Force and Deformation Characteristics of Large-Scale Zoning Excavation in Soft Soil: A Case Study in Hangzhou
<p>Schematic diagram of ‘New World’ foundation pit.</p> "> Figure 1 Cont.
<p>Schematic diagram of ‘New World’ foundation pit.</p> "> Figure 2
<p>Layout of field monitoring points.</p> "> Figure 3
<p>Schematic diagram of the finite element model. (<b>a</b>) Model size. (<b>b</b>) Condition 1. (<b>c</b>) Condition 2. (<b>d</b>) Condition 3. (<b>e</b>) Condition 4. (<b>f</b>) Condition 5.</p> "> Figure 4
<p>Horizontal displacements of diaphragm wall during excavation to the bottom of the foundation pit. (<b>a</b>) 3A10-1 sub-pit. (<b>b</b>) 3A10-1 sub-pit. (<b>c</b>) 3A10-2 sub-pit. (<b>d</b>) 3A10-2 sub-pit. (<b>e</b>) 3A10-2 sub-pit. (<b>f</b>) 3A5 sub-pit. (<b>g</b>) 3A8 sub-pit.</p> "> Figure 5
<p>Deep horizontal displacements of the soil. (<b>a</b>) 3A10-1 sub-pit. (<b>b</b>) 3A10-1 sub-pit. (<b>c</b>) 3A10-1 sub-pit. (<b>d</b>) 3A10-2 sub-pit. (<b>e</b>) 3A5 sub-pit. (<b>f</b>) 3A8 sub-pit.</p> "> Figure 6
<p>Monitoring results of surface settlement. (<b>a</b>) The side of Yuantai Building. (<b>b</b>) The north side of sub-pit 3A10-1. (<b>c</b>) West side of sub-pit 3A10-1.</p> "> Figure 7
<p>Changes in bending moments of diaphragm walls during the excavation. (<b>a</b>) Diaphragm walls of 3A10-1 sub-pit. (<b>b</b>) Diaphragm walls of 3A10-2 sub-pit. (<b>c</b>) Diaphragm walls of 3A5 sub-pit. (<b>d</b>) Diaphragm walls of 3A8 sub-pit.</p> "> Figure 8
<p>Horizontal displacements nephograms of pre-built diaphragm wall at the western edge of the sub-pit.</p> "> Figure 8 Cont.
<p>Horizontal displacements nephograms of pre-built diaphragm wall at the western edge of the sub-pit.</p> "> Figure 9
<p>Horizontal displacement of the pre-built diaphragm wall at the southern edge of the pit.</p> "> Figure 9 Cont.
<p>Horizontal displacement of the pre-built diaphragm wall at the southern edge of the pit.</p> "> Figure 9 Cont.
<p>Horizontal displacement of the pre-built diaphragm wall at the southern edge of the pit.</p> ">
Abstract
:1. Introduction
2. Project Overview
3. Methodology
3.1. Field Monitoring
3.2. Numerical Simulation
4. Analysis and Discussion
4.1. Field Monitoring Results of Foundation Pit
4.1.1. Monitoring Results of Diaphragm Wall
4.1.2. Monitoring Results of Deep Horizontal Displacements of the Soil
4.1.3. Monitoring Results of Surface Settlement
4.2. Finite Element Simulation Results
4.2.1. Comparison of Simulation Results with Monitoring Results
4.2.2. Bending Moments of Diaphragm Wall
4.2.3. Disturbance Analysis of Pre-Built Diaphragm Walls
5. Conclusions
- (1)
- The zonal excavation of foundation pit did not affect the displacement pattern of diaphragm wall, but it would limit the degree of deformation. Peripheral loading and unloading may change the displacement pattern of the diaphragm wall. Under the parabolic dislocation mode of diaphragm wall, the deep horizontal displacement pattern of the soil behind the wall was similar to that of the diaphragm wall, and the soil deformation along the length of the wall led to difference in the horizontal displacements of the wall and soil.
- (2)
- Construction and consolidation operations around the foundation pit may form a finite soil zone, which may affect the deep deformation pattern of the soil. Large-scale loading and relocation-induced unloading would result in upward displacement of the soil layer in the area surrounding the loading zone and cause bending moment in the diaphragm wall below the excavation surface.
