M-H]− | 866.2058 | 865.1985 | 865.2010 | 2.9 | 739, 713, 695 | * WZS, REPEL, RES, RHPEL, RHS, URHPEL, URHS, WZPEL |
59 | C16H16O6 | 3′-O-Methylcatechin | 43.161 | ** [M-H]− | 304.0947 | 303.0874 | 303.0879 | 1.6 | 271, 163 | * RHPEL, REPEL, RHS |
60 | C22H24O13 | 4′-O-Methyl-(-)-epigallocatechin 7-O-glucuronide | 58.945 | ** [M-H]− | 496.1217 | 495.1144 | 495.1161 | 3.4 | 451, 313 | * REPEL, RHPEL, RHPUL, URHS, WZPUL, WZS, |
Flavanones | ||||||||||
61 | C27H32O14 | Naringin | 35.911 | ** [M-H]− | 580.1792 | 579.1719 | 579.1736 | 2.9 | 271 | * WZS, URHPEL, WZPEL |
62 | C28H30O18 | Hesperetin 3′,7-O-diglucuronide | 42.184 | ** [M-H]− | 654.1432 | 653.1359 | 653.1369 | 1.5 | 477, 301, 286, 242 | * RHPEL, REPUL |
63 | C20H20O5 | 8-Prenylnaringenin | 45.759 | [M+H]+ | 340.1311 | 341.1384 | 341.1383 | −0.3 | 323, 137 | * WZS, REPEL, URHPEL, URHS, WZPEL |
64 | C28H34O15 | Hesperidin | 50.645 | [M+H]+ | 610.1898 | 611.1971 | 611.1987 | 2.6 | 593, 465, 449, 303 | * WZS |
65 | C22H22O12 | Hesperetin 3′-O-glucuronide | 52.488 | ** [M-H]− | 478.1111 | 477.1038 | 477.1045 | 1.5 | 301, 175, 113, 85 | * URHS, REPEL, RHPEL, WZPEL |
66 | C27H32O15 | Eriocitrin | 54.531 | ** [M-H]− | 596.1741 | 595.1668 | 595.1656 | −2.0 | 431, 287 | * URHPEL, REPEL, WZPEL |
Flavones | ||||||||||
67 | C15H10O4 | 7,4′-Dihydroxyflavone | 18.251 | [M+H]+ | 254.0579 | 255.0652 | 255.0643 | −3.5 | 227, 199, 171 | * REPEL |
68 | C28H32O15 | Neodiosmin | 32.723 | [M+H]+ | 608.1741 | 609.1814 | 609.1812 | −0.3 | 301, 286 | * WZS |
69 | C19H18O7 | Gardenin B | 41.653 | ** [M+H]+ | 358.1053 | 359.1126 | 359.1120 | −1.7 | 344, 329, 311 | * WZPUL, REPEL, RHPEL |
70 | C21H20O10 | Apigenin 6-C-glucoside | 52.809 | ** [M-H]− | 432.1056 | 431.0983 | 431.0974 | −2.1 | 413, 341, 311 | * WZS, REPEL, RHS, URHS, WZPEL |
71 | C22H22O11 | Chrysoeriol 7-O-glucoside | 54.226 | ** [M+H]+ | 462.1162 | 463.1235 | 463.1255 | 4.3 | 445, 427, 409, 381 | * RHPEL, REPEL, RES, RHS, URHS, WZPEL, |
72 | C27H30O15 | Apigenin 6,8-di-C-glucoside | 56.081 | ** [M-H]− | 594.1585 | 593.1512 | 593.1516 | 0.7 | 503, 473 | * RES, URHPEL, URHS, WZPEL |
73 | C21H20O11 | 6-Hydroxyluteolin 7-O-rhamnoside | 57.771 | ** [M-H]− | 448.1006 | 447.0933 | 447.0934 | 0.2 | 301 | * RES, URHS, REPEL, RHPEL, RHS, WZPEL, WZS |
74 | C26H28O14 | Apigenin 7-O-apiosyl-glucoside | 59.215 | [M+H]+ | 564.1479 | 565.1552 | 565.1542 | −1.8 | 296 | * URHPEL |
