Geochemical Study of Trace Elements and In Situ S–Pb Isotopes of the Sachakou Pb–Zn Deposit in the Aksai Chin Region, Xinjiang
<p>Geographical location map (<b>a</b>), tectonic sketch map (<b>b</b>) (modified after Gao et al. [<a href="#B29-minerals-15-00271" class="html-bibr">29</a>]), and geological and mineral resources map (<b>c</b>) (modified after Zhao et al. [<a href="#B16-minerals-15-00271" class="html-bibr">16</a>]) of the Aksai Chin region.</p> "> Figure 2
<p>Simplified geological map of the Sachakou Pb–Zn mining area (modified after Wang et al. [<a href="#B38-minerals-15-00271" class="html-bibr">38</a>]).</p> "> Figure 3
<p>The profile of exploration line 317 in the Sachakou Pb–Zn Mining Area (modified after Wang et al. [<a href="#B38-minerals-15-00271" class="html-bibr">38</a>]).</p> "> Figure 4
<p>Photographs of the Sachakou mining area and typical ore samples. (<b>a</b>) Overview of Pb–Zn ore belt III. (<b>b</b>) Contact boundary between silicified limestone and the silicified and limonitized fracture zone. (<b>c</b>) Banded Pb–Zn ore. (<b>d</b>) Brecciated quartz (S0) cemented by the Pb–Zn ore (S1). (<b>e</b>) Partially oxidized vein-type Pb–Zn ore (S1). (<b>f</b>) Fully oxidized vein-type Pb–Zn ore. (<b>g</b>) Vein-type stibnite ore (S2). (<b>h</b>) Pb–Zn ore (S2) cementing breccias of the Pb–Zn ore (S1) and siliceous rock fragments. (<b>i</b>) Sphalerite vein (S2) crosscutting a sphalerite vein (S1) and the siliceous rock. (<b>j</b>) Contact relationship between the Pb–Zn ore (S2) and the Pb–Zn ore (S3). (<b>k</b>) Vein-type Pb–Zn ore (S2). (<b>l</b>) Brecciated galena ore (S3). Cer—cerussite; Gn—galena; Gyp—gypsum; Lm—limonite; Qz—quartz; Sbn—stibnite; Smt—smithsonite; Sp—sphalerite.</p> "> Figure 5
<p>Photomicrographs and BSE images of ore minerals from the Sachakou Pb–Zn deposit. (<b>a</b>) Rhythmic banded Sp1 coexisting with Qz1. (<b>b</b>) Qz1 coexisting with Gn1 and Sp1. (<b>c</b>) Qz1 coexisting with Py1, Sp1, and Gn1, with smithsonite replacing Sp1 along fractures. (<b>d</b>) Qz1 and Sp1 crosscut by later-stage Qz2 and Sp2. (<b>e</b>) Gn2 filling fractures within Sp2 in the siliceous rock. (<b>f</b>) Sbn1 coexisting with Sp2, with euhedral Py2 developing along the boundary between Sbn1 and the siliceous rock. (<b>g</b>) Anglesite and cerussite replacing the edges of Gn3. (<b>h</b>) Cerussite replacing Gn3 (BSE); (<b>i</b>) Siderite coexisting with Sp3 and Gn3, with cerussite developing along the fractures within siderite and Gn3 (BSE). Ang—anglesite; Cer—cerussite; Gn—galena; Py—pyrite; Qz—quartz; Sd—siderite; Sbn—stibnite; Smt—smithsonite; Sp—sphalerite.</p> "> Figure 6
<p>Mineralization stage division of the Sachakou Pb–Zn deposit.</p> "> Figure 7
<p>Comparison of the sphalerite trace element concentrations using LA-ICP-MS in the Sachakou Pb–Zn deposit.</p> "> Figure 8
<p>Representative time-resolved depth profiles of the sphalerite from the Sachakou Pb–Zn deposit. (<b>a</b>) Flat signals indicating elements mainly hosted in the sphalerite lattice. (<b>b</b>) Abnormal peak signals suggesting the presence of micro-scale mineral inclusions.</p> "> Figure 9
<p>Scatter plot of trace elements in the sphalerite from the Sachakou Pb–Zn deposit. (<b>a</b>) Fe vs. Mn. (<b>b</b>) Fe vs. Co. (<b>c</b>) Fe vs. Ge. (<b>d</b>) Fe vs. Cd. (<b>e</b>) In vs. Sn. (<b>f</b>) Ni vs. Mn. (<b>g</b>) As vs. Ag.</p> "> Figure 10