- (3)
- The first excavated foundation pit would affect the displacement of the support structure of the unexcavated foundation pit. Non-adjacent pit excavation transferred displacement through the pre-built diaphragm wall, resulting in a small displacement effect. Adjacent pit excavations would cause the pre-built diaphragm wall to deform in a similar manner to its supporting structure, resulting in a larger displacement effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Li, J.; Li, L. Performance of a Zoned Excavation by Bottom-Up Technique in Shanghai Soft Soils. J. Geotech. Geoenviron. Eng. 2018, 144, 05018003. [Google Scholar] [CrossRef]
- Ding, Z.; Jin, J.; Han, T.C. Analysis of the zoning excavation monitoring data of a narrow and deep foundation pit in a soft soil area. J. Geophys. Eng. 2018, 15, 1231–1241. [Google Scholar] [CrossRef]
- Lai, F.; Chen, F.; Liu, S.; Keawsawasvong, S.; Shiau, J. Undrained stability of pit-in-pit braced excavations under hydraulic uplift. Undergr. Space 2022, 7, 1139–1155. [Google Scholar] [CrossRef]
- Liang, R.; Wu, J.; Sun, L.; Shen, W.; Wu, W. Performances of adjacent metro structures due to zoned excavation of a large-scale basement in soft ground. Tunn. Undergr. Space Technol. 2021, 117, 104123. [Google Scholar] [CrossRef]
- Fan, X.; Xu, C.; Liang, L.; Yang, K.; Chen, Q.; Feng, G.; Zhang, J. Experimental and Numerical Study of Braced Retaining Piles with Asymmetrical Excavation. Int. J. Civ. Eng. 2024, 22, 1339–1356. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, Y.; Wang, D. Interactive behaviors of four closely spaced mega excavations in soft clays: Case study on an excavation group in Shanghai, China. Tunn. Undergr. Space Technol. 2023, 138, 105186. [Google Scholar] [CrossRef]
- Jing, Y.; Li, L.; Li, J.; Chen, H. Performances of a Large-scale Deep Excavation with Multi-support Types and Zoned Excavation Technique in Shanghai Soft Soil. Can. Geotech. J. 2024. [Google Scholar] [CrossRef]
- Han, M.; Chen, X.; Li, Z.; Jia, J. Improved inverse analysis methods and modified apparent earth pressure for braced excavations in soft clay. Comput. Geotech. 2023, 159, 105456. [Google Scholar] [CrossRef]
- Li, M.G.; Xiao, Q.Z.; Liu, N.W.; Chen, J.J. Predicting Wall Deflections for Deep Excavations with Servo Struts in Soft Clay. J. Geotech. Geoenviron. Eng. 2024, 150, 04023124. [Google Scholar] [CrossRef]
- Peng, T.; Ren, D.; Kang, C.; Liu, H.; Xue, P.; Huang, H. Deformation Characteristics of Soft Soil Induced by Deep Excavation and Its Impact on Adjacent Tunnels: A Case Study in Shanghai. KSCE J. Civ. Eng. 2024, 28, 1715–1728. [Google Scholar] [CrossRef]
- Gong, X.N.; Zhang, X.C. Excavation collapse of Hangzhou subway station in soft clay and numerical investigation based on orthogonal experiment method. J. Zhejiang Univ. Sci. A 2012, 13, 760–767. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, Y.; Zou, B.; Wang, J.; Liu, X.; Chen, Q.; Kong, B.; Liang, S. Failure analysis and zoning control of water gushing in foundation pit. Eng. Fail. Anal. 2023, 145, 107029. [Google Scholar] [CrossRef]