75 | C18H16O7 | Cirsilineol | 69.389 | ** [M+H]+ | 344.0896 | 345.0969 | 345.0958 | −3.2 | 330, 312, 297, 284 | * RES |
Flavonols | ||||||||||
76 | C26H26O17 | Quercetin 3-O-xylosyl-glucuronide | 15.319 | ** [M+H]+ | 610.1170 | 611.1243 | 611.1224 | −3.1 | 479, 303, 285, 239 | * REPEL, URHS |
77 | C32H38O20 | Quercetin 3-O-xylosyl-rutinoside | 18.863 | ** [M+H]+ | 742.1956 | 743.2029 | 743.2023 | −0.8 | 479, 317 | * REPEL, URHPEL, URHS, WZPEL |
78 | C22H24O9 | 3-Methoxynobiletin | 20.837 | ** [M+H]+ | 432.1420 | 433.1493 | 433.1482 | −2.5 | 403, 385, 373, 345 | * URHPEL, RES, WZPEL |
79 | C21H22O8 | 3-Methoxysinensetin | 23.577 | ** [M+H]+ | 402.1315 | 403.1388 | 403.1402 | 3.5 | 388, 373, 355, 327 | * URHPUL, REPEL, RES, URHS |
80 | C20H18O12 | Myricetin 3-O-arabinoside | 24.524 | ** [M-H]− | 450.0798 | 449.0725 | 449.0728 | 0.7 | 317 | * RHPEL, RHPUL, RHS, URHPUL, WZS, |
81 | C33H40O20 | Kaempferol 3-O-glucosyl-rhamnosyl-galactoside | 24.867 | ** [M-H]− | 756.2113 | 755.2040 | 755.2068 | 3.7 | 285 | * REPEL, WZPEL |
82 | C30H32O20 | Quercetin 3-O-(6”-malonyl-glucoside) 7-O-glucoside | 31.133 | [M+H]+ | 712.1487 | 713.1560 | 713.1547 | −1.8 | 551, 303 | * REPUL, RES, RHS, URHPEL, WZS |
83 | C27H30O17 | Myricetin 3-O-rutinoside | 34.005 | ** [M-H]− | 626.1483 | 625.1410 | 625.1423 | 2.1 | 301 | * URHPEL, REPEL, RES, RHPEL, RHS, URHS, WZPEL, WZS |
84 | C27H30O16 | Kaempferol 3,7-O-diglucoside | 40.146 | ** [M-H]− | 610.1534 | 609.1461 | 609.1457 | −0.7 | 447, 285 | * RHPEL, RES, URHPEL, URHS, WZS |
85 | C26H28O16 | Quercetin 3-O-glucosyl-xyloside | 41.207 | ** [M-H]− | 596.1377 | 595.1304 | 595.1296 | −1.3 | 265, 138, 116 | * RHPEL, RES, RHS, URHPEL |
86 | C15H10O10S | Quercetin 3′-sulfate | 41.985 | [M-H]− | 381.9995 | 380.9922 | 380.9937 | 3.9 | 301 | * RHPEL |
87 | C21H18O13 | Quercetin 3′-O-glucuronide | 44.818 | ** [M-H]− | 478.0747 | 477.0674 | 477.0695 | 4.4 | 301 | * RHPEL, URHPEL |
88 | C26H28O15 | Kaempferol 3-O-xylosyl-glucoside | 45.009 | ** [M+H]+ | 580.1428 | 581.1501 | 581.1480 | −3.6 | 419, 401, 383 | * RHPEL, URHS, URHPEL, WZPEL, WZS |
89 | C16H12O7 | Isorhamnetin | 50.120 | ** [M-H]− | 316.0583 | 315.0510 | 315.0514 | 1.3 | 300, 271 | * RHPEL, URHPEL, WZPEL, REPEL |
90 | C21H20O12 | Myricetin 3-O-rhamnoside | 53.449 | ** [M-H]− | 464.0955 | 463.0882 | 463.0886 | 0.9 | 317 | * URHS, RES, RHPEL, RHPUL, RHS, URHPEL, WZPUL, WZS, |
