The Field Monitoring and Numerical Simulation of Spatiotemporal Effects During Deep Excavation in Mucky Soft Soil: A Case Study
<p>Soil profile along the standard section of Huaxi Park Station.</p> "> Figure 2
<p>Layout of monitoring points of Huaxi Park Station foundation pit. (CX is the monitoring point number of diaphragm wall horizontal displacement; DB is the monitoring point number of surface subsidence).</p> "> Figure 3
<p>A 3D numerical model of the Huaxi Park Station foundation pit.</p> "> Figure 4
<p>Structure of CVISC model.</p> "> Figure 5
<p>Variation rule of maximum horizontal displacement of enclosure wall: (<b>a</b>) maximum horizontal displacement of west end well wall; (<b>b</b>) maximum horizontal displacement of standard section wall. RW means retaining wall.</p> "> Figure 6
<p>Surface settlement outside the pit: (<b>a</b>) surface settlement outside the west end head pit; (<b>b</b>) surface settlement outside the standard section pit. D is the distance from the pit. Notes−excavation step sequence: 1−arrangement of the first steel support; 2−arrangement of the second steel support; 3−arrangement of the third steel support; 4−arrangement of the fourth steel support; 5−excavation completed.</p> "> Figure 7
<p>The relationship between the surface settlement outside the pit and the maximum horizontal displacement of the retaining wall: (<b>a</b>) the west end well; (<b>b</b>) the standard section.</p> "> Figure 8
<p>Pore water pressure contour with different construction steps: (<b>a</b>) before excavation; (<b>b</b>) excavation of third floors; (<b>c</b>) final excavation.</p> "> Figure 8 Cont.
<p>Pore water pressure contour with different construction steps: (<b>a</b>) before excavation; (<b>b</b>) excavation of third floors; (<b>c</b>) final excavation.</p> "> Figure 9
<p>Horizontal displacement of diaphragm wall of Huaxi Park Station foundation pit.</p> "> Figure 10
<p>Horizontal displacement of diaphragm wall (CX5): (<b>a</b>) horizontal displacement versus depth curve; (<b>b</b>) variation curve of maximum horizontal displacement with construction sequence. (Construction sequence: 1—arrangement of the first steel support; 2—arrangement of the second steel support; 3—arrangement of the third steel support; 4—arrangement of the fourth steel support; 5—arrangement of the fifth steel support; 6—completion of the footing pouring.)</p> "> Figure 11
<p>Vertical displacement after the completion of excavation: (<b>a</b>) surface settlement outside the pit; (<b>b</b>) vertical displacement.</p> "> Figure 12
<p>Surface settlement outside the pit after the completion of excavation: (<b>a</b>) DB4; (<b>b</b>) DB6; (<b>c</b>) DB1.</p> "> Figure 13
<p>Change in the axial force of the first concrete support.</p> "> Figure 14
<p>Change in the axial force of the second to fifth supports.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Project Profile
2.2. Monitoring Arrangement
2.3. Three-Dimensional Numerical Simulation
2.3.1. Numerical Model
2.3.2. Constitutive Model and Material Properties
2.3.3. Simulation Method
3. Results and Discussion
3.1. Monitoring Analysis of Spatiotemporal Effect
3.1.1. Horizontal Displacement of Diaphragm Wall
3.1.2. Temporal Effectiveness of Surface Settlement
3.2. Numerical Analysis of Spatiotemporal Effect
3.2.1. Pore Water Pressure
3.2.2. Horizontal Displacement of Diaphragm Walls
3.2.3. Surface Settlement Around the Pit
3.2.4. Internal Support Axial Force
