Petrogenesis and Tectonic Implications of the Granite Porphyry in the Sinongduo Ag-Pb-Zn Deposit, Central Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd Isotopes
<p>(<b>a</b>) Simplified map showing the location of the Himalayan–Tibetan orogeny; (<b>b</b>) tectonic framework of the Lhasa terrane (modified after [<a href="#B7-minerals-14-00710" class="html-bibr">7</a>]); (<b>c</b>) diagram showing the distribution of the magmatic rocks and the associated deposits in the Lhasa terrane (modified after [<a href="#B52-minerals-14-00710" class="html-bibr">52</a>]).</p> "> Figure 2
<p>The simplified geological map (<b>a</b>) and lithostratigraphy of borehole BZK1502 (<b>b</b>) of the Sinongduo deposit (modified after [<a href="#B20-minerals-14-00710" class="html-bibr">20</a>]).</p> "> Figure 3
<p>The hand specimen photographs and photomicrographs showing the main ore structure and textures in the mineral assemblages from the Sinongduo deposit. (<b>a</b>) The rhyolite porphyry and crystal tuff with sphalerite, galena, and pyrite sulfide minerals; (<b>b</b>) the rhyolite porphyry cut by the sphalerite–galena vein; (<b>c</b>) the chalcopyrite in the sphalerite; (<b>d</b>) the euhedral pyrite in the quartz; (<b>e</b>) the galena and sphalerite; (<b>f</b>) the pearceite and argentite; (<b>g</b>) the hematite and pearceite developed in the pyrite; (<b>h</b>) the acanthite in the jasper; (<b>i</b>) the pyrargyrite developed in pyrite fractures. Abbreviations: Sp, sphalerite; Gn, galena; Py, pyrite; Ccp, chalcopyrite; Arn, argentite; Pea, pearceite; Hem, hematite; Aca, acanthite; Pyr, pyrargyrite; III, illite; Jas, jasper; Ser, sericite; Chl, chlorite; Q, quartz.</p> "> Figure 4
<p>(<b>a</b>) The field relationship of rocks, (<b>b</b>) hand specimen photograph, and (<b>c</b>–<b>e</b>) cross-polarized photomicrographs of the granite porphyry in the Sinongduo deposit. Abbreviations: Kfs—potassium feldspar; Q—quartz; Ser—sericite; Bt—biotite.</p> "> Figure 5
<p>Representative cathodoluminescence images of zircon grains for the (<b>a</b>) SND-G1 and (<b>b</b>) 1502-98 granite porphyry samples from the Sinongduo deposit. The yellow circles are 32 μm in diameter and show the location of the U-Pb analytical sites.</p> "> Figure 6
<p>LA-ICP-MS zircon U-Pb concordia and weighted mean age diagrams of samples (<b>a</b>,<b>b</b>) SND-G1 and (<b>c</b>,<b>d</b>) 1502-98 for the Sinongduo granite porphyry.</p> "> Figure 7
<p>Geochemical diagrams for the granite porphyry from the Sinongduo deposit. (<b>a</b>) SiO<sub>2</sub> versus Na<sub>2</sub>O + K<sub>2</sub>O diagram after [<a href="#B69-minerals-14-00710" class="html-bibr">69</a>]; (<b>b</b>) A/NK versus A/CNK diagram after [<a href="#B70-minerals-14-00710" class="html-bibr">70</a>]. Data for the Sinongduo volcanic rocks are from [<a href="#B71-minerals-14-00710" class="html-bibr">71</a>]; data for the Paleocene granites are from [<a href="#B72-minerals-14-00710" class="html-bibr">72</a>].</p> "> Figure 8
