Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1
<p>The multiple sequence alignments of CTDNEP1 homologs produced using T-Coffee (<a href="https://tcoffee.crg.eu/" target="_blank">https://tcoffee.crg.eu/</a>, accessed on 19 March 2023). GenBank accession numbers corresponding to the homologs are given below; Homo sapiens, NP_0001137247.1; Pan troglodytes, XP_511976.3; Bos taurus, NP_001039491.1; Mus musculus, NP_080293.1; Xenopus tropicalis, NP_001017177.1; Danio rerio, NP_001007310.1, NP_001007441.1; Drosophila melanogaster, NP_608449.1; Caenorhabditis elegans, NP_001254123.1. DLDET represents the active site sequences, and the transmembrane region is presented as a blue bar. The dark pink colors are reliable alignments, while the green colors are unreliable alignments. The yellow colors are moderately reliable alignments. The cons means the degree of conservation observed in each column, which is denoted by the following symbols; an * (asterisk) indicates positions which have a single, fully conserved residue; a : (colon) indicates conservation between groups of strongly similar properties; a . (period) indicates conservation between groups of weakly similar properties.</p> "> Figure 2
<p>The structural comparison of human CTDNEP1 (<b>d</b>), a model structure predicted using alphafold2) with human CTDSP1 (<b>a</b>), pdb ID = 2ghq, a complex structure of the green-colored CTD phosphatase domain of CTDSP1 with the other colored CTD peptide of RNAPII), human CTDSP2 (<b>b</b>), pdb ID = 2q5e, an apo structure of the green-colored CTD phosphatase domain of CTDSP2), and human CTDSPL (<b>c</b>), pdb ID = 2hhl, a complex structure of the green-colored CTD phosphatase domain of CTDSPL with the other colored phosphatase inhibitor). In the model structure of CTDNEP1, the blue color represents very high per-residue confidence (pLDDT > 90), and the sky-blue color represents high confidence (90 > pLDDT > 70). The yellow color represents low confidence (70 > pLDDT > 50).</p> ">
Abstract
:1. Introduction
Roles | Possible Substrates/Interacting Proteins | References |
---|---|---|
Nuclear membrane biogenesis | LIPIN1 PAH1 SUN2 | [22] [14] [23] |
Nuclear pore complex insertion | Torsin | [24] |
Nuclear positioning | Eps8L2 | [25] |
Neural induction | BMPR | [11,13] |
Kidney formation | BMPR SMAD 1/5 | [20,26] [27,28] |
Primordial germ cell activation | unknown | [18] |
Wing vein formation | pMAD DSRF | [19] [29,30] |
Bone homeostasis Hemorrhage in the adult ovarian follicles | SMAD 2/3 unknown | [31] [32] |
Tumor suppressor | MYC TOP2A CHEK1 | [8] [8] [8] |
Control of birthweight Hepatosteatosis | unknown unknown | [33] [34] |
2. Biochemical Characterization of CTDNEP1
3. CTDNEP1 in Nuclear Membrane Biogenesis
4. CTDNEP1 in BMP-Mediated Biological Processes
5. CTDNEP1 in Other Biological Processes
6. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, L.; Ma, Y.; Fang, Q.; Huang, Z.; Wan, S.; Wang, J.; Yang, L. Role of protein phosphatase 2A in kidney disease (Review). Exp. Ther. Med. 2021, 22, 1236. [Google Scholar] [CrossRef] [PubMed]
- Harikrishna, R.R.; Kim, H.; Noh, K.; Kim, Y.J. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep. 2014, 47, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.; Abbott, K.L.; Desjardins, A.; Di Lello, P.; Omichinski, J.G.; Legault, P. NMR structure of a complex formed by the carboxyl-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 phosphatase. Biochemistry 2009, 48, 1964–1974. [Google Scholar] [CrossRef] [PubMed]