91 | C24H22O15 | Quercetin 3-O-(6″-malonyl-glucoside) | 54.576 | ** [M+H]+ | 534.1010 | 533.0937 | 533.0916 | −3.9 | 303 | * RHPEL, REPEL, REPUL, RES |
92 | C33H40O19 | Kaempferol 3-O-(2″-rhamnosyl-galactoside) 7-O-rhamnoside | 59.352 | ** [M-H]− | 740.2164 | 739.2091 | 739.2089 | −0.3 | 593, 447, 285 | * URHPEL, REPEL, RHPEL, WZPEL |
Isoflavonoids | ||||||||||
93 | C17H16O5 | Sativanone | 12.359 | ** [M-H]− | 300.0998 | 299.0925 | 299.0928 | 1.0 | 284, 269, 225 | * RHS, URHPEL, URHS |
94 | C18H18O6 | 3′-O-Methylviolanone | 14.768 | [M-H]− | 330.1103 | 329.1030 | 329.1019 | −3.3 | 314, 299, 284, 256 | * REPUL |
95 | C16H14O5 | Dihydrobiochanin A | 15.236 | [M+H]+ | 286.0841 | 287.0914 | 287.0911 | −1.0 | 269, 203, 201, 175 | * REPEL |
96 | C24H22O12 | 6″-O-Malonyldaidzin | 16.246 | [M+H]+ | 502.1111 | 503.1184 | 503.1200 | 3.2 | 255 | * REPEL |
97 | C17H16O6 | Violanone | 26.247 | ** [M-H]− | 316.0947 | 315.0874 | 315.0866 | −2.5 | 300, 285, 135 | * RHPEL, REPEL, REPUL, RES, RHPEL, URHPEL, URHPUL, WZPEL |
98 | C17H14O6 | 2′,7-Dihydroxy-4′,5′-dimethoxyisoflavone | 29.218 | ** [M+H]+ | 314.0790 | 315.0863 | 315.0868 | 1.6 | 300, 282 | * URHPEL, RHS, URHS, WZPEL |
99 | C15H12O5 | 3′,4′,7-Trihydroxyisoflavanone | 31.267 | ** [M-H]− | 272.0685 | 271.0612 | 271.0616 | 1.5 | 177, 151, 119, 107 | * URHS, REPEL, RES, RHPEL, RHS, URHPEL, URHPUL, WZPEL, WZS |
100 | C15H10O5 | 3′-Hydroxydaidzein | 31.654 | ** [M+H]+ | 270.0528 | 271.0601 | 271.0612 | 4.1 | 253, 241, 225 | * RHS, REPUL, RHPEL, URHS, WZPEL, WZS |
101 | C15H10O6 | 3′-Hydroxygenistein | 32.748 | ** [M+H]+ | 286.0477 | 287.0550 | 287.0557 | 2.4 | 269, 259 | * RHS, REPEL, RES, RHPEL, URHPEL, URHS, WZPEL, WZS |
102 | C16H12O5 | 2′-Hydroxyformononetin | 37.823 | [M+H]+ | 284.0685 | 285.0758 | 285.0749 | −3.2 | 270, 229 | * RHPUL, RES |
103 | C15H10O7 | 5,6,7,3′,4′-Pentahydroxyisoflavone | 44.414 | ** [M+H]+ | 302.0427 | 303.0500 | 303.0505 | 1.6 | 285, 257 | * URHS, REPEL, RES, RHPEL, RHS, URHPEL, WZPEL, WZS |
104 | C23H22O10 | 6″-O-Acetyldaidzin | 46.922 | ** [M-H]− | 458.1213 | 457.1140 | 457.1163 | 5.0 | 221 | * RHPEL, WZPEL |
105 | C24H22O13 | 6″-O-Malonylgenistin | 64.036 | [M+H]+ | 518.1060 | 519.1133 | 519.1134 | 0.2 | 271 | * RHS, REPEL, URHPEL |
106 | C15H12O4 | 2-Dehydro-O-desmethylangolensin | 75.663 | [M-H]− | 256.0736 | 255.0663 | 255.0671 | 3.1 | 135, 119 | * RES |
Lignans | ||||||||||
107 | C23H28O6 | Schisandrin B | 7.433 | ** [M+H]+ | 400.1886 | 401.1959 | 401.1956 | −0.7 | 386 | * WZPEL, RES |