<p>Histogram of sphalerite mineralization temperatures in the Sachakou Pb–Zn deposit, determined using a GGIMFis geothermometer.</p> "> Figure 11
<p>Sulfur isotope histogram (<b>a</b>) and scatter plot (<b>b</b>) of the sulfides from the Sachakou Pb–Zn deposit and the surrounding area (Jurassic gypsum layer data from the research by Gao et al. [<a href="#B29-minerals-15-00271" class="html-bibr">29</a>], Jia et al. [<a href="#B19-minerals-15-00271" class="html-bibr">19</a>], Li et al. [<a href="#B58-minerals-15-00271" class="html-bibr">58</a>]; Tang et al. [<a href="#B28-minerals-15-00271" class="html-bibr">28</a>]).</p> "> Figure 12
<p>Pb isotope correlation diagrams of the galena from the Sachakou Pb–Zn Deposit. The <sup>207</sup>Pb/<sup>204</sup>Pb versus <sup>206</sup>Pb/<sup>204</sup>Pb evolution diagram (base map from Zartman and Doe [<a href="#B69-minerals-15-00271" class="html-bibr">69</a>]) is shown in (<b>a</b>), with a close-up view provided in (<b>b</b>); the <sup>208</sup>Pb/<sup>204</sup>Pb versus <sup>206</sup>Pb/<sup>204</sup>Pb evolution diagram (base map from Zartman and Doe [<a href="#B69-minerals-15-00271" class="html-bibr">69</a>]) is shown in (<b>c</b>), with a close-up view provided in (<b>d</b>); (<b>e</b>) ∆β versus ∆γ tectonic environment classification diagram (base map from Zhu [<a href="#B67-minerals-15-00271" class="html-bibr">67</a>]). The stratigraphic Pb isotope data in (<b>a</b>–<b>e</b>) are cited from Jia et al. [<a href="#B19-minerals-15-00271" class="html-bibr">19</a>] and Zhou [<a href="#B66-minerals-15-00271" class="html-bibr">66</a>]. 1—mantle-derived lead; 2—upper crustal lead; 3—subduction zone lead with a mixture of upper crustal and mantle-derived lead (3a—magmatism; 3b—sedimentation); 4—chemically precipitated lead; 5—seafloor hydrothermal lead; 6—medium- to high-grade metamorphic lead; 7—high-grade lower crustal lead; 8—orogenic belt lead; 9—ancient shale upper crustal lead; 10—retrograde metamorphic lead.</p> ">
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Sampling and Analytical Methods
4.1. In Situ Trace Element Analysis of Sphalerite
4.2. In Situ Sulfur Isotope Analysis of Sulfides
4.3. In Situ Lead Isotope Analysis of Sulfides
5. Analysis Results
5.1. Trace Element Composition
5.2. In Situ Sulfur Isotopes
5.3. In Situ Lead Isotopes
6. Discussion
6.1. Trace Element Distribution Characteristics and Implications for Mineralization Temperature
6.2. Sulfur Sources
6.3. Lead Sources
6.4. Genetic Type of the Deposit
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.J. On epizonogenism and genetic classification of hydrothermal deposits. Earth Sci. Front. 2010, 17, 27–34, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Pirajno, F.; Li, N.; Deng, X.H.; Yang, Y.F. Geology and Geochemistry of Molybdenum Deposits in the Qinling Orogen, P R China. In Modern Approaches in Solid Earth Sciences, 1st ed.; Springer: Singapore, 2022; Volume 22, ISBN 978-981-16-4871-7. [Google Scholar]
- Barton, P.B.; Bethke, P.M. Chalcopyrite Disease in Sphalerite; Pathology and Epidemiology. Am. Mineral. 1987, 72, 451–467. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Ciobanu, C.L.; Wade, B.P. Trace and Minor Elements in Galena: A Reconnaissance LA-ICP-MS Study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Johan, Z. Indium and Germanium in the Structure of Sphalerite: An Example of Coupled Substitution with Copper. Mineral. Petrol. 1988, 39, 211–229. [Google Scholar] [CrossRef]
