Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic
<p>Geographical location of sampling sites on Ossian Sarsfjellet, Svalbard. (<b>A</b>)—The red arrow indicates the location of Ossian Sarsfjellet and the red star indicates the location of the weather station in Ny-Ålesund in the Kongsfjorden area. (<b>B</b>)—The red circles indicate the sampling sites. Maps based on TopoSvalbard, courtesy of the Norwegian Polar Institute.</p> "> Figure 2
<p>Temperature data from 13 July 2023 to 4 August 2023 at the three different measurement points across the four sites. T1 = measured 6 cm below the soil surface; T2 = measured at the soil surface; T3 = measured 15 cm above the soil surface; measured every 15 min; measured with TOMST<sup>®</sup> data loggers.</p> "> Figure 3
<p>Soil moisture data from 13 July 2023 to 20 August 2023 across the sites. Measured every 15 min; measured with TOMST<sup>®</sup> data loggers; significant differences observed between all four sites; <span class="html-italic">p</span>-value < 0.05. Data used for statistical analysis are from 13 July 2023 to 4 August 2023 only.</p> "> Figure 4
<p>Non-Metric Multidimensional Scaling (NMDS) plot based on the vegetation analysis conducted at the sites. T1 = temperature measured 6 cm below the soil surface; T2 = temperature measured at the soil surface; T3 = temperature measured 15 cm above the soil surface; C.N = carbon to nitrogen ratio; parameters which did not show significant differences between the sites are not included, <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 5
<p>Overall community composition across sites. Metagenomic 16/18 S rRNA dataset analysed using Silva software; taxonomic groups with total abundance below the 0.5% threshold are grouped as ‘low abundance’; * indicates significant differences between sites based on a one-way ANOVA, <span class="html-italic">p</span>-value * < 0.05, ** < 0.01).</p> "> Figure 6
<p>Relative abundance of fungal taxa and fungal functional guilds across sites. Metagenomic 16/18S rRNA dataset analysed using Silva software. (<b>A</b>)—fungal phyla. (<b>B</b>)—functional guilds; * indicates significant differences between sites based on a one-way ANOVA, <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 7
<p>Relative abundance of photoautotrophic taxa across sites. Metagenomic 16/18S rRNA dataset analysed using Silva software; no significant differences were observed between the taxa, based on a one-way ANOVA, <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 8
<p>Relative abundance of cyanobacterial orders across sites. Metagenomic 16 S rRNA dataset analysed using Silva software; filamentous orders shown in orange/red; heterocystous order shown in green; unicellular orders shown in blue; * indicates significant differences between sites based on a one-way ANOVA, <span class="html-italic">p</span>-value < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
2.2. Vegetation Analysis
2.3. Soil Analysis
2.4. DNA Isolation and Sequencing
2.5. Bioinformatic and Statistical Analyses
2.6. Calculation of the Average Dew Point
3. Results
3.1. Environmental Parameters
3.2. Vegetation at the Sites
3.3. Sequencing Overview
3.4. Metagenomic Profile of the Biocrusts
4. Discussion
4.1. Environmental Conditions
4.2. Vegetation Reacts to Increased Altitude
4.3. Microbial Community Composition in Arctic Biocrusts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pushkareva, E.; Elster, J.; Holzinger, A.; Niedzwiedz, S.; Becker, B. Biocrusts from Iceland and Svalbard: Does microbial community composition differ substantially? Front. Microbiol. 2022, 13, 1048522. [Google Scholar] [CrossRef] [PubMed]
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2003; Volume 150. [Google Scholar]
- Weber, B.; Belnap, J.; Büdel, B.; Antoninka, A.J.; Barger, N.N.; Chaudhary, V.B.; Darrouzet-Nardi, A.; Eldridge, D.J.; Faist, A.M.; Ferrenberg, S.; et al. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol. Rev. 2022, 97, 1768–1785. [Google Scholar] [CrossRef]
- Rippin, M.; Lange, S.; Sausen, N.; Becker, B. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol. Ecol. 2018, 94, fiy036. [Google Scholar] [CrossRef]
- Weber, B.; Büdel, B.; Belnap, J. Biological Soil Crusts: An Organizing Principle in Drylands; Springer International Publishing: Cham, Switzerland, 2016; Volume 226. [Google Scholar]
- Malard, L.A.; Pearce, D.A. Microbial diversity and biogeography in Arctic soils. Environ. Microbiol. Rep. 2018, 10, 611–625. [Google Scholar] [CrossRef]
- Zielke, M.; Ekker, A.S.; Olsen, R.A.; Spjelkavik, S.; Solheim, B. The Influence of Abiotic Factors on Biological Nitrogen Fixation in Different Types of Vegetation in the High Arctic, Svalbard. Arct. Antarct. Alp. Res. 2002, 34, 293–299. [Google Scholar] [CrossRef]
- Muggia, L.; Nelsen, M.P.; Kirika, P.M.; Barreno, E.; Beck, A.; Lindgren, H.; Lumbsch, H.T.; Leavitt, S.D. Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): An impetus for developing an integrated taxonomy. Mol. Phylogenetics Evol. 2020, 149, 106821. [Google Scholar] [CrossRef] [PubMed]
- Liengen, T.; Olsen, R.A. Seasonal and site-specific variations in nitrogen fixation in a high arctic area, Ny-Ålesund, Spitsbergen. Can. J. Microbiol. 1997, 43, 759–769. [Google Scholar] [CrossRef]
- Norwegian Meteorological Institute and NRK. Today’s Weather Forecast for Your Location. Available online: https://www.yr.no/en (accessed on 16 August 2024).