- Qiao, F.; Law, H.C.; Krieger, K.L.; Clement, E.J.; Xiao, Y.; Buckley, S.M.; Woods, N.T. Ctdp1 deficiency leads to early embryonic lethality in mice and defects in cell cycle progression in MEFs. Biol. Open 2021, 10, bio057232. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Zhou, Y.; Wu, C.; Li, Q.; Wu, J.; Hu, W.W.; Zhao, W.Q.; Wei, W.; Wu, C.P.; et al. GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion. Oncogene 2021, 40, 4307–4323. [Google Scholar] [CrossRef]
- Kloet, D.E.; Polderman, P.E.; Eijkelenboom, A.; Smits, L.M.; van Triest, M.H.; van den Berg, M.C.; Groot Koerkamp, M.J.; van Leenen, D.; Lijnzaad, P.; Holstege, F.C.; et al. FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21(Cip1/Waf1). Biochem. J. 2015, 469, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; He, X.; Li, F.; Pan, H.; Huang, X.; Wen, X.; Zhang, H.; Li, B.; Ge, S.; Xu, X.; et al. The miR-181 family promotes cell cycle by targeting CTDSPL, a phosphatase-like tumor suppressor in uveal melanoma. J. Exp. Clin. Cancer Res. 2018, 37, 15. [Google Scholar] [CrossRef]
- Luo, Z.; Xin, D.; Liao, Y.; Berry, K.; Ogurek, S.; Zhang, F.; Zhang, L.; Zhao, C.; Rao, R.; Dong, X.; et al. Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability. Nat. Commun. 2023, 14, 762. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.; Peng, A.; Dong, J. The phosphatase CTDSPL2 is phosphorylated in mitosis and a target for restraining tumor growth and motility in pancreatic cancer. Cancer Lett. 2022, 526, 53–65. [Google Scholar] [CrossRef]
- Sun, S.; Liu, S.; Zhang, Z.; Zeng, W.; Sun, C.; Tao, T.; Lin, X.; Feng, X.H. Phosphatase UBLCP1 controls proteasome assembly. Open Biol. 2017, 7, 170042. [Google Scholar] [CrossRef] [Green Version]
- Satow, R.; Chan, T.C.; Asashima, M. Molecular cloning and characterization of dullard: A novel gene required for neural development. Biochem. Biophys. Res. Commun. 2002, 295, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Gentry, M.S.; Harris, T.E.; Wiley, S.E.; Lawrence, J.C., Jr.; Dixon, J.E. A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 6596–6601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satow, R.; Kurisaki, A.; Chan, T.C.; Hamazaki, T.S.; Asashima, M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev. Cell 2006, 11, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Khondker, S.; Han, G.S.; Carman, G.M. Phosphorylation-mediated regulation of the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis. Adv. Biol. Regul. 2022, 84, 100889. [Google Scholar] [CrossRef] [PubMed]
- Kwiatek, J.M.; Gutierrez, B.; Izgu, E.C.; Han, G.S.; Carman, G.M. Phosphatidic Acid Mediates the Nem1-Spo7/Pah1 Phosphatase Cascade in Yeast Lipid Synthesis. J. Lipid Res. 2022, 63, 100282. [Google Scholar] [CrossRef] [PubMed]
- Mirheydari, M.; Dey, P.; Stukey, G.J.; Park, Y.; Han, G.S.; Carman, G.M. The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism. J. Biol. Chem. 2020, 295, 11473–11485. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Wang, J.; Li, S.; Sun, C.; Jiang, W.; Xin, Q.; Wang, J.; Qi, T.; Li, K.; Zhang, Z.; et al. A review of BMP and Wnt signaling pathway in the pathogenesis of pulmonary arterial hypertension. Clin. Exp. Hypertens. 2022, 44, 175–180. [Google Scholar] [CrossRef]