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ying, H.; Cheng, K.; Liu, S.; Xu, R.; Lin, C.; Zhu, C.; Gan, X. An efficient method for evaluating the ground surface settlement of Hangzhou metro deep basement considering the excavation process. Acta Geotech. 2022, 17, 5759–5771. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, Y.; Wang, D.L. Deep excavation of the Gate of the Orient in Suzhou stiff clay: Composite earth-retaining systems and dewatering plans. J. Geotech. Geoenviron. Eng. 2018, 144, 05017009. [Google Scholar] [CrossRef]
- Peng, T.; Ren, D.; Kang, C.; Liu, H.; Xue, P.; Huang, H. Deformation Characteristics of Soft Soil Induced by Deep Excavation and Its Impact on Adjacent Tunnels: A Case Study in Shanghai. KSCE J. Civ. Eng. 2024, 28, 1715–1728. [Google Scholar] [CrossRef]
- Lin, G.; Lin, Z.; Zhao, Y.; Xu, C.; Sun, F.; Duan, Y.; Fang, T. Force and Deformation Characteristics of Large-Scale Zoning Excavation in Soft Soil: A Case Study in Hangzhou. Appl. Sci. 2024, 14, 6358. [Google Scholar] [CrossRef]
- Tan, Y.; Fan, D.D.; Lu, Y. Statistical Analyses on a Database of Deep Excavations in Shanghai Soft Clays in China from 1995–2018. Pract. Period. Struct. Des. Constr. 2022, 27, 04021067. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Hong, Y.; Liu, G.B.; Liu, T. Ground deformations and soil–structure interaction of a multi-propped excavation in Shanghai soft clays. Géotechnique 2012, 62, 907–921. [Google Scholar] [CrossRef]
- Kung GT, C.; Ou, C.Y.; Juang, C.H. Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations. Comput. Geotech. 2009, 36, 304–319. [Google Scholar] [CrossRef]
- Han, M.; Chen, X.; Li, Z.; Jia, J. Improved inverse analysis methods and modified apparent earth pressure for braced excavations in soft clay. Comput. Geotech. 2023, 159, 105456. [Google Scholar] [CrossRef]
- Li, M.G.; Xiao, Q.Z.; Liu, N.W.; Chen, J.J. Predicting Wall Deflections for Deep Excavations with Servo Struts in Soft Clay. J. Geotech. Geoenviron. Eng. 2024, 150, 04023124. [Google Scholar] [CrossRef]
- Cheng, W.C.; Li, G.; Liu, N.; Xu, J.; Horpibulsuk, S. Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: A review. Tunn. Undergr. Space Technol. 2020, 96, 103178. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, Y. Overview of Typical Excavation Failures in China; Geotechnical Special Publication; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 315–332. [Google Scholar] [CrossRef]
- Zheng, G. Method and application of deformation control of excavations in soft ground. Chin. J. Geotech. Eng. 2022, 44, 1–36. [Google Scholar]
- Wang, L.Z.; Liu, Y.J.; Long, F.; Hong, Y. Collapse of deep excavations for metro lines in soft clay. Chin. J. Geotech. Eng. 2020, 42, 1603–1611. [Google Scholar]
- Zhang, K.C.; Li, J.M. Accident Analysis for “08.11.15” Foundation Pit Collapse of Xianghu Station of Hangzhou Metro. Chin. J. Geotech. Eng. 2010, 32 (Suppl. S1), 338–342. [Google Scholar]
- Feng, C.; Feng, S.H. Prevention and treatment of shallow pit accidents in deep and soft soil areas. Chin. J. Geotech. Eng. 2012, 34 (Suppl. S1), 711–714. [Google Scholar]
- Ying, H.W.; Xiong, Y.F.; Li, B.H.; Lü, W.; Cheng, K.; Zhang, J. Time-dependent solution for ground settlement induced by excavation in soft clay. Chin. J. Geotech. Eng. 2024, 46, 2041–2050. [Google Scholar] [CrossRef]
- Zhou, K.P.; Wang, Y.Y.; Zhu, J.W.; Huang, X. Analysis of Deformation Properties of Subway Station Foundation Pit in Soft Soil with High Creep Property. J. Shanghai Jiaotong Univ. 2013, 47, 1413–1418. [Google Scholar]
- Sun, J. Rock rheological mechanics and its advance in engineering applications. Chin. J. Rock Mech. Eng. 2007, 26, 1081–1106. [Google Scholar]