<p>(<b>a</b>) The chondrite-normalized REE patterns and (<b>b</b>) primitive mantle normalized trace element patterns for the Sinongduo granite porphyry. Data for the chondrite and primitive mantle normalization are from [<a href="#B73-minerals-14-00710" class="html-bibr">73</a>], data for the Indian Ocean sediments, UCC, and LCC are from [<a href="#B74-minerals-14-00710" class="html-bibr">74</a>], Sinongduo volcanic rock data are from [<a href="#B71-minerals-14-00710" class="html-bibr">71</a>], and Paleocene granite data are from [<a href="#B72-minerals-14-00710" class="html-bibr">72</a>]. Abbreviations: UCC, upper continental crust; LCC, lower continental crust.</p> "> Figure 9
<p>The Sr-Nd isotopic compositions for the granite porphyry from the Sinongduo deposit. Data for the Indian Ocean MORB, UCC, and LCC are from [<a href="#B75-minerals-14-00710" class="html-bibr">75</a>,<a href="#B76-minerals-14-00710" class="html-bibr">76</a>,<a href="#B77-minerals-14-00710" class="html-bibr">77</a>]. Data for global subducting sediment (GLOSS) are from [<a href="#B78-minerals-14-00710" class="html-bibr">78</a>]. Data for the Sinongduo volcanic rocks are from [<a href="#B71-minerals-14-00710" class="html-bibr">71</a>]; data for the Paleocene granites are from [<a href="#B72-minerals-14-00710" class="html-bibr">72</a>].</p> "> Figure 10
<p>Al<sub>2</sub>O<sub>3</sub>-(Na<sub>2</sub>O + K<sub>2</sub>O) versus CaO versus FeO<sup>T</sup> + MgO diagram (after [<a href="#B81-minerals-14-00710" class="html-bibr">81</a>]). Data for the Paleocene I-type volcanic rocks are from [<a href="#B32-minerals-14-00710" class="html-bibr">32</a>,<a href="#B33-minerals-14-00710" class="html-bibr">33</a>]; other data from the literature are from [<a href="#B10-minerals-14-00710" class="html-bibr">10</a>,<a href="#B71-minerals-14-00710" class="html-bibr">71</a>,<a href="#B72-minerals-14-00710" class="html-bibr">72</a>].</p> "> Figure 11
<p>(<b>a</b>) SiO<sub>2</sub> versus ε<sub>Nd</sub>(<span class="html-italic">t</span>), (<b>b</b>) SiO<sub>2</sub> versus (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub>, (<b>c</b>) Nb/Ta versus Zr, and (<b>d</b>) Nb/Ta versus Nb diagrams (after [<a href="#B88-minerals-14-00710" class="html-bibr">88</a>]. Data for the BCC are from [<a href="#B74-minerals-14-00710" class="html-bibr">74</a>]; other data sources are the same as that in the <a href="#minerals-14-00710-f009" class="html-fig">Figure 9</a>. Abbreviations: UCC, upper continental crust; LCC, lower continental crust; BCC, basin continental crust.</p> ">
Abstract
:1. Introduction
2. Geological Background
3. Deposit Geology
4. Samples and Methods
4.1. Sample Descriptions
4.2. Analytical Methods
5. Results
5.1. Zircon U-Pb Ages
5.2. Whole-Rock Geochemistry
5.3. Sr-Nd Isotopic Compositions
6. Discussion
6.1. Timing of Magmatism and Its Link with the Ag-Pb-Zn Mineralization
6.2. Classification of the Granite Porphyry
6.3. Magma Source and Petrogenesis
6.4. Tectonic Implications
7. Conclusions
- (1)
- LA-ICP-MS zircon U-Pb age shows that the granite porphyry was formed at 59.0–62.9 Ma, consistent with the timing of the mineralization, indicating that the granite porphyry intrusion is most likely the ore-forming magma in the Sinongduo deposit.
- (2)
- The geochemical and isotopic data suggest that the granite porphyry was a strongly peraluminous series which belongs to S-type granite.