- Tanaka, S.S.; Nakane, A.; Yamaguchi, Y.L.; Terabayashi, T.; Abe, T.; Nakao, K.; Asashima, M.; Steiner, K.A.; Tam, P.P.; Nishinakamura, R. Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS ONE 2013, 8, e57428. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Matsuoka, S.; Enoki, A.; Yamamoto, T.; Furukawa, K.; Yamasaki, Y.; Nishida, Y.; Sugiyama, S. Negative modulation of bone morphogenetic protein signaling by Dullard during wing vein formation in Drosophila. Dev. Growth Differ. 2011, 53, 822–841. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Sharmin, S.; Taguchi, A.; Ohmori, T.; Fujimura, S.; Abe, T.; Kiyonari, H.; Komatsu, Y.; Mishina, Y.; Asashima, M.; et al. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat. Commun. 2013, 4, 1398. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Muraoka, M.; Okada, H.; Toyoda, A.; Ajima, R.; Saga, Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet. 2022, 18, e1009967. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Garland, M.; Dunaway-Mariano, D.; Allen, K.N. Homo sapiens dullard protein phosphatase shows a preference for the insulin-dependent phosphorylation site of lipin1. Biochemistry 2011, 50, 3045–3047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krshnan, L.; Siu, W.S.; Van de Weijer, M.; Hayward, D.; Guerrero, E.N.; Gruneberg, U.; Carvalho, P. Regulated degradation of the inner nuclear membrane protein SUN2 maintains nuclear envelope architecture and function. eLife 2022, 11, e81573. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, J.; Foroozandeh, J.; Vints, K.; Swerts, J.; Verstreken, P.; Gounko, N.V.; Gallego, S.F.; Goodchild, R. Torsin and NEP1R1-CTDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipid-dependent and lipid-independent mechanisms. EMBO J. 2021, 40, e106914. [Google Scholar] [CrossRef] [PubMed]
- Calero-Cuenca, F.J.; Osorio, D.S.; Carvalho-Marques, S.; Sridhara, S.C.; Oliveira, L.M.; Jiao, Y.; Diaz, J.; Janota, C.S.; Cadot, B.; Gomes, E.R. Ctdnep1 and Eps8L2 regulate dorsal actin cables for nuclear positioning during cell migration. Curr. Biol. 2021, 31, 1521–1530. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Oshima, K.; Fogo, A.; Hogan, B.L.; Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Investig. 2000, 105, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, P.; Haag, J.; Campean, V.; Goldschmeding, R.; Atalla, A.; Amann, K.; Aigner, T. Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominantly localized to the distal nephron. Kidney Int. 2006, 70, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Oxburgh, L.; Brown, A.C.; Muthukrishnan, S.D.; Fetting, J.L. Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr. Nephrol. 2014, 29, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Guichard, A.; Biehs, B.; Sturtevant, M.A.; Wickline, L.; Chacko, J.; Howard, K.; Bier, E. rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development. Development 1999, 126, 2663–2676. [Google Scholar] [CrossRef]
- Sieber, C.; Kopf, J.; Hiepen, C.; Knaus, P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 2009, 20, 343–355. [Google Scholar] [CrossRef]
- Hayata, T.; Ezura, Y.; Asashima, M.; Nishinakamura, R.; Noda, M. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-beta signaling. J. Bone Min. Res. 2015, 30, 947. [Google Scholar] [CrossRef] [PubMed]
- Hayata, T.; Chiga, M.; Ezura, Y.; Asashima, M.; Katabuchi, H.; Nishinakamura, R.; Noda, M. Dullard deficiency causes hemorrhage in the adult ovarian follicles. Genes Cells 2018, 23, 345–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekola-Ayele, F.; Zeng, X.; Chatterjee, S.; Ouidir, M.; Lesseur, C.; Hao, K.; Chen, J.; Tesfaye, M.; Marsit, C.J.; Workalemahu, T.; et al. Placental multi-omics integration identifies candidate functional genes for birthweight. Nat. Commun. 2022, 13, 2384. [Google Scholar] [CrossRef]