108 | C20H18O6 | Episesamin | 7.775 | [M-H]− | 354.1103 | 353.1030 | 353.1020 | −2.8 | 338, 163 | * URHS |
109 | C20H24O7 | Todolactol A | 13.426 | [M-H]− | 376.1522 | 375.1449 | 375.1467 | 4.8 | 313, 137 | * REPUL |
110 | C20H22O7 | 7-Hydroxymatairesinol | 14.834 | [M-H]− | 374.1366 | 373.1293 | 373.1291 | −0.5 | 343, 313, 298, 285 | * URHPUL, REPEL, REPUL, WZPUL |
111 | C21H24O6 | Arctigenin | 29.065 | ** [M-H]− | 372.1573 | 371.1500 | 371.1509 | 2.4 | 356, 312, 295 | * URHPUL, REPEL, RES, RHS, URHS, WZPEL, WZPUL, WZS |
112 | C20H20O7 | 7-Oxomatairesinol | 32.723 | ** [M+H]+ | 372.1209 | 373.1282 | 373.1275 | −1.9 | 358, 343, 328, 325 | * REPUL, RES, RHPUL, URHPUL, WZPUL |
113 | C20H22O6 | Matairesinol | 45.926 | ** [M-H]− | 358.1416 | 357.1343 | 357.1348 | 1.4 | 342, 327, 313, 221 | * RES, REPEL, URHPEL, URHS, WZPEL, WZS |
114 | C22H24O6 | Schisandrin C | 59.344 | ** [M+H]+ | 384.1573 | 385.1646 | 385.1663 | 4.4 | 370, 315, 300 | * REPEL, URHPEL, URHS, WZPEL, WZPUL |
115 | C30H38O10 | Secoisolariciresinol-sesquilignan | 59.607 | [M-H]− | 558.2465 | 557.2392 | 557.2387 | −0.9 | 539, 521, 509, 361 | * REPEL, RHPEL |
116 | C23H28O7 | Schisandrol B | 63.253 | [M+H]+ | 416.1835 | 417.1908 | 417.1929 | 5.0 | 224, 193, 165 | * REPEL |
117 | C20H20O6 | Conidendrin | 76.546 | ** [M+H]+ | 356.1260 | 357.1333 | 357.1328 | −1.4 | 339, 221, 206 | * RHPEL, RHS, URHPEL, WZPEL |
Stilbenes | ||||||||||
118 | C14H12O3 | Resveratrol | 31.283 | ** [M-H]− | 228.0786 | 227.0713 | 227.0724 | 4.8 | 212, 185, 157, 143 | * URHS, REPEL, RES, RHPEL, RHS, WZPEL, WZS |
119 | C17H18O4 | 4′-Hydroxy-3,4,5-trimethoxystilbene | 63.229 | [M+H]+ | 286.1205 | 287.1278 | 287.1273 | −1.7 | 271, 241, 225 | * RHPEL, REPUL, RHPUL, URHPEL, URHPUL, URHS, WZPEL, WZS |
Other polyphenols | ||||||||||
Alkylmethoxyphenols | ||||||||||
120 | C15H14O3 | 4-Vinylsyringol | 12.295 | [M+H]+ | 242.0943 | 243.1016 | 243.1017 | 0.4 | 255, 211, 197 | * RES |
Furanocoumarins | ||||||||||
121 | C13H10O5 | Isopimpinellin | 27.861 | [M+H]+ | 246.0528 | 247.0601 | 247.0607 | 2.4 | 232, 217, 205, 203 | * RHS, REPEL, RHPEL, URHPEL, URHS, WZPEL |
Hydroxybenzaldehydes | ||||||||||
122 | C8H8O2 | p-Anisaldehyde | 17.690 | ** [M+H]+ | 136.0524 | 137.0597 | 137.0598 | 0.7 | 122, 109 | * URHPEL, REPEL, RES, RHPEL, RHS, URHPUL, URHS, WZPEL, WZS |
Hydroxybenzoketones | ||||||||||