- Wang, W.D.; Ng, C.W.W.; Hong, Y.; Hu, Y.; Li, Q. Forensic study on the collapse of a high-rise building in Shanghai: 3D centrifuge and numerical modelling. Géotechnique 2019, 69, 847–862. [Google Scholar] [CrossRef]
- Li, H.; Liu, B.; Li, L.; Zhang, Q.; Huang, C. A Theoretical Solution of Deformation and Stress Calculation of the Underlying Tunnel Caused by Foundation Pit Excavation. KSCE J. Civ. Eng. 2024, 28, 2399–2408. [Google Scholar] [CrossRef]
- Fan, X.Z.; Xu, C.J.; Liang, L.J.; Chen, Q.Z.; Deng, J.L. Analytical solution for displacement-dependent passive earth pressure on rigid walls with various wall movements in cohesionless soil. Comput. Geotech. 2021, 140, 104470. [Google Scholar] [CrossRef]
- Lin, Z.; Jiang, Y.; Xiong, Y.; Xu, C.; Guo, Y.; Wang, C.; Fang, T. Analytical solution for displacement-dependent active earth pressure considering the stiffness of cantilever retaining structure in cohesionless soil. Comput. Geotech. 2024, 170, 106258. [Google Scholar] [CrossRef]
- Lai, F.; Zhang, N.; Liu, S.; Yang, D. A generalised analytical framework for active earth pressure on retaining walls with narrow soil. Géotechnique 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Fathipour, H.; Safardoost Siahmazgi, A.; Payan, M.; Jamshidi Chenari, R. Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming. Comput. Geotech. 2020, 125, 103587. [Google Scholar] [CrossRef]
- Fathipour, H.; Siahmazgi, A.S.; Payan, M.; Veiskarami, M.; Jamshidi Chenari, R. Limit Analysis of Modified Pseudodynamic Lateral Earth Pressure in Anisotropic Frictional Medium Using Finite-Element and Second-Order Cone Programming. Int. J. Geomech. 2021, 21, 04020258. [Google Scholar] [CrossRef]
- Deng, C.; Haigh, S.K. Sand deformation mechanisms and earth pressures mobilised with passive rigid retaining wall movements. Géotechnique 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Hu, W.; Zhu, X.; Zeng, Y.; Liu, X.; Peng, C. Active earth pressure against flexible retaining wall for finite soils under the drum deformation mode. Sci. Rep. 2022, 12, 497. [Google Scholar] [CrossRef]
- Liang, L.; Xu, C.; Fan, X.; Chen, Q. Hyperbolic stress-strain behaviour of sandy soil under plane strain unloading condition and its application on predicting displacement-dependent active earth pressure. Comput. Geotech. 2023, 155, 105219. [Google Scholar] [CrossRef]
- Park, J.J.; Yang, K.H.; Huh, J.C. Analysis of p-y Curve of Drilled Shafts Socketed into Basalt at Jeju Island. IJOPE 2017, 27, 374–382. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, R.; Deng, G.; Peng, T.; Luo, Q.; Yang, X. Accuracy of Interpretation Methods for Deriving p–y Curves From Model Pile Tests in Layered Soils. J. Test. Eval. 2017, 45, 1238–1246. [Google Scholar] [CrossRef]
- Hamderi, M. Finite Element-Based p-y Curves in Sand. Arab. J. Sci. Eng. 2023, 48, 14183–14194. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Sang, S.; Kong, L.; Diao, H.; Hao, Z.; Bai, X. Mechanical characteristics and application of cement-soil wrapped pile support structures for soil-rock combination pit in coastal area. Ocean. Eng. 2024, 301, 117491. [Google Scholar] [CrossRef]
- Liu, C.; Yan, C.; Zheng, G.; Liu, T.; Yang, Y. Field Testing and Numerical Analysis of Supporting Performance of Oblique Piles Used in Pit Excavation. Int. J. Geomech. 2023, 23, 04023204. [Google Scholar] [CrossRef]