- Naderi, M.; Pazouki, A.; Arefian, E.; Hashemi, S.M.; Jamshidi-Adegani, F.; Gholamalamdari, O.; Soudi, S.; Azadmanesh, K.; Mirab Samiee, S.; Merat, S.; et al. Two Triacylglycerol Pathway Genes, CTDNEP1 and LPIN1, are Down-Regulated by hsa-miR-122-5p in Hepatocytes. Arch. Iran. Med. 2017, 20, 165–171. [Google Scholar]
- Han, S.; Bahmanyar, S.; Zhang, P.; Grishin, N.; Oegema, K.; Crooke, R.; Graham, M.; Reue, K.; Dixon, J.E.; Goodman, J.M. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 2012, 287, 3123–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donkor, J.; Sariahmetoglu, M.; Dewald, J.; Brindley, D.N.; Reue, K. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 2007, 282, 3450–3457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.S.; Siniossoglou, S.; Carman, G.M. The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J. Biol. Chem. 2007, 282, 37026–37035. [Google Scholar] [CrossRef] [Green Version]
- Huffman, T.A.; Mothe-Satney, I.; Lawrence, J.C., Jr. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc. Natl. Acad. Sci. USA 2002, 99, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Castro, V.; Calvo, G.; Avila-Perez, G.; Dreux, M.; Gastaminza, P. Differential Roles of Lipin1 and Lipin2 in the Hepatitis C Virus Replication Cycle. Cells 2019, 8, 1456. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.Y.; Jiang, Y.C.; Hu, Z.H.; Yao, K.C.; Yuan, M.H.; Bao, X.X.; Zhou, M.J.; Liu, Y.; Li, Z.X.; Lian, L.H.; et al. Betulin Targets Lipin1/2-Meidated P2X7 Receptor as a Therapeutic Approach to Attenuate Lipid Accumulation and Metaflammation. Biomol. Ther. 2022, 30, 246–256. [Google Scholar] [CrossRef]
- Hamel, Y.; Mauvais, F.X.; Madrange, M.; Renard, P.; Lebreton, C.; Nemazanyy, I.; Pelle, O.; Goudin, N.; Tang, X.; Rodero, M.P.; et al. Compromised mitochondrial quality control triggers lipin1-related rhabdomyolysis. Cell Rep. Med. 2021, 2, 100370. [Google Scholar] [CrossRef] [PubMed]
- Jama, A.; Alshudukhi, A.A.; Burke, S.; Dong, L.; Kamau, J.K.; Voss, A.A.; Ren, H. Lipin1 plays complementary roles in myofibre stability and regeneration in dystrophic muscles. J. Physiol. 2023, 601, 961–978. [Google Scholar] [CrossRef] [PubMed]
- Kakehi, S.; Tamura, Y.; Ikeda, S.I.; Kaga, N.; Taka, H.; Ueno, N.; Shiuchi, T.; Kubota, A.; Sakuraba, K.; Kawamori, R.; et al. Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation. Am. J. Physiol. Endocrinol. Metab. 2021, 321, E766–E781. [Google Scholar] [CrossRef]
- Kihira, Y.; Fujimura, Y.; Tomita, S.; Tamaki, T.; Sato, E. Hypoxia-inducible factor-1alpha regulates Lipin1 differently in pre-adipocytes and mature adipocytes. Mol. Med. Rep. 2020, 22, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kostic, M.; Koricanac, G.; Tepavcevic, S.; Stanisic, J.; Romic, S.; Culafic, T.; Ivkovic, T.; Stojiljkovic, M. Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARalpha, FOXO1, and Lipin1 in Fructose-Fed Rats. Metab. Syndr. Relat. Disord. 2023, 21, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Salsman, J.; Foster, J.; Dellaire, G.; Ridgway, N.D. Lipid-associated PML structures assemble nuclear lipid droplets containing CCTalpha and Lipin1. Life Sci. Alliance 2020, 3, e202000751. [Google Scholar] [CrossRef]
