Development of Novel Nomograms to Predict 5- and 7-Year Biochemical-Recurrence-Free Survival in High-Risk Prostate Cancer Patients After Carbon-Ion Radiotherapy and Androgen Deprivation Therapy
<p>Kaplan–Meier curves for BCR-free survival according to each clinical variable. BCR: biochemical recurrence, PSA: prostate-specific antigen, %PC: percentage of biopsy positive cores.</p> "> Figure 2
<p>Nomograms predicting BCR-free survival after CIRT with ADT. Directions: A line was drawn upwards to the number of points in each category. The points were summed, and then a line of total points was drawn downwards to determine the probability on the bottom line. ADT: androgen deprivation therapy, BCR: biochemical recurrence, CIRT: carbon-ion radiotherapy, PSA: prostate-specific antigen.</p> "> Figure 3
<p>Kaplan–Meier survival curves stratified by risk group, defined by calculated cut-off values. BCR: biochemical recurrence.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CIRT
2.3. ADT
2.4. Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Corso, R.; Benfante, V.; Ali, M.; Laudicella, R.; Alongi, P.; D’Aviero, A.; Cusumano, D.; Boldrini, L.; Salvaggio, G.; et al. Artificial intelligence and statistical models for the prediction of radiotherapy toxicity in prostate cancer: A systematic review. Appl. Sci. 2024, 14, 10947. [Google Scholar] [CrossRef]
- Onal, C.; Guler, C.O.; Erbay, G.; Elmali, A. The effect of dose-escalation radiotherapy with simultaneous-integrated-boost on the use of short-term androgen deprivation therapy in patients with intermediate risk prostate cancer. Prostate 2024, 84, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Teoh, J.Y.C.; Hirai, H.W.; Ho, J.M.W.; Chan, F.C.H.; Tsoi, K.K.F.; Ng, C.F. Global incidence of prostate cancer in developing and developed countries with changing age structures. PLoS ONE 2019, 14, e0221775. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Barocas, D.; Bitting, R.; Bryce, A.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; et al. Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 1067–1096. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, Z.H.; Peng, M.; Huang, Z.C.; Yi, L.; Li, Y.J.; Yi, L.; Luo, W.Z.; Chen, J.W.; Wang, Y.H. The role of radical prostatectomy and definitive external beam radiotherapy in combined treatment for high-risk prostate cancer: A systematic review and meta-analysis. Asian J. Androl. 2020, 22, 383–389. [Google Scholar] [PubMed]
- Wang, Z.; Ni, Y.; Chen, J.; Sun, G.; Zhang, X.; Zhao, J.; Zhu, X.; Zhang, H.; Zhu, S.; Dai, J.; et al. The efficacy and safety of radical prostatectomy and radiotherapy in high-risk prostate cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2020, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Nagao, K.; Matsuyama, H.; Matsumoto, H.; Nagao, K.; Matsuyama, H.; Matsumoto, H.; Nasu, T.; Yamamoto, M.; Kamiryo, Y.; Baba, Y.; et al. Identification of curable high-risk prostate cancer using radical prostatectomy alone: Who are the good candidates for undergoing radical prostatectomy among patients with high-risk prostate cancer? Int. J. Clin. Oncol. 2018, 23, 757–764. [Google Scholar] [CrossRef]
- Karsh, L.; Du, S.; He, J.; Waters, D.; Muser, E.; Shore, N. Differences in real-world outcomes by risk classification for localized prostate cancer patients after radiation therapy. Prostate 2024, 84, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- Ishikawa, H.; Tsuji, H.; Kamada, T.; Akakura, K.; Suzuki, H.; Shimazaki, J.; Tsujii, H.; Working Group for Genitourinary Tumors. Carbon-ion radiation therapy for prostate cancer. Int. J. Urol. 2012, 19, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, T.; Suzuki, H.; Ishikawa, H.; Hiroshima, Y.; Wakatsuki, M.; Harada, M.; Ichikawa, T.; Akakura, K.; Tsuji, H. External validation of the Candiolo nomogram for high-risk prostate cancer patients treated with carbon ion radiotherapy plus androgen deprivation therapy: A retrospective cohort study. Jpn. J. Clin. Oncol. 2022, 52, 950. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, G.; Ishikawa, H.; Tsuji, H.; Haruyama, Y.; Kobashi, G.; Ebner, D.K.; Akakura, K.; Suzuki, H.; Ichikawa, T.; Shimazaki, J.; et al. Cancer-specific mortality of high-risk prostate cancer after carbon-ion radiotherapy plus long-term androgen deprivation therapy. Cancer Sci. 2017, 108, 2422–2429. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Kubo, N.; Sato, H.; Miyasaka, Y.; Matsui, H.; Ito, K.; Suzuki, K.; Ohno, T. Quality of life in prostate cancer patients receiving particle radiotherapy: A review of the literature. Int. J. Urol. 2020, 27, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, Y.; Nakayama, H.; Kawamura, H.; Miyasaka, Y.; Onishi, M.; Kaminuma, T.; Sekine, Y.; Matsui, H.; Ohno, T.; Suzuki, K. Analysis of urinary function and prostate volume changes in localized prostate cancer patients treated with carbon-ion radiotherapy; a prospective study. Radiat. Oncol. 2024, 19, 165. [Google Scholar] [CrossRef] [PubMed]
- Tsubouchi, T.; Shiomi, H.; Suzuki, O.; Hamatani, N.; Takashina, M.; Yagi, M.; Wakisaka, Y.; Ogawa, A.; Terasawa, A.; Akino, Y.; et al. Assessing the robustness of dose distributions in carbon ion prostate radiotherapy using a fast dose evaluation system. J. Appl. Clin. Med. Phys. 2024, 22, e14528. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Zhang, L.T.; Keeley, J.; Butaney, M.; Stricker, M.; Andrews, J.R.; Grauer, R.; Peabody, J.O.; Rogers, C.G.; Menon, M.; et al. Optimizing anti-androgen treatment use among men with pathologic lymph-node positive prostate cancer treated with radical prostatectomy: The importance of postoperative PSA kinetics. Prostate Cancer Prostatic Dis. 2024, 27, 58–64. [Google Scholar] [CrossRef]
- Milonas, D.; Venclovas, Z.; Sasnauskas, G.; Ruzgas, T. Th significance of prostate specific antigen persistence in prostate cancer risk groups on long-term oncological outcomes. Cancers 2021, 13, 2453. [Google Scholar] [CrossRef]
- Moris, L.; Cumberbatch, M.G.; Van den Broeck, T.; Gandaglia, G.; Fossati, N.; Kelly, B.; Pal, R.; Briers, E.; Cornford, P.; De Santis, M.; et al. Benefits and risks of primary treatments for high-risk localized and locally advanced prostate cancer: An international multidisciplinary systematic review. Eur. Urol. 2020, 77, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, D.; Jereczek-Fossa, B.A.; Krengli, M.; Garibaldi, E.; Tessa, M.; Moro, G.; Girelli, G.; Gabriele, P. Beyond D’Amico risk classes for predicting recurrence after external beam radiotherapy for prostate cancer: The Candiolo classifier. Radiat. Oncol. 2016, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, D.; Guarneri, A.; Bartoncini, S.; Munoz, F.; Tamponi, M.; Russo, F.; Stamatakos, G.; Guiot, C.; Regge, D.; Ricardi, U. An external validation of the Candiolo nomogram in a cohort of prostate cancer patients treated by external-beam radiotherapy. Radiat. Oncol. 2021, 16, 85. [Google Scholar] [CrossRef]
- Gabriele, D.; Garibaldi, M.; Girelli, G.; Taraglio, S.; Duregon, E.; Gabriele, P.; Guiot, C.; Bollito, E. Percentage of positive prostate biopsies independently predicts biochemical outcome following radiation therapy for prostate cancer. Panminerva Med. 2016, 58, 109–114. [Google Scholar]
- Brierley, J.D.; Gospodarowics, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell Inc.: New York, NY, USA, 2017. [Google Scholar]
- Roach, M., III; Hanks, G.; Thames, H., Jr.; Schellhammer, P.; Shipley, W.U.; Sokol, G.H.; Sandler, H. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 965–974. [Google Scholar] [CrossRef]
- Heagerty, P.J.; Zheng, Y. Survival model predictive accuracy and ROC curves. Biometrics 2005, 61, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, T.; Kamiya, N.; Kaga, M.; Endo, T.; Yano, M.; Kamijima, S.; Kawamura, K.; Imamoto, T.; Ichikawa, T.; Suzuki, H. Development of novel nomograms to predict renal functional outcomes after laparoscopic adrenalectomy in patients with primary aldosteronism. World J. Urol. 2017, 35, 1577. [Google Scholar] [CrossRef] [PubMed]
- Dess, R.T.; Suresh, K.; Zelefsky, M.J.; Freedland, S.J.; Mahal, B.A.; Cooperberg, M.R.; Davis, B.J.; Horwitz, E.M.; Terris, M.K.; Amling, C.L.; et al. Development and validation of a clinical prognostic stage group system for nonmetastatic prostate cancer using disease-specific mortality results from the international staging collaboration for cancer of the prostate. JAMA Oncol. 2020, 6, 1912–1920. [Google Scholar] [CrossRef]