- Yang, K.; Li, Z.; Chen, Y.; Yang, X.; Lin, W. Soil Arching–Induced Lateral Earth Pressure Redistribution on the Retaining Wall in a Multistrutted Excavation in Soft Soil. J. Geotech. Geoenviron. Eng. 2023, 149, 05023004. [Google Scholar] [CrossRef]
- Hou, Y.M.; Wang, J.H.; Zhang, L.L. Finite-element modeling of a complex deep excavation in Shanghai. Acta Geotech. 2009, 4, 7–16. [Google Scholar] [CrossRef]
- Zeng, C.F.; Powrie, W.; Chen, H.B.; Wang, S.; Diao, Y.; Xue, X.L. Ground Behavior due to Dewatering Inside a Foundation Pit Considering the Barrier Effect of Preexisting Building Piles on Aquifer Flow. J. Geotech. Geoenviron. Eng. 2024, 150, 05024004. [Google Scholar] [CrossRef]
- Guo, P.; Gong, X.; Wang, Y. Displacement and force analyses of braced structure of deep excavation considering unsymmetrical surcharge effect. Comput. Geotech. 2019, 113, 103102. [Google Scholar] [CrossRef]
- Ren, D.; Kang, C.; Peng, T.; Li, Y.; Wang, J. Deformation Behavior of a Large-Scale Excavation and the Effect of an Adjacent Foundation Pit on the Excavation. Int. J. Civ. Eng. 2024, 22, 1493–1505. [Google Scholar] [CrossRef]
- Li, M.G.; Demeijer, O.; Chen, J.J. Effectiveness of servo struts in controlling excavation-induced wall deflection and ground settlement. Acta Geotech. 2020, 15, 2575–2590. [Google Scholar] [CrossRef]
- Di, H.; Jin, Y.; Zhou, S.; Zhang, X.; Wu, D.; Guo, H. Experimental study on the adjustments of servo steel struts in deep excavations. Acta Geotech. 2023, 18, 6615–6629. [Google Scholar] [CrossRef]
- Kelch, W.W.; Rodgers, M.B.; Rawlinson, T.A.; McVay, M.C.; Herrera, R.A.; Horhota, D.J. Mechanically Stabilized Earth Pressures against Unyielding Surfaces Using Inextensible Reinforcement. J. Geotech. Geoenviron. Eng. 2024, 150, 04024009. [Google Scholar] [CrossRef]
- Cui, J.; Yang, Z.; Azzam, R. Field Measurement and Numerical Study on the Effects of Under-Excavation and Over-Excavation on Ultra-Deep Foundation Pit in Coastal Area. J. Mar. Sci. Eng. 2023, 11, 219. [Google Scholar] [CrossRef]
- Wan, X.; Ding, J.; Jiao, N.; Sun, S.; Liu, J.; Guo, Q. Observed Performance of Long-Zoned Excavation with Suspended Waterproof Curtain in Yangtze River Floodplain. J. Perform. Constr. Facil. 2022, 36, 04022018. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Y.; Zhang, B.; Tian, L.; Zhang, G. Time Series Prediction on Settlement of Metro Tunnels Adjacent to Deep Foundation Pit by Clustering Monitoring Data. KSCE J. Civ. Eng. 2023, 27, 2180–2190. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, Y.; Lin, Y.; Tang, T.; Liu, X.; Liu, Y.; Chen, M.; Guo, J. Characteristics of Horizontal Frost Heave in Foundation Pits under Different Conditions and Anti–frost Heave Measures. J. Test. Eval. 2023, 51, 20220453. [Google Scholar] [CrossRef]
- Finno, R.J.; Arboleda-Monsalve, L.G.; Sarabia, F. Observed Performance of the One Museum Park West Excavation. J. Geotech. Geoenviron. Eng. 2015, 141, 04014078. [Google Scholar] [CrossRef]
- Finno, R.J.; Blackburn, J.T.; Roboski, J.F. Three-Dimensional Effects for Supported Excavations in Clay. J. Geotech. Geoenviron. Eng. 2007, 133, 30–36. [Google Scholar] [CrossRef]