- Cook, N.J.; Etschmann, B.; Ciobanu, C.L.; Geraki, K.; Howard, D.L.; Williams, T.; Rae, N.; Pring, A.; Chen, G.R.; Johannessen, B.; et al. Distribution and Substitution Mechanism of Ge in a Ge-(Fe)-Bearing Sphalerite. Minerals 2015, 5, 117–132. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.P.; Zhang, Q.; Liu, T.G.; Gao, G.; Yang, Y.L.; Leonid, D. Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICPMS Study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.-C.; Luais, B.; Cathelineau, M. LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac—Saint-Salvy Deposit (France): Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Möller, P. Correlation of Homogenization Temperatures of Accessory Minerals from Sphalerite-Bearing Deposits and Ga/Ge Model Temperatures. Chem. Geol. 1987, 61, 153–159. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type—A Meta-Analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Lai, X.; Chen, C.; Yang, Y.; Liu, S.; Li, Y.; Wang, J.; Song, Z.; Gu, Y.; Chen, X.; Huang, X. Constraints on Metallogenic Temperature and Mineralization Style from Reflection Color of Sphalerite. Ore Geol. Rev. 2023, 161, 105634. [Google Scholar] [CrossRef]
- Li, X.M.; Zhang, Y.X.; Li, Z.K.; Zhao, X.F.; Zuo, R.G.; Xiao, F.; Zheng, Y. Discrimination of Pb-Zn Deposit Types Using Sphalerite Geochemistry: New Insights from Machine Learning Algorithm. Geosci. Front. 2023, 14, 101580. [Google Scholar] [CrossRef]
- Meng, Y.M.; Huang, X.W.; Hu, R.Z.; Beaudoin, G.; Zhou, M.F.; Meng, S.N. Deposit Type Discrimination Based on Trace Elements in Sphalerite. Ore Geol. Rev. 2024, 165, 105887. [Google Scholar] [CrossRef]
- Zhao, X.J.; Wu, Y.Z.; Wang, T.S.; Wang, X.A.; Qiao, G.B.; Chen, D.H. Metallogenic Characteristics and Prospecting Criteria of Lead-Zinc Deposits in Qiaoertianshan-Chalukou Region of West Kunlun. Northwest Geol. 2014, 47, 245–255, (In Chinese with English Abstract). [Google Scholar]
- Fan, T.B.; Jin, H.Z.; Yu, Y.J.; Jiang, G.P.; Xia, M.Y. Metallogenic characteristics and prospecting progress of lead-zinc deposits in the Tianshuihai area of west Kunlun. J. Geol. 2019, 43, 184–197, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Song, Y.C.; Liu, Y.C.; Hou, Z.Q.; Fard, M.; Zhang, H.R.; Zhuang, L.L. Sediment-Hosted Pb–Zn Deposits in the Tethyan Domain from China to Iran: Characteristics, Tectonic Setting, and Ore Controls. Gondwana Res. 2019, 75, 249–281. [Google Scholar] [CrossRef]
- Jia, W.B.; Wang, D.; Li, Y.S.; Yu, X.F.; Dai, M.; Yan, G.S. Integrated Geology, Mineralogy, Element and C–O–S–Pb Isotopes Characteristics Elucidate Ore Genesis of the World-Class Huoshaoyun Zn–Pb Deposit in Karakoram Area, Xinjiang, Northwest China. Ore Geol. Rev. 2023, 160, 105576. [Google Scholar] [CrossRef]
- Sun, H.; Ouyang, H.; Wu, Y.; Zhang, Y. Sulfide Pb-Zn Mineralization in the Tianshuihai Terrane, Northwest Tibetan Plateau: A Case Study of the Huoshaoyun Pb-Zn Deposit. Ore Geol. Rev. 2023, 163, 105789. [Google Scholar] [CrossRef]
- Ke, Q.; Hong, T.; Santosh, M.; Li, H.; Zhang, G.L.; Li, H.; Wan, J.L.; Fan, T.B.; Dong, L.H.; Ma, J.; et al. Anatomy and Genesis of the World’s Largest Carbonate-Hosted Zn-Pb Deposit: New Insights from Ore Characteristics, Zn-Pb-C-O Isotopes, and Trace Element Constraints of the Huoshaoyun Deposit, Karakorum Range, Xinjiang. Geosci. Front. 2024, 15, 101885. [Google Scholar] [CrossRef]