- Uni of Lapland. Arctic Region. Available online: https://www.arcticcentre.org/EN/arcticregion (accessed on 16 August 2024).
- Norwegian Polar Institute. Norsk Polarinstitutt. Available online: https://www.npolar.no/ (accessed on 16 August 2024).
- Kern, R.; Hotter, V.; Frossard, A.; Albrecht, M.; Baum, C.; Tytgat, B.; de Maeyer, L.; Velazquez, D.; Seppey, C.; Frey, B.; et al. Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biol. 2019, 42, 2131–2145. [Google Scholar] [CrossRef]
- DIN EN ISO 10390:2022-08; Boden, Behandelter Bioabfall und Schlamm_Bestimmung des pH-Werts. Deutsche Fassung EN_ISO_10390:2022; DIN Media GmbH: Berlin, Germany, 2022.
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kopylova, E.; Noé, L.; Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Wagner, H. Vegan: Community Ecology Package; World Agroforestry: Nairobi, Kenya, 2015. [Google Scholar]
- Kotas, P.; Šantrůčková, H.; Elster, J.; Kaštovská, E. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences 2018, 15, 1879–1894. [Google Scholar] [CrossRef]
- James. Is Soil Temperature Warmer Than Air? SoilThermometer.com. 26 March 2023. Available online: https://soilthermometer.com/is-soil-temperature-warmer-than-air/ (accessed on 12 September 2024).
- Molnar, P. Differences between soil and air temperatures: Implications for geological reconstructions of past climate. Geosphere 2022, 18, 800–824. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, M.; Jin, H.; Ren, Y. Spatiotemporal variation characteristics of hourly soil temperature in different layers in the low-latitude plateau of China. Front. Environ. Sci. 2022, 10, 1091985. [Google Scholar] [CrossRef]
- Yan, J.; Tong, M.; Liu, J.; Li, J.; Li, H. Temperature and moisture sensitivities of soil respiration vary along elevation gradients: An analysis from long-term field observations. Sci. Total. Environ. 2024, 912, 169150. [Google Scholar] [CrossRef] [PubMed]
- Pellet, C.; Hauck, C. Monitoring soil moisture from middle to high elevation in Switzerland: Set-up and first results from the SOMOMOUNT network. Hydrol. Earth Syst. Sci. 2017, 21, 3199–3220. [Google Scholar] [CrossRef]
- Mangral, Z.A.; Islam, S.U.; Tariq, L.; Kaur, S.; Ahmad, R.; Malik, A.H.; Goel, S.; Baishya, R.; Barik, S.K.; Dar, T.U.H. Altitudinal gradient drives significant changes in soil physico-chemical and eco-physiological properties of Rhododendron anthopogon: A case study from Himalaya. Front. For. Glob. Chang. 2023, 6, 1181299. [Google Scholar] [CrossRef]
- Agam, N.; Berliner, P.R. Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid. Environ. 2006, 65, 572–590. [Google Scholar] [CrossRef]
- Pushkareva, E.; Pessi, I.S.; Wilmotte, A.; Elster, J. Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol. Ecol. 2015, 91, fiv143. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, J.; Sun, Q.; Li, Z.; Hou, L.; Song, L.; Tang, G.; Li, L.; Shao, G. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. CATENA 2021, 196, 104872. [Google Scholar] [CrossRef]
- Göransson, H.; Edwards, P.J.; Perreijn, K.; Smittenberg, R.H.; Olde Venterink, H. Rocks create nitrogen hotspots and N:P heterogeneity by funnelling rain. Biogeochemistry 2014, 121, 329–338. [Google Scholar] [CrossRef]
- Amelung, W.; Blume, H.-P.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 17th ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018; ISBN 9783662558713. [Google Scholar]
- Lee, Y.K. Arctic Plants of Svalbard: What We Learn from the Green in the Treeless White World; Springer International Publishing AG: Cham, Switzerland, 2020; ISBN 9783030345600. [Google Scholar]
- Svalbardflora. Svalbard Flora. Available online: https://svalbardflora.no/ (accessed on 23 November 2024).