- Finno, R.J.; Kim, S.; Lewis, J.; Van Winkle, N. Observed Performance of a Sheetpile-Supported Excavation in Chicago Clays. J. Geotech. Geoenviron. Eng. 2019, 145, 05018005. [Google Scholar] [CrossRef]
- Hashash, Y.M.; Levasseur, S.; Osouli, A.; Finno, R.; Malecot, Y. Comparison of Two Inverse Analysis Techniques for Learning Deep Excavation Response. Comput. Geotech. 2010, 37, 323–333. [Google Scholar] [CrossRef]
- Crispin, J.J.; Bateman, A.H.; Voyagaki, E.; Campbell, A.; Mylonakis, G.; Bolton, M.D.; Vardanega, P.J. MSD applied to the construction of the British Library basement: A multi-stage excavation in London Clay. Can. Geotech. J. 2024, 61, 596–603. [Google Scholar] [CrossRef]
- Boonyarak, T.; Aung, A.Y.; Kamchoom, V.; Aye, Z.Z. Diaphragm wall lateral movement in deep excavations in Bangkok clays: Impacts and influencing factors. Can. Geotech. J. 2024, 2024, Cgj-2024-0058. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, H.; Yan, J. Numerical Simulation of Steel Sheet Pile Support Structures in Foundation Pit Excavation. Int. J. Geomech. 2019, 19, 05019002. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Ni, P.; Zhao, C.; Guo, C.; Ma, H.; Dong, P.; Liang, H.; Tang, M. Model test and numerical simulation of a new prefabricated double-row piles retaining system in silty clay ground. Undergr. Space 2023, 13, 262–280. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, Z.; Wang, D. Deformation analysis and safety assessment of existing metro tunnels affected by excavation of a foundation pit. Undergr. Space 2021, 6, 421–431. [Google Scholar] [CrossRef]
- Xu, C.; Lin, Z.; Jiang, Y.; Shi, Y.; Fan, X.; Xiong, Z.; Liu, Y. Research on the spatial effect of foundation pit under asymmetric loads. Front. Mater. 2022, 9, 976696. [Google Scholar] [CrossRef]
- Li, B.; Lin, Z.; Chen, Y.; Xu, C.; Li, P.; Ding, H. Numerical analysis for supporting and deformation of complex foundation pit groups in unstable areas of karst strata. Front. Earth Sci. 2023, 11, 1283184. [Google Scholar] [CrossRef]
- Qi, Y.; Jia, F.; Li, W.; Shi, L.; Qin, X.; He, Y.; Li, S. Optimization and energy consumption analyses of the support system of a super large deep foundation pit in the Xi’an Metro. Environ. Earth Sci. 2024, 83, 140. [Google Scholar] [CrossRef]
- Pan, Y.; Qin, J.; Zhang, L.; Pan, W.; Chen, J. A probabilistic deep reinforcement learning approach for optimal monitoring of a building adjacent to deep excavation. Comput. Aided Civ. Eng. 2023, 39, 656–678. [Google Scholar] [CrossRef]
- Ding, H.; Wan, Q.; Xu, C.; Fan, X.; Tong, L. Semianalytical Method for Controlling the Deformation of Retaining Structures Subjected to Asymmetrical Loads. Int. J. Geomech. 2024, 24, 04024031. [Google Scholar] [CrossRef]
- Russo, G.; Nicotera, M.V.; Esposito, I. 3D FEM Back Analysis of the Observed Performance of a Very Deep Excavation in the Historical Center of Naples, Italy. J. Geotech. Geoenviron. Eng. 2024, 150, 04024010. [Google Scholar] [CrossRef]
- Abdi, A.S.; Ou, C.Y. A Study of the Failure Mechanism of Braced Excavations Using 3D Finite-Element Analysis. Int. J. Geomech. 2022, 22, 04022084. [Google Scholar] [CrossRef]