- (3)
- The geochemical and isotopic characteristics of the granite porphyry are similar to those of the upper continental crust, which implies that the granite porphyry from the Sinongduo deposit likely originated from the melting of the upper continental crust in the India–Asia collisional tectonic setting.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Z.Q.; Wang, R.; Zhang, H.J.; Zheng, Y.C.; Jin, S.; Thybo, H.; Weinberg, R.F.; Yang, Z.M.; Hao, A.W.; Gao, L.; et al. Formation of giant copper deposits in Tibet driven by treating of the subducted Indian plate. Earth Sci. Rev. 2023, 243, 104482. [Google Scholar] [CrossRef]
- Jadoon, U.F.; Zhao, Q.; Huang, B.C.; Yi, Z.Y.; Azeem, M.W.; Lu, H.L.; Shah, S.A. A review of paleomagnetic constraints on the India-Asia collision: Paradoxes and perspectives. Earth Sci. Rev. 2024, 248, 104628. [Google Scholar] [CrossRef]
- Wang, R.; Weinberg, R.F.; Collins, W.J.; Richards, J.P.; Zhu, D.C. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth Sci. Rev. 2018, 181, 122–143. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan–Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Lang, X.H.; Deng, Y.L.; Wang, X.H.; Tang, J.X.; Yin, Q.; Xie, F.W.; Jiang, K. Geochronology and geochemistry of volcanic rocks of the Bima Formation, southern Lhasa subterrane, Tibet: Implications for early Neo-Tethyan subduction. Gondwana Res. 2020, 80, 335–349. [Google Scholar] [CrossRef]
- Pan, G.T.; Mo, X.X.; Zhu, D.C.; Wang, L.Q.; Li, G.M.; Zhao, Z.D.; Zhang, L. Spatial-temproral framework of the orogenic belt and its evolution. Acta Petrol. Sin. 2006, 22, 521–533, (In Chinese with English Abstract). [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, S.L.; Lo, C.H.; Ji, J.Q.; Lee, T.Y.; Qian, Q.; Zhang, Q. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 2009, 477, 20–35. [Google Scholar] [CrossRef]
- Zhang, S.H.; Ji, W.Q.; Chen, H.B.; Kirstein, L.A.; Wu, F.Y. Linking rapid eruption of the Linzizong volcanic rocks and early Eocene climatic optimum (EECO): Constraints from the Pana formation in the Linzhou and Pangduo basins, southern Tibet. Lithos 2023, 446–447, 107159. [Google Scholar] [CrossRef]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Ke, S. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 2008, 250, 49–67. [Google Scholar] [CrossRef]
- Jiang, X.J.; Ma, Y.; Kang, Y.M.; Yi, J.Z.; Yan, J.; Gao, S.B.; Chen, L.; Zheng, Y.Y. Determining multiple fluid pulse and evolution using zoned garnet in Mengya’a skarn Pb-Zn-polymetallic deposit, Tibet. Ore Geol. Rev. 2023, 163, 105795. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, Y.Y.; Sun, X.; Li, X.F.; Mao, G.Z. Genesis of the Yaguila Pb-Zn-Ag-Mo skarn deposit in Tibet: Insights from geochronology, geochemistry, and fluid inclusions. J. Asian Earth Sci. 2019, 172, 83–100. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Duan, L.F.; Lu, Y.J.; Zheng, Y.C.; Zhu, D.C.; Yang, Z.M.; Yang, Z.S.; Wang, B.D.; Pei, Y.R.; Zhao, Z.D.; et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Econ. Geol. 2015, 110, 1541–1575. [Google Scholar] [CrossRef]
- Qin, Q.; Zhong, L.L.; Zhong, K.H.; He, Z.Y.; Yan, Z.; Dewaele, S.; Peng, J.; Zhang, H.J.; Grave, J.D.; Su, W.B.; et al. Structural setting of the Narusongduo Pb-Zn ore deposit in the Gangdese belt, central Tibet. Ore Geol. Rev. 2022, 143, 104748. [Google Scholar] [CrossRef]
- Tang, J.X.; Wang, Q.; Yang, C.; Lang, X.H.; Li, H.F.; Huang, Y.R.; Yang, H.H. Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau: Practice of “absence prospecting” deposit metallogenic series. Miner. Depos. 2014, 6, 1151–1170, (In Chinese with English Abstract). [Google Scholar]
- Guo, N.; Liu, D.; Tang, J.X.; Zheng, L.; Huang, Y.R.; Shi, W.X.; Fu, Y.; Tang, N.; Wang, C. Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example. Miner. Depos. 2018, 37, 556–570, (In Chinese with English Abstract). [Google Scholar]