- Tan, Y.; Jiang, W.; Luo, W.; Lu, Y.; Xu, C. Longitudinal sliding event during excavation of Feng-Qi Station of Hangzhou Metro Line 1: Post failure investigation. J. Perform. Constr. Facil. 2018, 32, 04018039. [Google Scholar] [CrossRef]
- Tan, Y.; Jiang, W.Z.; Rui, H.S.; Lu, Y.; Wang, D.L. Forensic geotechnical analyses on the 2009 building-overturning accident in Shanghai, China: Beyond common recognitions. J. Geotech. Geoenviron. Eng. 2020, 146, 05020005. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, Y.; Wang, D.L. Catastrophic failure of Shanghai metro line 4 in July, 2003: Occurrence, emergency response, and disaster relief. J. Perform. Constr. Facil. 2021, 35, 04020125. [Google Scholar] [CrossRef]
- Liu, J.H. Probe into Foundation Pit Spatial Effect Influencing Length. Coal Geol. China 2011, 23, 40–41. [Google Scholar]
- Yang, X.Q.; Liu, Z.D.; He, S.X. Research about spatial effect of deep pit supporting. Chin. J. Geotech. Eng. 1998, 20, 74–78. [Google Scholar]
- Lei, M.F.; Peng, L.M.; Shi, C.H.; An, Y.L. Research on construction spatial effects in large-long-deep foundation pit. Rock Soil Mech. 2010, 31, 1579–1584. [Google Scholar]
- Wu, Z.M.; Tu, Y.M. Space effect of soil-nailing excavation protection. Rock Soil Mech. 2007, 28, 2178–2182. [Google Scholar]
- Wang, K. Application of Soil Creep Characteristics in Deep Foundation Pit Project in Shenzhen. J. Railw. Eng. Soc. 2011, 8, 53–57. [Google Scholar]
- Guo, H.Z.; Zhang, Q.H.; Zhu, J.W.; Yao, H.M. Application of soil coupled creep model to simulate foundation pit excavation. Rock Soil Mech. 2009, 30, 688–698. [Google Scholar]
- Zhuang, L.; Zhou, S.H.; Gong, Q.M.; Bao, X.F. Numerical analysis of creep induced by excavating slope in soft soil pit with large area. Chin. J. Rock. Mech. Eng. 2006, 25 (Suppl. S2), 4209–4214. [Google Scholar]
- Xiu, X.D.; Liu, G.B. Analysis on Deformation Temporal Characteristics of Retaining Structures in Deep Foundation Pit. Chin. J. Undergr. Space Eng. 2012, 8, 1261–1262. [Google Scholar]
- Qin, H.L.; Huang, J.; Li, Q.Z.; Hu, L.; Shi, Y. Influencing factors for deformation of deep foundation pits in thick mud stratum. Chin. J. Geotech. Eng. 2021, 43 (Suppl. S2), 23–26. [Google Scholar]
- Lin, Z.B.; Li, Y.H.; Liu, J.Q. A Study on the Spatial-Temporal Evolution Regularity of the Deformation of a Foundation Pit in Soft Soil. Mod. Tunneling Technol. 2016, 53, 82–90+97. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yang, G.H.; Hu, H.Y.; Chen, F.; Huang, Z.; Chen, W. Some problems about retaining structures for shallow pits in deep and soft soil areas of Pearl River Delta. Chin. J. Geotech. Eng. 2014, 36 (Suppl. S1), 1–11. [Google Scholar]
- Mangushev, R.; Geotechnic Osokin, A. Construction of deep foundation ditch under a reconstructed multi-storey building on the main avenue of St. Petersburg. Procedia Eng. 2017, 189, 622–629. [Google Scholar] [CrossRef]
- Tanoli, A.Y.; Yan, B.; Xiong, Y.L.; Ye, G.L.; Khalid, U.; Xu, Z.H. Numerical analysis on zone-divided deep excavation in soft clays using a new small strain elasto–plastic constitutive model. Undergr. Space 2022, 7, 19–36. [Google Scholar] [CrossRef]
- Ge, C.H.; Yang, M.; Li, P.F.; Zhang, M. Influence of deep foundation pit excavation on surrounding environment: A case study in Nanjing, China. Acta Geophys. 2025, 73, 495–516. [Google Scholar] [CrossRef]
- Itasca, I. Flac3D 7.0 User’s manual.pdf. 2020. Available online: https://www.itascacg.com/ (accessed on 12 September 2022).