- Hsieh, P.G.; Ou, C.Y.; Hsieh, W.H. Efficiency of Excavations with Buttress Walls in Reducing the Deflection of the Diaphragm Wall. Acta Geotech. 2016, 11, 1087–1102. [Google Scholar] [CrossRef]
- Ou, C.Y.; Hsieh, P.G. A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Comput. Geotech. 2011, 38, 987–997. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, J.; Lu, L.; Wang, Y.; Wu, C.; Meng, Q. Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports. Undergr. Space 2024, 16, 314–330. [Google Scholar] [CrossRef]
- Krabbenhoft, K. Static and seismic earth pressure coefficients for vertical walls with horizontal backfill. Soil. Dyn. Earthq. Eng. 2018, 104, 403–407. [Google Scholar] [CrossRef]
- Zhang, W.S.; Yuan, Y.; Long, M.; Yao, R.H.; Jia, L.; Liu, M. Prediction of surface settlement around subway foundation pits based on spatiotemporal characteristics and deep learning models. Comput. Geotech. 2024, 168, 106149. [Google Scholar] [CrossRef]
- Ma, X.F.; Cao, M. Evaluation of deformation for two-dimensional (2D) and three-dimensional (3D) braced excavation in clays with centrifuge modelling and numerical analysis. Can. Geotech. J. 2024. [Google Scholar] [CrossRef]
Foundation Pit No. | Foundation Pit Excavation Depth | Forms of Foundation Pit Support |
---|---|---|
3A1 | 15 m | A total of three supports, the first support using concrete support, the second and third support using section steel support. |
3A2 | ||
3A3 | ||
3A4 | ||
3A1-1 | 9 m | A total of two supports, the first support using concrete support, the second using section steel support. |
3A2-1 | ||
3A3-1 | ||
3A4-1 | ||
3A5-1 | ||
3A5-2 | ||
3A6 | ||
3A7 | ||
3A5 | 18 m | A total of four supports, the first support using concrete support, the second, third and fourth support using section steel support. |
3A8 | 18 m | Total of three braces, all concrete braced. |
3A9 | ||
3A10-1 | ||
3A10-2 |
Layer of Soil | Thicknesses | γ | c | φ | E |
---|---|---|---|---|---|
(m) | (kN/m3) | (kPa) | (°) | (MPa) | |
Miscellaneous fillings | 2 | 17.5 | 8.0 | 10.0 | 4 |
Sandy chalky soil | 3 | 18.9 | 6.3 | 32.6 | 8 |
Silt sand | 6 | 19.5 | 3.7 | 36.6 | 14 |
Chalky sand with sandy silt | 5 | 19.1 | 4.8 | 34.6 | 12 |
Sandy chalky soil | 4 | 18.9 | 6.3 | 32.6 | 8 |
Silty clay | 11 | 18.7 | 9.1 | 27.4 | 6 |
Fine sand | 7 | 20.1 | 2.3 | 40.0 | 18 |
Boulder | 6 | 20.0 | 3.0 | 40.0 | 30 |
Cobble | 8 | 20.0 | 3.0 | 42.0 | 35 |
Strongly weathered rock | 3 | 22.0 | 35.0 | 25.0 | 38 |
Medium-weathered rock | 25 | 24.0 | 200.0 | 32.0 | 50 |
Construction Number | Foundation Pit No. | Construction Step |
---|---|---|
Condition 1 | Ground stress equilibrium | |
Load application and construction of diaphragm walls | ||
Condition 2 | 3A10-1 | Excavate to −5 m |
Erection support 1 | ||
Excavate to −11 m | ||
Erection support 2 | ||
Excavate to −16 m | ||
Erection support 3 | ||
Excavate to −18 m | ||
Condition 3 | 3A5/3A8/3A10-2 | Foundation pit 3A5 excavated to −3 m, foundation pit 3A8 and 3A10-2 excavated to −5 m |
Erection support 1 | ||
Foundation pit 3A5 excavated to −7 m, foundation pit 3A8 and 3A10-2 excavated to −11 m | ||
Erection support 2 | ||
Foundation pit 3A5 excavated to −11 m, foundation pit 3A8 and 3A10-2 excavated to −16 m | ||