- Guo, N.; Guo, W.B.; Shi, W.X.; Huang, Y.R.; Guo, Y.N.; Lian, D.M. Characterization of illite clays associated with the Sinongduo low sulfidation epithermal deposit, Central Tibet using field SWIR spectrometry. Ore Geol. Rev. 2019, 120, 103228. [Google Scholar] [CrossRef]
- Huang, Y.R.; Guo, N.; Zheng, L.; Yang, Z.Y.; Fu, Y. 3D geological alteration mapping based on remote sensing and shortwave infrared technology: A case study from the Sinongduo low sulfidation epithermal deposit. Acta Geosci. Sin. 2017, 38, 779–789, (In Chinese with English Abstract). [Google Scholar]
- Lang, X.H.; Tang, J.X.; Yang, Z.Y.; Ding, S.; Hu, G.Y.; Li, Y.H.; Yan, C.M. Geophysical characteristics and prospecting direction of the Sinongduo Pb-Zn deposit in Xietongmen county, Tibet. Geol. Explor. 2017, 53, 0508–0518, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.; Lang, X.H.; Ding, S.; Li, H.F.; Yang, Z.Y.; Shi, S.; Li, Y.H. A study of the modes of occurrence of silver in the Sinongduo epithermal Ag-Pb-Zn deposit, Tibet. Acta Geosci. Sin. 2017, 38, 687–701, (In Chinese with English Abstract). [Google Scholar]
- Li, H.F.; Tang, J.X.; Hu, G.Y.; Ding, S.; Li, Z.; Xie, F.W.; Teng, L.; Cui, S.Y. Fluid inclusions, isotopic characteristics and geochronology of the Sinongduo epithermal Ag-Pb-Zn deposit, Tibet, China. Ore Geol. Rev. 2019, 107, 692–706. [Google Scholar] [CrossRef]
- Tang, J.X.; Ding, S.; Meng, Z.; Hu, G.Y.; Gao, Y.M.; Xie, F.W.; Fu, Y.G. The first discovery of the low sulfidation epithermal deposit in Linzizong volcanics, Tibet: A case study of the Sinongduo Ag polymetallic deposit. Acta Geosci. Sin. 2016, 37, 461–470, (In Chinese with English Abstract). [Google Scholar]
- Wang, M.; Li, C.; Dong, Y.S.; Jiang, W.; Jie, C.M.; Wu, Y.W. Cenozoic thrusting nappe structure in the Sinongduo area, Xietongmen, Tibet, China. Geol. Bull. China 2010, 29, 1851–1856, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z.Y.; Zhang, C.H.; Zhao, X.Y.; Lang, X.H.; Xiao, H.T.; Liang, J. Characteristics of rock geochemical anomalies and prospecting potential of the Sinongduo silver polymetallic deposit, Tibet. Geophys. Geochem. Explor. 2019, 43, 702–708, (In Chinese with English Abstract). [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and preCenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.M.; Santosh, M.; Wang, W.; Yu, F.; Liu, F. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. J. Geodyn. 2011, 52, 389–405. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhao, G.C.; Santosh, M.; Wang, J.L.; Dong, X.; Shen, K. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Res. 2010, 17, 615–631. [Google Scholar] [CrossRef]
- Lang, X.H.; Wang, X.H.; Deng, Y.L.; Tang, J.X.; Xie, F.W.; Yang, Z.Y.; Jiang, K. Hydrothermal evolution and ore precipitation of the No. 2 porphyry Cu–Au deposit in the Xiongcun district, Tibet: Evidence from cathodoluminescence, fluid inclusions, and isotopes. Ore Geol. Rev. 2019, 114, 103141. [Google Scholar] [CrossRef]
- Wang, R.; Richards, J.P.; Zhou, L.M.; Hou, Z.Q.; Stern, R.A.; Creaser, R.A.; Zhu, J.J. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth Sci. Rev. 2015, 150, 68–94. [Google Scholar] [CrossRef]
- Kang, Z.Q.; Xu, J.F.; Wilde, S.A.; Feng, Z.H.; Chen, J.L.; Wang, B.D.; Fu, W.C.; Pan, H.B. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the NeoTethys and Gangdese Magmatic Arc. Lithos 2014, 200–201, 157–168. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Zhao, Z.D.; Niu, Y.L.; Zhu, D.C.; Liu, D.; Wang, Q.; Wei, J.C. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tiebet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos 2017, 278–281, 477–490. [Google Scholar] [CrossRef]
- Mo, X.X.; Zhao, Z.D.; Deng, J.F.; Dong, G.C.; Zhou, S.; Guo, T.Y.; Zhang, S.Q.; Wang, L.L. Response of volcanism to the India–Asia collision. Earth Sci. Front. China Univ. Geosci. Beijing 2003, 10, 135–147, (In Chinese with English Abstract). [Google Scholar]