- Ramani Sattiraju, S.; Jama, A.; Alshudukhi, A.A.; Edward Townsend, N.; Reynold Miranda, D.; Reese, R.R.; Voss, A.A.; Ren, H. Loss of membrane integrity drives myofiber death in lipin1-deficient skeletal muscle. Physiol. Rep. 2020, 8, e14620. [Google Scholar] [CrossRef]
- Shang, P.; Zheng, F.; Han, F.; Song, Y.; Pan, Z.; Yu, S.; Zhuang, X.; Chen, S. Lipin1 mediates cognitive impairment in fld mice via PKD-ERK pathway. Biochem. Biophys. Res. Commun. 2020, 525, 286–291. [Google Scholar] [CrossRef]
- Wang, M.; Xie, M.; Yu, S.; Shang, P.; Zhang, C.; Han, X.; Fan, C.; Chen, L.; Zhuang, X.; Chen, S. Lipin1 Alleviates Autophagy Disorder in Sciatic Nerve and Improves Diabetic Peripheral Neuropathy. Mol. Neurobiol. 2021, 58, 6049–6061. [Google Scholar] [CrossRef]
- Merta, H.; Carrasquillo Rodriguez, J.W.; Anjur-Dietrich, M.I.; Vitale, T.; Granade, M.E.; Harris, T.E.; Needleman, D.J.; Bahmanyar, S. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Dev. Cell 2021, 56, 3364–3379. [Google Scholar] [CrossRef]
- Barger, S.R.; Penfield, L.; Bahmanyar, S. Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem. Sci. 2021, 47, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Penfield, L.; Shankar, R.; Szentgyorgyi, E.; Laffitte, A.; Mauro, M.S.; Audhya, A.; Muller-Reichert, T.; Bahmanyar, S. Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. J. Cell Biol. 2019, 219, e201908179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, K.A.; Eng, C. From developmental disorder to heritable cancer: It’s all in the BMP/TGF-beta family. Nat. Rev. Genet. 2003, 4, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Nishinakamura, R.; Sakaguchi, M. BMP signaling and its modifiers in kidney development. Pediatr. Nephrol. 2014, 29, 681–686. [Google Scholar] [CrossRef]
- Matsuda, S.; Yoshiyama, N.; Kunnapuu-Vulli, J.; Hatakeyama, M.; Shimmi, O. Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae. Insect Biochem. Mol. Biol. 2013, 43, 466–473. [Google Scholar] [CrossRef]
- Jones, D.T.; Jager, N.; Kool, M.; Zichner, T.; Hutter, B.; Sultan, M.; Cho, Y.J.; Pugh, T.J.; Hovestadt, V.; Stutz, A.M.; et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012, 488, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Li, Q.; Wu, X.; Li, W.; Li, Q.; Zhang, J.; Li, M.; Zhang, D.; Zhao, H.; Zou, X.; et al. Deubiquitinase USP29 promotes gastric cancer cell migration by cooperating with phosphatase SCP1 to stabilize Snail protein. Oncogene 2020, 39, 6802–6815. [Google Scholar] [CrossRef]
- Sun, A.G.; Wang, M.G.; Li, B.; Meng, F.G. Down-regulation of miR-124 target protein SCP-1 inhibits neuroglioma cell migration. Eur. Rev. Med. Pharm. Sci. 2017, 21, 723–729. [Google Scholar]
- Wang, W.; Liao, P.; Shen, M.; Chen, T.; Chen, Y.; Li, Y.; Lin, X.; Ge, X.; Wang, P. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 2016, 35, 491–500. [Google Scholar] [CrossRef]
- Zou, J.; Pei, X.; Xing, D.; Wu, X.; Chen, S. LINC00261 elevation inhibits angiogenesis and cell cycle progression of pancreatic cancer cells by upregulating SCP2 via targeting FOXP3. J. Cell Mol. Med. 2021, 25, 9826–9836. [Google Scholar] [CrossRef]