- Rønning, O.I. The Flora of Svalbard; Norsk Polarinstitutt: Oslo, Norway, 1996; ISBN 8276661009. [Google Scholar]
- Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies; Lütz, C. (Ed.) Springer: Vienna, Austria, 2012; ISBN 9783709101360. [Google Scholar]
- Gehrke, B.; Kandziora, M.; Pirie, M.D. The evolution of dwarf shrubs in alpine environments: A case study of Alchemilla in Africa. Ann. Bot. 2016, 117, 121–131. [Google Scholar] [CrossRef]
- Prestø, T.; Lüth, M.; Hassel, K. Bryophytes of the Longyearbyen Area; Svalbards Miljøvernfond: Longyearbyen, Norway, 2014. [Google Scholar]
- Diederich, P.; Lawrey, J.D.; Ertz, D. The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. Bryologist 2018, 121, 340. [Google Scholar] [CrossRef]
- Duran-Nebreda, S.; Valverde, S. Composition, structure and robustness of Lichen guilds. Sci. Rep. 2023, 13, 3295. [Google Scholar] [CrossRef]
- Pushkareva, E.; Elster, J.; Kudoh, S.; Imura, S.; Becker, B. Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front. Microbiol. 2023, 14, 1323148. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Pang, J.; Bu, C.; Wu, S.; Bai, H.; Li, Y.; Guo, Q.; Siddique, K.H.M. The Microbiomes in Lichen and Moss Biocrust Contribute Differently to Carbon and Nitrogen Cycles in Arid Ecosystems. Microb. Ecol. 2023, 86, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Thüs, H.; Muggia, L.; Pérez-Ortega, S.; Favero-Longo, S.E.; Joneson, S.; O’Brien, H.; Nelsen, M.P.; Duque-Thüs, R.; Grube, M.; Friedl, T.; et al. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur. J. Phycol. 2011, 46, 399–415. [Google Scholar] [CrossRef]
- He, Z.; Naganuma, T.; Faluaburu, M.S.; Nakai, R.; Kanda, H.; Uchida, M.; Imura, S.; Hahn, M.W. Bacterial phylotypes associated with rock-dwelling Umbilicaria Lichens from Arctic/Subarctic areas in North America and Northern Europe. Polar Biol. 2024, 47, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, R.; Wang, D.; Qian, B.; Bian, Z.; Wei, J.; Wei, X.; Xu, J.-R. Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii. Nat. Commun. 2023, 14, 6972. [Google Scholar] [CrossRef] [PubMed]
- Mugnai, G.; Rossi, F.; Mascalchi, C.; Ventura, S.; de Philippis, R. High Arctic biocrusts: Characterization of the exopolysaccharidic matrix. Polar Biol. 2020, 43, 1805–1815. [Google Scholar] [CrossRef]
- Williams, L.; Loewen-Schneider, K.; Maier, S.; Büdel, B. Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol. Ecol. 2016, 92, fiw157. [Google Scholar] [CrossRef] [PubMed]
- Pushkareva, E.; Johansen, J.R.; Elster, J. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol. 2016, 39, 2227–2240. [Google Scholar] [CrossRef]
- Pushkareva, E.; Hejduková, E.; Elster, J.; Becker, B. Microbial response to seasonal variation in arctic biocrusts with a focus on fungi and cyanobacteria. Environ. Res. 2024, 263, 120110. [Google Scholar] [CrossRef]
- Janatková, K.; Reháková, K.; Doležal, J.; Simek, M.; Chlumská, Z.; Dvorský, M.; Kopecký, M. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ. Microbiol. 2013, 15, 2505–2516. [Google Scholar] [CrossRef] [PubMed]
- Pushkareva, E.; Elster, J. Biodiversity and ecological classification of cryptogamic soil crusts in the vicinity of Petunia Bay, Svalbard. Czech Polar Rep. 2013, 3, 7–18. [Google Scholar] [CrossRef]