- Lee, H.Y.; Chung, S.L.; Ji, J.Q.; Qian, Q.; Gallet, S.; Lo, C.H.; Zhang, Q. Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J. Asian Earth Sci. 2012, 53, 96–114. [Google Scholar] [CrossRef]
- Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Wang, L.L.; Zhou, S. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou basin, Tibet. Geol. Bull. China 2005, 24, 549–557, (In Chinese with English Abstract). [Google Scholar]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Yang, Z.M. Mantle contributions to crustal thickening in south Tibet in response to the India–Asia collision. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Zhu, D.C.; Wang, Q.; Zhao, Z.D.; Chung, S.L.; Cawood, P.A.; Niu, Y.L.; Mo, X.X. Magmatic record of India-Asia collision. Sci. Rep. 2015, 5, 14289. [Google Scholar] [CrossRef]
- Coulon, C.; Maluski, H.; Bollinger, C.; Wang, S. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar–40Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett. 1986, 79, 281–302. [Google Scholar] [CrossRef]
- Xu, R.H.; Schärer, U.; Allègre, C.J. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. J. Geol. 1985, 93, 41–57. [Google Scholar] [CrossRef]
- He, S.D.; Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics 2007, 433, 15–37. [Google Scholar] [CrossRef]
- Zhu, D.C.; Wang, Q.; Cawood, P.A.; Zhao, Z.D.; Mo, X.X. Raising the Gangdese Mountains in southern Tibet. J. Geophys. Res. Solid Earth 2017, 122, 214–223. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Xu, R.; Lewis, C.L.; Jin, C.W. Plutonic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philos. Trans. R. Soc. Lond. 1988, A327, 145–168. [Google Scholar]
- Mo, X.X.; Dong, G.C.; Zhao, Z.D.; Guo, T.Y.; Wang, L.L.; Chen, T. Timing of magma mixing in Gangdise magmatic belt during the India–Asia collision: Zircon SHIRMP U–Pb dating. Acta Geol. Sin. 2005, 79, 66–76. [Google Scholar]
- Chen, X.L.; Liang, H.Y.; Zhang, J.; Sotiriou, P.; Huang, W.T.; Ren, L.; Zhang, L.; Zou, Y.Q. Geochemical characteristics and magma fertility for the Jurassic arc rocks in the Gangdese belt, Tibet. Ore Geol. Rev. 2019, 115, 103169. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ji, W.Q.; Liu, C.Z.; Chung, S.L. Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 2010, 271, 13–25. [Google Scholar] [CrossRef]
- Chu, M.F.; Chung, S.L.; Song, B.; Liu, D.Y.; O’Reilly, S.Y.; Pearson, N.J.; Ji, J.Q.; Wen, D.J. Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of Southern Tibet. Geology 2006, 34, 745–748. [Google Scholar] [CrossRef]
- Wen, D.R.; Chung, S.L.; Song, B.; Lizuka, Y.; Yang, H.J.; Ji, J.Q.; Gallet, S. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 2008, 105, 1–11. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Liu, C.Z.; Chung, S.L. Early Eocene crustal thickening in southern Tibet: New age and geochemical constraints from the Gangdese batholith. J. Asian Earth Sci. 2012, 53, 82–95. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Debon, F.; LeFort, P.; Sheppard, S.M.; Sonet, J. The four plutonic belts of the Transhimalaya–Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet–Nepal section. J. Petrol. 1986, 27, 219–250. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Qu, X.M.; Meng, X.J.; Li, Z.Q.; Beaudoin, G.; Rui, Z.Y.; Gao, Y.F.; Zaw, K. The Miocene Gangdese porphyry copper belt generated during postcollisional extension in the Tibetan Orogen. Ore Geol. Rev. 2009, 36, 25–51. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Sun, X.; Gao, S.B. Porphyry mineralization in the Gangdese Orogenic Belt. Acta Geol. Sin. Engl. Ed. 2014, 88, 662–664. [Google Scholar] [CrossRef]
- Lang, X.H.; Deng, Y.L.; Wang, X.H.; Tang, J.X.; Xie, F.W.; Yang, Z.Y.; Jiang, K. Reduced fluids in porphyry copper-gold systems reflect the occurrence of the wall-rock thermogenic process: An example from the No. 1 deposit in the Xiongcun district, Tibet, China. Ore Geol. Rev. 2019, 118, 103212. [Google Scholar] [CrossRef]