- Ren, G.L.; Huang, Z.Y.; Yang, M.; Yao, A.Q.; Zhao, X.J.; Zhang, H.S.; Wan, J.L.; Fan, T.B. Geochemical Characteristics and Geological Significance of the Huoshaoyun Lead-Zinc Deposit in Xinjiang. Geotectonics Metallogeny 2024, 48, 654–675, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Han, C.M.; Xiao, W.J.; Fang, A.M.; Mao, Q.G.; Ao, S.J.; Zhang, J.E.; Song, D.F. Metallogenic regularity and metallogenic series of West Kunlun and its adjacent areas. Acta Petrol. Sin. 2021, 37, 3615–3644, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Song, X.X. On the Comprehensive Host Rock-Genesis Classification of Lead-Zinc Deposits in China. Geol. Rev. 2024, 70, 813–822, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhou, M.L.; Liu, Y.C. The Sachakou Deposit in West Kunlun of Xinjiang: A Pb-Zn Polymetallic Deposit Associated with Magmatic Metasomatism of Carbonate Rock. Acta Geol. Sin. Engl. Ed. 2018, 92, 883–884. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.X.; Ma, H.D.; Zhu, B.Y.; Liu, X.J. Mineralization Age of the Karakorum Luobugaizi Large Lead-Zinc Deposit: Implications for Exploration of the Tianshuihai-Karakorum Super-Large Lead-Zinc Deposits. NW Geol. 2021, 54, 155–162, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cui, J.T.; Wang, J.C.; Bian, X.W.; Zhu, H.P.; Luo, Q.Z.; Liu, D.X. Geological Survey Report of the Chalukou Sheet (I44C001001); Shaanxi Institute of Geological Survey: Xi’an, China, 2006; pp. 1–204. (In Chinese) [Google Scholar]
- Tang, J.L.; Li, H.; Tan, K.B.; Ke, Q.; Dong, L.H.; Xu, X.W.; Ha, Y. Ore-Bearing Strata of Lead-Zinc Deposits in the Linjitang Basin of Karakorum in a Marine Sedimentary Environment: Constraints from Trace Elements in Limestone and Sulfur Isotope of Gypsum in Jurassic. Geol. Explor. 2021, 56, 1134–1144, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, Y.B.; Li, K.; Teng, J.X.; Zhao, X.M.; Zhao, X.J.; Yan, Z.Q.; Jin, M.S.; Zhao, H.B.; Li, X.T. Mineralogy, Geochemistry, and Genesis of Giant Huoshaoyun Zn-Pb Deposit in Karakoram Area, Xinjiang, NW China. Northwest. Geol. 2019, 52, 152–169, (In Chinese with English Abstract)>. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Chen, H.L.; Zhang, G.C.; Li, J.L. Carboniferous-Triassic Subduction and Accretion in the Western Kunlun, China: Implications for the Collisional and Accretionary Tectonics of the Northern Tibetan Plateau. Geology 2002, 30, 295–298. [Google Scholar] [CrossRef]
- Lacassin, R.; Valli, F.; Arnaud, N.; Leloup, P.H.; Paquette, J.L.; Haibing, L.; Tapponnier, P.; Chevalier, M.-L.; Guillot, S.; Maheo, G.; et al. Large-Scale Geometry, Offset and Kinematic Evolution of the Karakorum Fault, Tibet. Earth Planet. Sci. Lett. 2004, 219, 255–269. [Google Scholar] [CrossRef]
- Gao, Y.B.; Zhao, X.M.; Zhao, X.J.; Li, K.; Teng, J.X.; Yan, Z.Q.; Jin, M.S.; Zhao, H.B. Mineralogy, Geochemistry and Genesis of Duobaoshan Zn-Pb Deposit, in Karakoram, Xinjiang. Northwest. Geol. 2020, 53, 122–137. [Google Scholar] [CrossRef]
- Yan, Q.H.; Qiu, Z.W.; Wang, H.; Wang, M.; Wei, X.P.; Li, P.; Zhang, R.Q.; Li, C.Y.; Liu, J.P. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geol. Rev. 2018, 100, 561–573. [Google Scholar] [CrossRef]
- Ding, K.; Liang, T.; Yang, X.; Zhou, Y.; Feng, Y.; Li, K.; Teng, J.; Wang, R. Geochronology, Petrogenesis and Tectonic Significance of Dahongliutan Pluton in Western Kunlun Orogenic Belt, NW China. J. Cent. S. Univ. 2019, 26, 3420–3435. [Google Scholar] [CrossRef]
