[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62

Abstract

Serine 62 (Ser62) phosphorylation affects the c-Myc protein stability in cancer cells. However, the mechanism for dephosphorylating c-Myc is not well understood. In this study, we identified carboxyl-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (SCP1) as a novel phosphatase specifically dephosphorylating c-Myc Ser62. Ectopically expressed SCP1 strongly dephosphorylated c-Myc Ser62, destabilized c-Myc protein and suppressed c-Myc transcriptional activity. Knockdown of SCP1 increased the c-Myc protein levels in liver cancer cells. SCP1 interacted with c-Myc both in vivo and in vitro. In addition, Ser245 at the C-terminus of SCP1 was essential for its phosphatase activity towards c-Myc. Functionally, SCP1 negatively regulated the cancer cell proliferation. Collectively, our findings indicate that SCP1 is a potential tumor suppressor for liver cancers through dephosphorylating c-Myc Ser62.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  2. Sears RC . The life cycle of C-myc: from synthesis to degradation. Cell Cycle 2004; 3: 1133–1137.

    Article  CAS  Google Scholar 

  3. Farrell AS, Sears RC . MYC degradation. Cold Spring Harb Perspect Med 2014. 4.

    Article  Google Scholar 

  4. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  Google Scholar 

  5. Hsu T, Moroy T, Etiemble J, Louise A, Trepo C, Tiollais P et al. Activation of c-myc by woodchuck hepatitis virus insertion in hepatocellular carcinoma. Cell 1988; 55: 627–635.

    Article  CAS  Google Scholar 

  6. Conacci-Sorrell M, Eisenman RN . Post-translational control of Myc function during differentiation. Cell Cycle 2011; 10: 604–610.

    Article  CAS  Google Scholar 

  7. Gupta S, Seth A, Davis RJ . Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci USA 1993; 90: 3216–3220.

    Article  CAS  Google Scholar 

  8. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    Article  CAS  Google Scholar 

  9. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    Article  CAS  Google Scholar 

  10. Arnold HK, Sears RC . Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 2006; 26: 2832–2844.

    Article  CAS  Google Scholar 

  11. Farrell AS, Pelz C, Wang X, Daniel CJ, Wang Z, Su Y et al. Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol Cell Biol 2013; 33: 2930–2949.

    Article  CAS  Google Scholar 

  12. Amati B . Myc degradation: dancing with ubiquitin ligases. Proc Natl Acad Sci USA 2004; 101: 8843–8844.

    Article  CAS  Google Scholar 

  13. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    Article  CAS  Google Scholar 

  14. Zhang X, Farrell AS, Daniel CJ, Arnold H, Scanlan C, Laraway BJ et al. Mechanistic insight into Myc stabilization in breast cancer involving aberrant Axin1 expression. Proc Natl Acad Sci USA 2012; 109: 2790–2795.

    Article  CAS  Google Scholar 

  15. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6: 308–318.

    Article  CAS  Google Scholar 

  16. Liu L, Eisenman RN . Regulation of c-Myc protein abundance by a protein phosphatase 2A-glycogen synthase kinase 3beta-negative feedback pathway. Genes Cancer 2012; 3: 23–36.

    Article  Google Scholar 

  17. Tan J, Lee PL, Li Z, Jiang X, Lim YC, Hooi SC et al. B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 2010; 18: 459–471.

    Article  CAS  Google Scholar 

  18. Arnold HK, Zhang X, Daniel CJ, Tibbitts D, Escamilla-Powers J, Farrell A et al. The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J 2009; 28: 500–512.

    Article  CAS  Google Scholar 

  19. Janghorban M, Farrell AS, Allen-Petersen BL, Pelz C, Daniel CJ, Oddo J et al. Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proc Natl Acad Sci USA 2014; 111: 9157–9162.

    Article  CAS  Google Scholar 

  20. Strack S, Chang D, Zaucha JA, Colbran RJ, Wadzinski BE . Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett 1999; 460: 462–466.