- Tang, J.X.; Lang, X.H.; Xie, F.W.; Gao, Y.M.; Li, Z.J.; Huang, Y.; Zhou, Y. Geological characteristics and genesis of the Jurassic No. I porphyry Cu–Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet. Ore Geol. Rev. 2015, 70, 438–456. [Google Scholar] [CrossRef]
- Zhao, J.X.; Qin, K.Z.; Li, G.M.; Li, J.X.; Xiao, B.; Chen, L.; Liu, Y.S. Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: Evidence from zircon U–Pb ages, Re–Os ages and Lu–Hf isotopes. Ore Geol. Rev. 2014, 56, 312–326. [Google Scholar] [CrossRef]
- Sun, X.; Hollings, P.; Lu, Y.J. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet. Mineral. Depos. 2021, 56, 457–480. [Google Scholar] [CrossRef]
- Zhao, J.X.; Qin, K.Z.; Xiao, B.; Mclnnes, B.; Li, G.M.; Evans, N.; Li, J.X. Thermal history of the giant Qulong Cu–Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic–hydrothermal evolution and exhumation. Gondwana Res. 2016, 36, 390–409. [Google Scholar] [CrossRef]
- Zheng, W.B.; Tang, J.X.; Zhong, K.H.; Ying, L.J.; Leng, Q.F.; Ding, S.; Lin, B. Geology of the Jiama porphyry copper-polymetallic system, Lhasa region, China. Ore Geol. Rev. 2016, 74, 151–169. [Google Scholar] [CrossRef]
- Zhou, A.R.G.L.; Dai, J.G.; Li, Y.L.; Li, H.A.; Tang, J.X.; Wang, C.S. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt: Insights from low temperature thermochronology. Ore Geol. Rev. 2019, 107, 801–819. [Google Scholar] [CrossRef]
- Wang, L.Q.; Tang, J.X.; Bagas, L.; Wang, Y.; Lin, X.; Li, Z.; Li, Y.B. Early Eocene Longmala skarn Pb-Zn-Cu deposit in Tibet, China: Geochemistry, fluid inclusions, and H-O-S-Pb isotopic compositions. Ore Geol. Rev. 2017, 88, 99–115. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Y.C.; Yang, Z.S.; Huizenga, J.M.; Li, Z.Q.; Zhao, M.; Yue, L.L.; Zhao, S.B. Petrogenesis of the quartz diorite from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-(Mo) deposit in southern Tibet: Implications for the genesis of a skarn-type polymetallic deposit in the Tibetan-Himalayan collisional orogen. Ore Geol. Rev. 2022, 145, 104920. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Fu, Q.; Hou, Z.Q.; Yang, Z.S.; Huang, K.X.; Wu, C.D.; Sun, Q.Z. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geol. Rev. 2015, 70, 510–532. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Zhang, H.Y.; Yao, M.J.; Wang, J.P.; Yang, Y.Q. S-Pb isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangling Fe-Sn deposit, Inner Mongolia, NE China. Ore Geol. Rev. 2014, 59, 109–122. [Google Scholar] [CrossRef]
- Qu, X.M.; Wang, R.J.; Xin, H.B.; Zhao, Y.Y.; Fan, X.T. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau. Geochimica 2009, 38, 523–535, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Tang, J.X.; Wang, L.Q.; Huizenga, J.M.; Santosh, M.; Zheng, S.L.; Gao, T. Geology, geochronology and geochemistry of the Miocene Jiaoxi quartz vein-type W deposit in the western part of the Lhasa Terrane, Tibet: Implications for ore genesis. Ore Geol. Rev. 2020, 120, 103433. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, J.X.; Wang, L.Q.; Li, S.; Danzhen, W.X.; Li, Z.; Gao, T. Magmatism and metallogenic mechanism of the Ga’erqiong and Galale Cu-Au deposits in the west central Lhasa subterrane, Tibet: Constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Ore Geol. Rev. 2019, 105, 616–635. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–495. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Ding, S.; Chen, Y.C.; Tang, J.X.; Xie, F.W.; Hu, G.Y.; Yang, Z.Y.; Shi, S.; Li, Y.H.; Yang, H.Y. Relationship between Linzizong volcanic rocks and mineralization: A case study of Sinongduo epithermal Ag-Pb-Zn deposit. Miner. Depos. 2017, 36, 1074–1092, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z.Y.; Tang, J.X.; Santosh, M.; Zhao, X.Y.; Lang, X.H.; Wang, Y.; Ding, S.; Ran, F.Q. Microcontinent subduction and S-type volcanism prior to India-Asia collision. Sci. Rep. 2021, 11, 14882. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The continental crust: Its composition and evolution. Blackwell Publishing: Oxford, UK, 1985; pp. 301–312.