- Gao, Y.; Bagas, L.; Li, K.; Jin, M.; Liu, Y.; Teng, J. Newly Discovered Triassic Lithium Deposits in the Dahongliutan Area, NorthWest China: A Case Study for the Detection of Lithium-Bearing Pegmatite Deposits in Rugged Terrains Using Remote-Sensing Data and Images. Front. Earth Sci. 2020, 8, 591966. [Google Scholar] [CrossRef]
- Yang, W.; Xie, Y.; Fu, S.; Ren, Y.; Zhou, J.; Wang, X.; Zhang, J.; Yin, D.; Zhao, S. The Tianshuihai Lead–Zinc Deposit, Xinjiang Province, NW China: A Successful Case of Multi-Scale Geochemical Mapping. J. Geochem. Explor. 2014, 139, 136–143. [Google Scholar] [CrossRef]
- Zhao, X.J.; Li, N.; Weng, K.; Wang, M.; Sui, Q.L.; Chen, D.H.; Guo, Z.P.; Jin, M.Q. LA-ICP-MS Zircon U-Pb Dating of Tuffites in the Sachakou Pb-Zn Mining Area, Karakorum, Xinjiang and Its Establishment of Early Triassic Strata. China Geol. 2023, 6, 150–152. [Google Scholar] [CrossRef]
- Wang, M.; Hu, T.; Ye, X.F.; Gao, Z.B.; Jin, H.Z.; Xia, M.Y. General Survey Report on Pb-Zn-Sb Polymetallic Deposits in the Sachakou Area, Hotan County, Xinjiang; Geological Bureau, Xinjiang Uyghur Autonomous Region No. 8 Geological Party: Urumqi, China, 2018; pp. 1–100. (In Chinese) [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.Y.; Bao, Z.A.; Liang, P.; Sun, T.T.; Yuan, H.L. Preparation of Standards for in Situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC-ICP-MS. J. Anal. At. Spectrom. 2017, 32, 107–116. [Google Scholar] [CrossRef]
- Yuan, H.L.; Liu, X.; Chen, L.; Bao, Z.A.; Chen, K.Y.; Zong, C.L.; Li, X.C.; Qiu, J.W. Simultaneous Measurement of Sulfur and Lead Isotopes in Sulfides Using Nanosecond Laser Ablation Coupled with Two Multi-Collector Inductively Coupled Plasma Mass Spectrometers. J. Asian Earth Sci. 2018, 154, 386–396. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z.C.; Günther, D.; Liu, Y.S.; Ling, W.L.; Zong, K.Q.; Chen, H.H.; Gao, S. Direct Lead Isotope Analysis in Hg-Rich Sulfides by LA-MC-ICP-MS with a Gas Exchange Device and Matrix-Matched Calibration. Anal. Chim. Acta 2016, 948, 9–18. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z.; Liu, Y. Iso-Compass: New Freeware Software for Isotopic Data Reduction of LA-MC-ICP-MS. J. Anal. At. Spectrom. 2020, 35, 1087–1096. [Google Scholar] [CrossRef]
- Belissont, R.; Muñoz, M.; Boiron, M.-C.; Luais, B.; Mathon, O. Distribution and Oxidation State of Ge, Cu and Fe in Sphalerite by μ-XRF and K-Edge μ-XANES: Insights into Ge Incorporation, Partitioning and Isotopic Fractionation. Geochim. Cosmochim. Acta 2016, 177, 298–314. [Google Scholar] [CrossRef]
- Schwartz, M.O. Cadmium in Zinc Deposits: Economic Geology of a Polluting Element. Int. Geol. Rev. 2000, 42, 445–469. [Google Scholar] [CrossRef]
- Wen, H.; Zhu, C.; Zhang, Y.; Cloquet, C.; Fan, H.; Fu, S. Zn/Cd Ratios and Cadmium Isotope Evidence for the Classification of Lead-Zinc Deposits. Sci. Rep. 2016, 6, 25273. [Google Scholar] [CrossRef]
- Lepetit, P.; Bente, K.; Doering, T.; Luckhaus, S. Crystal Chemistry of Fe-Containing Sphalerites. Phys. Chem. Miner. 2003, 30, 185–191. [Google Scholar] [CrossRef]
- Wei, C.; Ye, L.; Hu, Y.; Danyushevskiy, L.; Li, Z.; Huang, Z. Distribution and Occurrence of Ge and Related Trace Elements in Sphalerite from the Lehong Carbonate-Hosted Zn-Pb Deposit, Northeastern Yunnan, China: Insights from SEM and LA-ICP-MS Studies. Ore Geol. Rev. 2019, 115, 103175. [Google Scholar] [CrossRef]