- Paraskevopoulou, C.; Perras, M.; Diederichs, M.; Loew, S.; Lam, T.; Jensen, M. Time-dependent behaviour of brittle rocks based on static load laboratory tests. Geotech. Geol. Eng. 2018, 36, 337–376. [Google Scholar] [CrossRef]
- Zhang, J.F.; Chen, J.J.; Wang, J.H. Prediction of tunnel displacement induced by adjacent excavation in soft soil. Tunn. Undergr. Space Technol. 2013, 36, 24–33. [Google Scholar] [CrossRef]
- He, H.J.; Wang, S.F.; Shen, W.M.; Zhang, W. The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures. Transp. Geotech. 2023, 42, 101061. [Google Scholar] [CrossRef]
- Clough, G.W.; O’Rourke, T.D. Construction induced movements of in situ walls. In Proceedings of the ASCE Conference on Design and Performance of Earth Retaining Structures (ASCE), Ithaca, NY, USA, 18–21 June 1990; pp. 439–470. [Google Scholar]
- Tan, Y.; Wang, D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft. J. Geotech. Geoenviron. Eng. 2013, 139, 1875–1893. [Google Scholar] [CrossRef]
Parameter | EM (kPa) | EK (kPa) | ŋM (kPa·h) | ŋK (kPa·h) |
---|---|---|---|---|
Value | 200 | 100 | 80,000 | 2000 |
Layer No. | Name | Density / | Hydraulic Conductivity/K | Compressive Modulus E0.1~0.2 | Friction/ϕ | Cohesion/c | Pore Ratio/e | Poisson/μ |
---|---|---|---|---|---|---|---|---|
(N/m3) | 10−6 cm/s | MPa | ° | kPa | ||||
①1 | Filler | 2100 | 7000.0 | 15.0 | 5.0 | 0.350 | ||
②1 | Silty clay | 1900 | 6.0 | 4.63 | 13.7 | 23.5 | 0.94 | 0.375 |
②y | Mucky clay | 1790 | 7.0 | 3.07 | 8.9 | 12.5 | 1.23 | 0.444 |
⑤1 | Silty clay | 1830 | 6.5 | 3.90 | 12.8 | 18.3 | 1.04 | 0.429 |
⑦1 | Silty clay | 1850 | 8.0 | 4.26 | 12.9 | 19.6 | 1.01 | 0.394 |
⑦2 | Silt with silt sand | 1930 | 3300 | 9.67 | 18.9 | 6.6 | 0.798 | 0.324 |
⑦3 | Silty clay | 1890 | 10.0 | 5.08 | 14.2 | 25.0 | 0.92 | 0.367 |
(11) | Silt sand with silt | 1980 | 6500.0 | 11.03 | 23.8 | 5.1 | 0.74 | 0.310 |
(12) | Silty clay | 1910 | 6.0 | 5.34 | 15 | 35.0 | 0.865 | 0.310 |
(13) | Silt sand | 1960 | 10,000 | 10.88 | 27 | 4.0 | 0.758 | 0.333 |
Retaining Structure | γ kN/m3 | Modulus E/kPa | Poisson/ν |
---|---|---|---|
Diaphragm wall | 25 | 40 × 106 | 0.200 |
Crown beam | 25 | 32 × 106 | 0.167 |
Concrete support | 25 | 32 × 106 | 0.200 |
Steel support | 79 | 20 × 107 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Wang, J.; Long, Y.; Liu, X.; Long, G.; Ding, S.; Zhou, L.; Li, H.; Hishammuddin, M.A.H.b. The Field Monitoring and Numerical Simulation of Spatiotemporal Effects During Deep Excavation in Mucky Soft Soil: A Case Study. Appl. Sci. 2025, 15, 1992. https://doi.org/10.3390/app15041992
Wu Q, Wang J, Long Y, Liu X, Long G, Ding S, Zhou L, Li H, Hishammuddin MAHb. The Field Monitoring and Numerical Simulation of Spatiotemporal Effects During Deep Excavation in Mucky Soft Soil: A Case Study. Applied Sciences. 2025; 15(4):1992. https://doi.org/10.3390/app15041992
Chicago/Turabian StyleWu, Qiang, Jianxiu Wang, Yanxia Long, Xuezeng Liu, Guanhong Long, Shuang Ding, Li Zhou, Huboqiang Li, and Muhammad Akmal Hakim bin Hishammuddin. 2025. "The Field Monitoring and Numerical Simulation of Spatiotemporal Effects During Deep Excavation in Mucky Soft Soil: A Case Study" Applied Sciences 15, no. 4: 1992. https://doi.org/10.3390/app15041992
APA StyleWu, Q., Wang, J., Long, Y., Liu, X., Long, G., Ding, S., Zhou, L., Li, H., & Hishammuddin, M. A. H. b. (2025). The Field Monitoring and Numerical Simulation of Spatiotemporal Effects During Deep Excavation in Mucky Soft Soil: A Case Study. Applied Sciences, 15(4), 1992. https://doi.org/10.3390/app15041992