- Jung, P.; Brust, K.; Schultz, M.; Büdel, B.; Donner, A.; Lakatos, M. Opening the Gap: Rare Lichens with Rare Cyanobionts—Unexpected Cyanobiont Diversity in Cyanobacterial Lichens of the Order Lichinales. Front. Microbiol. 2021, 12, 728378. [Google Scholar] [CrossRef] [PubMed]
- Llamas, A.; Leon-Miranda, E.; Tejada-Jimenez, M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. Plants 2023, 12, 2476. [Google Scholar] [CrossRef] [PubMed]
- Colica, G.; Li, H.; Rossi, F.; de Philippis, R.; Liu, Y. Differentiation of the characteristics of excreted extracellular polysaccharides reveals the heterogeneous primary succession of induced biological soil crusts. J. Appl. Phycol. 2015, 27, 1935–1944. [Google Scholar] [CrossRef]
- Tian, Q.; Jiang, Y.; Tang, Y.; Wu, Y.; Tang, Z.; Liu, F. Soil pH and Organic Carbon Properties Drive Soil Bacterial Communities in Surface and Deep Layers Along an Elevational Gradient. Front. Microbiol. 2021, 12, 646124. [Google Scholar] [CrossRef]
- Männistö, M.K.; Tiirola, M.; Häggblom, M.M. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol. Ecol. 2007, 59, 452–465. [Google Scholar] [CrossRef] [PubMed]
Scale | Coverage | Numeric Conversion for Statistical Purposes |
---|---|---|
5 | >75% of surface | Did not occur |
4 | 51–75% of surface | Did not occur |
3 | 26–50% of surface | 50 |
2 | 5–25% of surface | 25 |
1 | <5% of surface, but many individuals | 10 |
+ | <5% of surface, but few individuals | 5 |
r | rare | 1 |
Site | GPS | Elevation a.s.l. [m] | pH | TP, [g/kg] | TN, [g/kg] | TC, [g/kg] | C/N | Chl a, [mg/m2] | Fv/Fm |
---|---|---|---|---|---|---|---|---|---|
1 | 78.94935° N 12.48538° E | 101 | 6.26 a | 0.42 a | 4.67 ab | 73.30 a | 15.77 ab | 183.88 a | 0.343 a |
2 | 78.94562° N 12.48588° E | 186 | 7.28 b | 0.39 a | 5.53 a | 76.33 a | 13.79 a | 151.39 a | 0.305 a |
3 | 78.94352° N 12.48400° E | 238 | 6.13 a | 0.27 a | 3.40 b | 64.80 a | 18.66 b | 137.33 a | 0.353 a |
4 | 78.94226° N 12.47245° E | 314 | 7.13 b | 0.37 a | 5.97 a | 99.60 a | 16.61 ab | 215.57 a | 0.344 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mas Martinez, I.; Pushkareva, E.; Keilholz, L.A.; Linne von Berg, K.-H.; Karsten, U.; Kammann, S.; Becker, B. Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms 2024, 12, 2606. https://doi.org/10.3390/microorganisms12122606
Mas Martinez I, Pushkareva E, Keilholz LA, Linne von Berg K-H, Karsten U, Kammann S, Becker B. Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms. 2024; 12(12):2606. https://doi.org/10.3390/microorganisms12122606
Chicago/Turabian StyleMas Martinez, Isabel, Ekaterina Pushkareva, Leonie Agnes Keilholz, Karl-Heinz Linne von Berg, Ulf Karsten, Sandra Kammann, and Burkhard Becker. 2024. "Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic" Microorganisms 12, no. 12: 2606. https://doi.org/10.3390/microorganisms12122606
APA StyleMas Martinez, I., Pushkareva, E., Keilholz, L. A., Linne von Berg, K.-H., Karsten, U., Kammann, S., & Becker, B. (2024). Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms, 12(12), 2606. https://doi.org/10.3390/microorganisms12122606