- Wei, C.; Ye, L.; Hu, Y.; Huang, Z.; Danyushevsky, L.; Wang, H. LA-ICP-MS Analyses of Trace Elements in Base Metal Sulfides from Carbonate-Hosted Zn-Pb Deposits, South China: A Case Study of the Maoping Deposit. Ore Geol. Rev. 2021, 130, 103945. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, C.; Ye, L.; Huang, Z.; Danyushevsky, L.; Wang, H. LA-ICP-MS Sphalerite and Galena Trace Element Chemistry and Mineralization-Style Fingerprinting for Carbonate-Hosted Pb-Zn Deposits: Perspective from Early Devonian Huodehong Deposit in Yunnan, South China. Ore Geol. Rev. 2021, 136, 104253. [Google Scholar] [CrossRef]
- Hu, Y.S.; Ye, L.; Huang, Z.L.; Li, Z.L.; Wei, C.; Danyushevski, L. Distribution and Existing Forms of Trace Elements from the Maliping Pb-Zn Deposit in Northeastern Yunnan, China: A LA-ICP-MS Study. Acta Petrol. Sin. 2019, 35, 3477–3492, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of Trace Elements in Co-Crystallized Sphalerite–Galena–Chalcopyrite Hydrothermal Ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Ulrich, T.; Zhang, J.; Wang, J. Trace Element Compositions of Sulfides from Pb-Zn Deposits in the Northeast Yunnan and Northwest Guizhou Provinces, SW China: Insights from LA-ICP-MS Analyses of Sphalerite and Pyrite. Ore Geol. Rev. 2022, 141, 104639. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Z.; Sun, H.; Koua, K.A.D.; Lyu, C. LA-ICP-MS Trace Element Analysis of Sphalerite and Pyrite from the Beishan Pb-Zn Ore District, South China: Implications for Ore Genesis. Ore Geol. Rev. 2022, 150, 105128. [Google Scholar] [CrossRef]
- Frenzel, M.; Voudouris, P.; Cook, N.J.; Ciobanu, C.L.; Gilbert, S.; Wade, B.P. Evolution of a Hydrothermal Ore-Forming System Recorded by Sulfide Mineral Chemistry: A Case Study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece. Miner. Depos. 2022, 57, 417–438. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J.-P. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.W.; Borg, G.; Albert Gilg, H.; Dong, L.H.; Fan, T.B.; Zhou, G.; Liu, R.L.; Hong, T.; Ke, Q.; et al. Geology and Geochemistry of the Giant Huoshaoyun Zinc-Lead Deposit, Karakorum Range, Northwestern Tibet. Ore Geol. Rev. 2019, 106, 251–272. [Google Scholar] [CrossRef]
- Sangster, D.F. Mississippi Valley-Type and Sedex Lead-Zinc Deposits: A Comparative Examination. Miss. Val.-Type Sedex Lead-Zinc Depos. Comp. Exam. 1990, 99, 21–42. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In Economic Geology: One Hundredth Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 561–608. ISBN 978-1-887483-01-8. [Google Scholar]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Basuki, N.I.; Taylor, B.E.; Spooner, E.T.C. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Econ. Geol. 2008, 103, 783–799. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites, Brines and Base Metals: Low-temperature Ore Emplacement Controlled by Evaporite Diagenesis. Aust. J. Earth Sci. 2000, 47, 179–208. [Google Scholar] [CrossRef]
- Anderson, G.M.; Thom, J. The Role of Thermochemical Sulfate Reduction in the Origin of Mississippi Valley-type Deposits II. Carbonate–Sulfide Relationships. Geofluids 2008, 8, 27–34. [Google Scholar] [CrossRef]
- Basuki, N.I. Post-Early Cretaceous MVT Zinc-Lead Mineralisation, Bongara Area, Northern Peru: Fluid Characteristics and Constraints on Deposition Mechanisms; University of Toronto: Toronto, ON, Canada, 2006. [Google Scholar]