- Dariane, C.; Taussky, D.; Delouya, G.; Wenzel, M.; Karakiewicz, P.; Saad, F.; Würnschimmel, C. Validation of the new STAR-CAP prognostic group staging system in prostate cancer patients treated with radiation therapy. World J. Urol. 2021, 39, 4127–4133. [Google Scholar] [CrossRef]
- Hamstra, D.A.; Bae, K.; Pilepich, M.V.; Hanks, G.E.; Grignon, D.J.; McGowan, D.G.; Roach, M.; Lawton, C.; Lee, R.J.; Sandler, H. Older age predicts decreased metastasis and prostate cancer-specific death for men treated with radiation therapy: Meta-analysis of radiation therapy oncology group trials. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1293–1301. [Google Scholar] [CrossRef]
- Epstein, J.I. Prognostic significance of tumor volume in radical prostatectomy and needle biopsy specimens. J. Urol. 2011, 186, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Briganti, A.; Karakiewicz, P.I.; Chun, F.K.-H.; Gallina, A.; Salonia, A.; Zanni, G.; Valiquette, L.; Graefen, M.; Huland, H.; Rigatti, P.; et al. Percentage of positive biopsy cores can improve the ability to predict lymph node invasion in patients undergoing radical prostatectomy and extended pelvic lymph node dissection. Eur. Urol. 2007, 51, 1573–1581. [Google Scholar] [CrossRef]
- Pietrzak, S.; Marciniak, W.; Derkacz, R.; Matuszczak, M.; Kiljańczyk, A.; Baszuk, P.; Bryśkiewicz, M.; Sikorski, A.; Gronwald, J.; Słojewski, M.; et al. Correlation between selenium and zinc levels and survival among prostate cancer patients. Nutrients 2024, 16, 527. [Google Scholar] [CrossRef] [PubMed]
- Matuszczak, M.; Salagierski, M. Oligometastatic Disease in Prostate Cancer. Evolving paradigm: Current knowledge, diagnostic techniques and treatment strategies. Arch. Med. Sci. 2025; in press. [Google Scholar]
Variables | N = 785 |
---|---|
Age (year) Median (IQR) | 69.0 (64.0, 73.0) |
PSA (ng/mL) Median (IQR) | 14.4 (7.7, 26.4) |
cT stage | cT1: 131(16.7%), cT2: 298 (38.0%), cT3a: 278 (35.4%), cT3b: 78 (9.9%) |
Gleason Score | GS6: 39 (5.0%), GS7: 245 (31.2%), GS8: 187 (23.8%), GS9: 311 (39.6%), GS10: 3 (0.4%) |
Positive core (%) Median (IQR) | 40.0 (25.0, 58.3) |
Duration of ADT (Months) Median (IQR) | 25.0 (23.7, 27.9) |
Dose of CIRT | 66.0 Gy (RBE)/20 fractions: 91 (11.6%), 63.0 Gy (RBE)/20 fractions: 98 (12.5%), 57.6 Gy (RBE)/16 fractions: 301 (38.3%), 51.6 Gy (RBE)/12 fractions: 295 (37.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utsumi, T.; Suzuki, H.; Wakatsuki, M.; Kobayashi, K.; Okato, A.; Nakajima, M.; Aoki, S.; Sumiya, T.; Ichikawa, T.; Akakura, K.; et al. Development of Novel Nomograms to Predict 5- and 7-Year Biochemical-Recurrence-Free Survival in High-Risk Prostate Cancer Patients After Carbon-Ion Radiotherapy and Androgen Deprivation Therapy. Appl. Sci. 2025, 15, 804. https://doi.org/10.3390/app15020804
Utsumi T, Suzuki H, Wakatsuki M, Kobayashi K, Okato A, Nakajima M, Aoki S, Sumiya T, Ichikawa T, Akakura K, et al. Development of Novel Nomograms to Predict 5- and 7-Year Biochemical-Recurrence-Free Survival in High-Risk Prostate Cancer Patients After Carbon-Ion Radiotherapy and Androgen Deprivation Therapy. Applied Sciences. 2025; 15(2):804. https://doi.org/10.3390/app15020804
Chicago/Turabian StyleUtsumi, Takanobu, Hiroyoshi Suzuki, Masaru Wakatsuki, Kana Kobayashi, Atsushi Okato, Mio Nakajima, Shuri Aoki, Taisuke Sumiya, Tomohiko Ichikawa, Koichiro Akakura, and et al. 2025. "Development of Novel Nomograms to Predict 5- and 7-Year Biochemical-Recurrence-Free Survival in High-Risk Prostate Cancer Patients After Carbon-Ion Radiotherapy and Androgen Deprivation Therapy" Applied Sciences 15, no. 2: 804. https://doi.org/10.3390/app15020804
APA StyleUtsumi, T., Suzuki, H., Wakatsuki, M., Kobayashi, K., Okato, A., Nakajima, M., Aoki, S., Sumiya, T., Ichikawa, T., Akakura, K., Tsuji, H., Yamada, S., & Ishikawa, H. (2025). Development of Novel Nomograms to Predict 5- and 7-Year Biochemical-Recurrence-Free Survival in High-Risk Prostate Cancer Patients After Carbon-Ion Radiotherapy and Androgen Deprivation Therapy. Applied Sciences, 15(2), 804. https://doi.org/10.3390/app15020804