- Ding, X.; Fan, K.; Hu, J.; Zang, Z.; Zhang, S.; Zhang, Y.; Lin, Z.; Pei, X.; Zheng, X.; Zhu, F.; et al. SCP2-mediated cholesterol membrane trafficking promotes the growth of pituitary adenomas via Hedgehog signaling activation. J. Exp. Clin. Cancer Res. 2019, 38, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senchenko, V.N.; Anedchenko, E.A.; Kondratieva, T.T.; Krasnov, G.S.; Dmitriev, A.A.; Zabarovska, V.I.; Pavlova, T.V.; Kashuba, V.I.; Lerman, M.I.; Zabarovsky, E.R. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 2010, 10, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashuba, V.I.; Pavlova, T.V.; Grigorieva, E.V.; Kutsenko, A.; Yenamandra, S.P.; Li, J.; Wang, F.; Protopopov, A.I.; Zabarovska, V.I.; Senchenko, V.; et al. High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS ONE 2009, 4, e5231. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xiao, M.; Sun, B.; Zhang, Z.; Shen, T.; Duan, X.; Yu, P.B.; Feng, X.H.; Lin, X. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J. Biol. Chem. 2014, 289, 26441–26450. [Google Scholar] [CrossRef] [Green Version]
- Chasov, V.; Mirgayazova, R.; Zmievskaya, E.; Khadiullina, R.; Valiullina, A.; Stephenson Clarke, J.; Rizvanov, A.; Baud, M.G.J.; Bulatov, E. Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Front. Oncol. 2020, 10, 1460. [Google Scholar] [CrossRef]
- Chasov, V.; Zaripov, M.; Mirgayazova, R.; Khadiullina, R.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Rizvanov, A.; Bulatov, E. Promising New Tools for Targeting p53 Mutant Cancers: Humoral and Cell-Based Immunotherapies. Front. Immunol. 2021, 12, 707734. [Google Scholar] [CrossRef] [PubMed]
Research Fields | Research Topics |
---|---|
Biochemical characterization | Determination of the three-dimensional structure of CTDNEP1. Identification of interacting mechanism between CTDNEP1 and NEP1-R1. Determination of complex structure of CTDNEP1 and its substrates (e.g., LIPIN1). Kinetic investigation of CTDNEP1 with its possible substrates or interacting proteins. Identification of a regulatory material of CTDNEP1. |
Nuclear envelope formation | Determination of upstream signaling of CTDNEP1. Identification of downstream signaling after PA dephosphorylation. Identification of a novel mechanism for nuclear membrane biogenesis. |
BMP signaling | Identification of novel substrates of CTDNEP1 as a BMP signaling regulator. Determination of whether CTDNEP1 directly dephosphorylates BMPR, SMAD, or pMAD. If not, the identification of the indirect pathway. Identification of a novel BMP-related signaling. Characterization of the different aspects of CTDNEP1 from other protein phosphatases’ action on BMP signaling. |
Tumor suppressor | Identification of novel substrates of CTDNEP1 as a tumor suppressor. Characterization of the different aspects of CTDNEP1 from other protein phosphatases’ action on tumor signaling. Identification of a novel related tumor. Investigation on targeting mutant CTDNEP1 tumors. |
Another signaling | Determination of the mechanism of CTDNEP1 in birthweight control and hepatosteatosis. Investigation of miR-122 effect on CTDNEP1-related signaling. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rallabandi, H.R.; Choi, H.; Cha, H.; Kim, Y.J. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life 2023, 13, 1338. https://doi.org/10.3390/life13061338
Rallabandi HR, Choi H, Cha H, Kim YJ. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life. 2023; 13(6):1338. https://doi.org/10.3390/life13061338
Chicago/Turabian StyleRallabandi, Harikrishna Reddy, Haewon Choi, Hyunseung Cha, and Young Jun Kim. 2023. "Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1" Life 13, no. 6: 1338. https://doi.org/10.3390/life13061338
APA StyleRallabandi, H. R., Choi, H., Cha, H., & Kim, Y. J. (2023). Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life, 13(6), 1338. https://doi.org/10.3390/life13061338