- Jackson, M.G.; Hart, S.R.; Koppers, A.A.P.; Staudigel, H.; Konter, J.; Blusztajn, J.; Kurz, M.; Russell, J.A. Te return of subducted continental crust in Samoan lavas. Nature 2007, 448, 684–687. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, M.T.; Arculus, R.J.; Chappell, B.W.; Ferguson, J. Isotopic and geochemical studies of nodules in kimberlite have implications for the lower continental crust. Nature 1982, 300, 166–169. [Google Scholar] [CrossRef]
- Rehkämper, M.; Hofmann, A.W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 1997, 147, 93–106. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. Te chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Shi, S.; Ding, S.; Yang, Z.Y.; Zou, B. Zircon U-Pb dating of the Miocene granite porphyry in the Sinongduo Ag polymetallic ore deposit in Xietongmen, Tibet, China. Geol. Rev. 2017, 63, 209–210, (In Chinese with English Abstract). [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-type and S-type granites in the Lachlan fold belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Le Maitre, R.W. Te chemical variability of some common igneous rocks. J. Pet. 1976, 17, 589–598. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Bienvenu, P.; Bougault, H.; Joron, J.L.; Treuil, M.; Dmitriev, L. MORB alteration: Rare-earth element/non-rare-earth hygromagmaphile element fractionation. Chem. Geol. 1990, 82, 1–14. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Morton, D.M. High silica granites: Terminal porosity and crystal settling in shallow magma chambers. Earth Planet. Sci. Lett. 2015, 409, 23–31. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Yan, H.Y.; Long, X.P.; Li, J.; Wang, Q.; Zhao, B.S.; Shu, C.T.; Gou, L.L.; Zuo, R. Arc andesitic rocks derived from partial melts of Mélange diapir in subduction zones: Evidence from whole-rock geochemistry and Sr–Nd–Mo isotopes of the Paleogene Linzizong volcanic succession in Southern Tibet. JGR Solid Earth 2019, 124, 456–475. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb–Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Zhu, Z.; Campbell, I.H.; Allen, C.M.; Burnham, A.D. S-type granites: Teir origin and distribution through time as determined from detrital zircons. Earth Planet. Sci. Lett. 2020, 536, 116140. [Google Scholar]
- Collins, W.J.; Richards, S.W. Geodynamic signifcance of S-type granites in circum-Pacifc orogens. Geology 2008, 36, 559–562. [Google Scholar]
- Zhou, J.S.; Yang, Z.S.; Wang, Q.; Zheng, Y.C.; Hou, Z.Q.; Wyman, D.A. Extraction of high-silica granites from an upper crustal magma reservoir: Insights from the Narusongduo magmatic system, Gangdese arc. Am. Miner. 2020, 105, 1572–1584. [Google Scholar] [CrossRef]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Hu, X.M.; Garzanti, J.W.; Huang, W.T.; Wei, A.; An, W. The timing of India–Asia collision onset-Facts, theories, controversies. Earth-Sci. Rev. 2016, 160, 264–299. [Google Scholar] [CrossRef]
- Hu, X.; Garzanti, E.; Moore, T.; Raf, I. Direct stratigraphic dating of India–Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 2015, 43, 859–862. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Li, Z.; Zhao, F.; Liu, X. Petrogenesis and Tectonic Implications of the Granite Porphyry in the Sinongduo Ag-Pb-Zn Deposit, Central Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd Isotopes. Minerals 2024, 14, 710. https://doi.org/10.3390/min14070710
Zhang P, Li Z, Zhao F, Liu X. Petrogenesis and Tectonic Implications of the Granite Porphyry in the Sinongduo Ag-Pb-Zn Deposit, Central Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd Isotopes. Minerals. 2024; 14(7):710. https://doi.org/10.3390/min14070710
Chicago/Turabian StyleZhang, Peng, Zhuang Li, Feng Zhao, and Xinkai Liu. 2024. "Petrogenesis and Tectonic Implications of the Granite Porphyry in the Sinongduo Ag-Pb-Zn Deposit, Central Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd Isotopes" Minerals 14, no. 7: 710. https://doi.org/10.3390/min14070710
APA StyleZhang, P., Li, Z., Zhao, F., & Liu, X. (2024). Petrogenesis and Tectonic Implications of the Granite Porphyry in the Sinongduo Ag-Pb-Zn Deposit, Central Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd Isotopes. Minerals, 14(7), 710. https://doi.org/10.3390/min14070710