Erection support 3 | ||
Foundation pit 3A5 excavated to −16 m, foundation pit 3A8 and 3A10-2 excavated to −18 m | ||
Foundation pit 3A5 erection support 4 | ||
Foundation pit 3A5 excavated to −18 m | ||
Condition 4 | 3A5-1/3A5-2/3A7/3A9 | Foundation pit 3A9 excavated to −5 m, foundation pit 3A5-1, 3A5-2 and 3A7 excavated to −3 m |
Erection support 1 | ||
Foundation pit 3A9 excavated to −11 m, foundation pit 3A5-1, 3A5-2 and 3A7 excavated to −6 m | ||
Erection support 2 | ||
Foundation pit 3A9 excavated to −16 m, foundation pit 3A5-1, 3A5-2 and 3A7 excavated to −9 m | ||
Foundation pit 3A9 erection support 3 | ||
Foundation pit 3A9 excavated to −18 m | ||
Condition 5 | 3A1-1/3A2/3A3-1/3A4/3A6 | Excavate to −3 m |
Erection support 1 | ||
Foundation pit 3A2 and 3A4 excavated to −7 m, foundation pit 3A1-1, 3A3-1 and 3A6 excavated to −6 m | ||
Erection support 2 | ||
Foundation pit 3A2 and 3A4 excavated to −11 m, foundation pit 3A1-1, 3A3-1 and 3A6 excavated to −9 m | ||
Foundation pit 3A2 and 3A4 erection support 3 | ||
Foundation pit 3A2 and 3A4 excavated to −15 m | ||
Condition 6 | 3A1/3A3/3A2-1/3A4-1 | Excavate to −3 m |
Erection support 1 | ||
Excavate to −7 m | ||
Erection support 2 | ||
Excavate to −11 m | ||
Erection support 3 | ||
Excavate to −16 m |
Pit Number | Monitoring Point | Monitoring Maximum | Numerical Maximum | Percentage Error |
---|---|---|---|---|
mm | mm | % | ||
3A10-1 | ZQT5 | 24.7 | 14.6 | 69.2 |
ZQT7 | 40.9 | 38.5 | 6.2 | |
ZQT9 | 51.8 | 51.7 | 0.2 | |
ZQT11 | 22.5 | 24.3 | 8.0 | |
ZQT21 | 17.7 | 20.9 | 18.1 | |
ZQT22 | 22.2 | 22.3 | 0.5 | |
ZQT24 | 22.5 | 19.9 | 13.0 | |
ZQT25 | 21.8 | 18.0 | 21.1 | |
3A10-2 | ZQT31 | 12.9 | 11.4 | 13.2 |
ZQT33 | 11.7 | 9.0 | 30.0 | |
ZQT35 | 16.7 | 10.7 | 56.1 | |
ZQT38 | 14.9 | 10.7 | 39.3 | |
ZQT39 | 12.1 | 13.4 | 10.7 | |
ZQT41 | 10.8 | 10.3 | 4.9 | |
ZQT43 | 13.2 | 10.9 | 21.1 | |
3A5 | ZQT27 | 10.2 | 9.0 | 13.3 |
ZQT28 | 18.5 | 17.7 | 4.5 | |
ZQT29 | 10.2 | 7.4 | 37.8 | |
ZQT53 | 11.2 | 13.8 | 23.2 | |
3A8 | ZQT3 | 20.0 | 15.8 | 26.5 |
ZQT19 | 11.9 | 10.6 | 12.2 | |
ZQT52 | 17.7 | 18.7 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Lin, Z.; Zhao, Y.; Xu, C.; Sun, F.; Duan, Y.; Fang, T. Force and Deformation Characteristics of Large-Scale Zoning Excavation in Soft Soil: A Case Study in Hangzhou. Appl. Sci. 2024, 14, 6358. https://doi.org/10.3390/app14146358
Lin G, Lin Z, Zhao Y, Xu C, Sun F, Duan Y, Fang T. Force and Deformation Characteristics of Large-Scale Zoning Excavation in Soft Soil: A Case Study in Hangzhou. Applied Sciences. 2024; 14(14):6358. https://doi.org/10.3390/app14146358
Chicago/Turabian StyleLin, Gang, Zhaorui Lin, Yi Zhao, Changjie Xu, Feng Sun, Yun Duan, and Tao Fang. 2024. "Force and Deformation Characteristics of Large-Scale Zoning Excavation in Soft Soil: A Case Study in Hangzhou" Applied Sciences 14, no. 14: 6358. https://doi.org/10.3390/app14146358
APA StyleLin, G., Lin, Z., Zhao, Y., Xu, C., Sun, F., Duan, Y., & Fang, T. (2024). Force and Deformation Characteristics of Large-Scale Zoning Excavation in Soft Soil: A Case Study in Hangzhou. Applied Sciences, 14(14), 6358. https://doi.org/10.3390/app14146358