123 | C9H10O7S | 2-Hydroxy-4-methoxyacetophenone 5-sulfate | 12.908 | ** [M-H]− | 262.0147 | 261.0074 | 261.0084 | 3.8 | 181, 97 | * RES, RHPUL, WZPEL |
Hydroxycoumarins | ||||||||||
124 | C15H16O9 | Esculin | 17.940 | ** [M+H]+ | 340.0794 | 341.0867 | 341.0860 | −2.1 | 179, 151 | * RHS, URHS, WZS |
125 | C9H6O2 | Coumarin | 22.283 | ** [M+H]+ | 146.0368 | 147.0441 | 147.0448 | 4.8 | 103, 91 | * RES, REPEL, RHPUL, RHS, URHPEL |
126 | C9H6O4 | Esculetin | 24.542 | [M-H]− | 178.0266 | 177.0193 | 177.0201 | 4.5 | 149, 133, 89 | * WZPEL |
127 | C10H8O4 | Scopoletin | 31.863 | ** [M-H]− | 192.0423 | 191.0350 | 191.0358 | 4.2 | 176 | * URHS, RHPEL, URHPEL, WZPEL, WZPUL, WZS |
Hydroxyphenylpropenes | ||||||||||
128 | C10H12O2 | 2-Methoxy-5-prop-1-enylphenol | 25.818 | [M+H]+ | 164.0837 | 165.0910 | 165.0903 | −4.2 | 149, 137, 133, 124 | * WZPEL, REPEL, URHPEL |
Other polyphenols | ||||||||||
129 | C26H20O10 | Salvianolic acid C | 35.209 | ** [M-H]− | 492.1056 | 491.0983 | 491.0987 | 0.8 | 311, 267, 249 | * URHS, REPUL, WZPEL |
Phenolic terpenes | ||||||||||
130 | C20H26O5 | Rosmanol | 63.494 | [M+H]+ | 346.1780 | 347.1853 | 347.1868 | 4.3 | 301, 241, 231 | * URHS |
Tyrosols | ||||||||||
131 | C14H20O8 | Hydroxytyrosol 4-O-glucoside | 18.019 | ** [M-H]− | 316.1158 | 315.1085 | 315.1084 | −0.3 | 153, 123 | * WZS, REPEL, URHS |
132 | C17H24O11 | Oleoside 11-methylester | 18.842 | ** [M-H]− | 404.1319 | 403.1246 | 403.1246 | 0.0 | 223, 165 | * RHPEL, REPEL, RHS, URHPUL, WZPEL |
133 | C24H30O13 | Demethyloleuropein | 23.000 | ** [M-H]− | 526.1686 | 525.1613 | 525.1609 | −0.8 | 495 | * RHPEL, REPEL, REPUL, RES, RHS, URHPEL, URHS, WZPEL |
134 | C10H12O4 | 3,4-DHPEA-AC | 37.593 | ** [M-H]− | 196.0736 | 195.0663 | 195.0659 | −2.1 | 135 | * RES, REPEL, REPUL, RHS, URHPEL, WZPEL, WZPUL, WZS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. https://doi.org/10.3390/antiox12010185
Lyu X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants. 2023; 12(1):185. https://doi.org/10.3390/antiox12010185
Chicago/Turabian StyleLyu, Xiaoyan, Osman Tuncay Agar, Colin J. Barrow, Frank R. Dunshea, and Hafiz A. R. Suleria. 2023. "Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado" Antioxidants 12, no. 1: 185. https://doi.org/10.3390/antiox12010185
APA StyleLyu, X., Agar, O. T., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2023). Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants, 12(1), 185. https://doi.org/10.3390/antiox12010185