    Article  CAS  Google Scholar 

  21. Barford D . Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 1996; 21: 407–412.

    Article  CAS  Google Scholar 

  22. Shi Y . Serine/threonine phosphatases: mechanism through structure. Cell 2009; 139: 468–484.

    Article  CAS  Google Scholar 

  23. Zhang Y, Kim Y, Genoud N, Gao J, Kelly JW, Pfaff SL et al. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol Cell 2006; 24: 759–770.

    Article  CAS  Google Scholar 

  24. Yeo M, Lin PS, Dahmus ME, Gill GN . A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 2003; 278: 26078–26085.

    Article  CAS  Google Scholar 

  25. Wu Y, Evers BM, Zhou BP . Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J Biol Chem 2009; 284: 640–648.

    Article  CAS  Google Scholar 

  26. Wrighton KH, Willis D, Long J, Liu F, Lin X, Feng XH . Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J Biol Chem 2006; 281: 38365–38375.

    Article  CAS  Google Scholar 

  27. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125: 915–928.

    Article  CAS  Google Scholar 

  28. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP . Skp2 regulates Myc protein stability and activity. Mol Cell 2003; 11: 1177–1188.

    Article  CAS  Google Scholar 

  29. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol 2010; 12: 457–467.

    Article  CAS  Google Scholar 

  30. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    Article  CAS  Google Scholar 

  31. Feng XH, Liang YY, Liang M, Zhai W, Lin X . Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15 (Ink4B). Mol Cell 2002; 9: 133–143.

    Article  CAS  Google Scholar 

  32. Crouch DH, Fisher F, Clark W, Jayaraman PS, Goding CR, Gillespie DA . Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity. Oncogene 1993; 8: 1849–1855.

    CAS  PubMed  Google Scholar 

  33. Xue Y, Zhou F, Zhu M, Ahmed K, Chen G, Yao X . GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res 2005; 33: W184–W187.

    Article  CAS  Google Scholar 

  34. Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota SG, Pandey A . A curated compendium of phosphorylation motifs. Nat Biotechnol 2007; 25: 285–286.

    Article  CAS  Google Scholar 

  35. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  36. Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 2012; 483: 608–612.

    Article  CAS  Google Scholar 

  37. Wang X, Cunningham M, Zhang X, Tokarz S, Laraway B, Troxell M et al. Phosphorylation regulates c-Myc's oncogenic activity in the mammary gland. Cancer Res 2011; 71: 925–936.

    Article  CAS  Google Scholar 

  38. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    Article  CAS  Google Scholar 

  39. Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN, Small CTD . phosphatases function in silencing neuronal gene expression. Science 2005; 307: 596–600.

    Article  CAS  Google Scholar 

  40. Stolk M, Cooper E, Vilk G, Litchfield DW, Hammond JR . Subtype-specific regulation of equilibrative nucleoside transporters by protein kinase CK2. Biochem J 2005; 386: 281–289.

    Article  CAS  Google Scholar 

  41. Song DH, Sussman DJ, Seldin DC . Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem 2000; 275: 23790–23797.

    Article  CAS  Google Scholar 

  42. Liu N, Li H, Li S, Shen M, Xiao N, Chen Y et al. The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem 2010; 285: 18858–18867.

    Article  CAS  Google Scholar 

  43. Liao P, Wang W, Shen M, Pan W, Zhang K, Wang R et al. A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis. Cell Death Dis 2014; 5: e1032.

    Article  CAS  Google Scholar 

  44. Zhang M, Liu J, Kim Y, Dixon JE, Pfaff SL, Gill GN et al. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci 2010; 19: 974–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kops O, Zhou XZ, Lu KP . Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. FEBS Lett 2002; 513: 305–311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Basic Research Program of China (973 program 2012CB910404 and 2010CB529704), National Natural Science Foundation of China (30971521, 31171338 and 31222037), 'Shu Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (11SG27), Shanghai Key Laboratory of Regulatory Biology (11DZ2260300) and Shanghai Rising-Star program (09QA1401900 and 13QH1401300). PW is a scholar of the Program for New Century Excellent Talents in University (NCET-10-0387).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Ge or P Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liao, P., Shen, M. et al. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 35, 491–500 (2016). https://doi.org/10.1038/onc.2015.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.106

This article is cited by

Search

Quick links