- Zhou, M.L. Geological Characteristics and Origin of the Pb-Zn Polymetallic Deposit in Sachakou, Xinjiang Autonomous Region. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Zhu, B.Q. Theory and Application of Isotopic Systems in Earth Science—With Discussion on Crust-Mantle Evolution of the Chinese Continent; Science Press: Beijing, China, 1998; ISBN 7-03-005983-2. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Geochemical Evolution of the Continental Crust. Rev. Geophys. 1995, 33, 241. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The Model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Leach, D.L.; Bradley, D.C.; Huston, D.; Pisarevsky, S.A.; Taylor, R.D.; Gardoll, S.J. Sediment-Hosted Lead-Zinc Deposits in Earth History. Econ. Geol. 2010, 105, 593–625. [Google Scholar] [CrossRef]
- Potra, A.; Garmon, W.T.; Samuelsen, J.R.; Wulff, A.; Pollock, E.D. Lead Isotope Trends and Metal Sources in the Mississippi Valley-Type Districts from the Mid-Continent United States. J. Geochem. Explor. 2018, 192, 174–186. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Leach, D.L.; Hofstra, A.H.; Landis, G.P.; Rowan, E.L.; Viets, J.G. Chemical Reaction Path Modeling of Ore Deposition in Mississippi Valley-Type Pb-Zn Deposits of the Ozark Region, U.S. Midcontinent. Econ. Geol. 1994, 89, 1361–1383. [Google Scholar] [CrossRef]
- Meng, Y.M.; Zhang, X.; Huang, X.W.; Hu, R.Z.; Bi, X.W.; Meng, S.N.; Zhou, L.L.; Zheng, Y. A Review of the Zn-Pb Deposits in Sichuan-Yunnan-Guizhou Metallogenic Region with Emphasis on the Enrichment Mechanism of Ge, Ga, and In. Ore Geol. Rev. 2024, 164, 105853. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Huang, C.; Tong, L.; Mu, S.; Qiu, Z. Geological Characteristics and Age of the Dahongliutan Fe-Ore Deposit in the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China. J. Asian Earth Sci. 2016, 116, 1–25. [Google Scholar] [CrossRef]
- Hu, J.; Huang, C.; Wang, H. U-Pb Zircon Geochronology and Geochemistry of Metavolcanics and Associated Iron Ores of the Magnetite-Rich BIF Deposits in the Western Kunlun Orogenic Belt: Constraints on the Depositional Age, Origin and Tectonic Setting. Ore Geol. Rev. 2020, 126, 103751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, N.; Fan, T.; Sun, J.; Sui, Q.; Zhang, H.; Guo, Z.; Wusiman, J.; Weng, K.; Chen, Y. Geochemical Study of Trace Elements and In Situ S–Pb Isotopes of the Sachakou Pb–Zn Deposit in the Aksai Chin Region, Xinjiang. Minerals 2025, 15, 271. https://doi.org/10.3390/min15030271
Zhao X, Li N, Fan T, Sun J, Sui Q, Zhang H, Guo Z, Wusiman J, Weng K, Chen Y. Geochemical Study of Trace Elements and In Situ S–Pb Isotopes of the Sachakou Pb–Zn Deposit in the Aksai Chin Region, Xinjiang. Minerals. 2025; 15(3):271. https://doi.org/10.3390/min15030271
Chicago/Turabian StyleZhao, Xiaojian, Nuo Li, Tingbin Fan, Jing Sun, Qinglin Sui, Huishan Zhang, Zhouping Guo, Jianatiguli Wusiman, Kai Weng, and Yanjing Chen. 2025. "Geochemical Study of Trace Elements and In Situ S–Pb Isotopes of the Sachakou Pb–Zn Deposit in the Aksai Chin Region, Xinjiang" Minerals 15, no. 3: 271. https://doi.org/10.3390/min15030271
APA StyleZhao, X., Li, N., Fan, T., Sun, J., Sui, Q., Zhang, H., Guo, Z., Wusiman, J., Weng, K., & Chen, Y. (2025). Geochemical Study of Trace Elements and In Situ S–Pb Isotopes of the Sachakou Pb–Zn Deposit in the Aksai Chin Region, Xinjiang. Minerals, 15(3), 271. https://doi.org/10.3390/min15030271