Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals
<p>Distribution of the Ordovician strike-slip faults and drilled samples (<b>a</b>), locations of the Fuman oilfield and YAB outcrop (<b>b</b>), location of the Tarim basin (<b>c</b>), and lithological column (<b>d</b>). F<sub>I</sub> and F<sub>II</sub> mentioned in <a href="#minerals-15-00270-f001" class="html-fig">Figure 1</a>a indicate first-order faults and second-order faults, respectively.</p> "> Figure 2
<p>Photo of experimental core samples: (<b>a</b>) GL1, (<b>b</b>) GL2, (<b>c</b>) GL3, (<b>d</b>) GL3-H, (<b>e</b>) YM5, (<b>f</b>) YM6, (<b>g</b>) YM703, (<b>h</b>) MS5, and (<b>i</b>) MS711. Siliceous minerals occurred in fractures with three colors including dark gray (<b>a</b>–<b>e</b>), grayish white (<b>f</b>–<b>i</b>), and colorless (<b>c</b>–<b>e</b>).</p> "> Figure 3
<p>Optical microscope images under plane-polarized light of samples, except for c with cross-polarized light. (<b>a</b>) GL1, grain limestone with grains replaced by cryptocrystalline silica and cemented by microcrystalline silica. (<b>b</b>) GL2, same description as (<b>a</b>). (<b>c</b>) GL3, same description as (<b>a</b>) except for the radial silica filling in the center of siliceous component. (<b>d</b>–<b>f</b>) GL3-H, two stages of siliceous minerals with cryptocrystalline silica on the outside and radial silica at the core. (<b>g</b>) YM5, cryptocrystalline silica replacing grains and becoming cloudy, and chemically homogeneous radial silica. (<b>h</b>) YM6, silica replacing grains along fracture. (<b>i</b>) YM703, cryptocrystalline silica replacing grains and crystalline silica filling in the fractures. Silica cut by late fractures filled with sparry calcite. (<b>j</b>–<b>k</b>) MS5, bioclastic grain and matrix replaced by cryptocrystalline silica, intergranular and dissolved pores filled by crystalline silica, and residual calcite located inside and at the edges of the bioclastic grain. (<b>l</b>) MS711, same description as (<b>a</b>). Red dots in the figure represent siliceous U–Pb dating targets, while blue dots represent calcareous U–Pb dating targets.</p> "> Figure 4
<p>BSE images and chemical analysis points of the siliceous minerals for GL3 (<b>a</b>,<b>b</b>), GL3-H (<b>c</b>–<b>e</b>), and YM5 (<b>f</b>). Red dots correspond to the points in <a href="#minerals-15-00270-t002" class="html-table">Table 2</a>. Black represents fracture or pores, dark gray represents silica, grayish white represents calcite, and white represents pyrite. The picture in the lower-left corners of (<b>a</b>,<b>c</b>,<b>d</b>,<b>f</b>) is the energy spectrum. Square points in (<b>b</b>) are the laser ablation points for U–Pb dating.</p> "> Figure 5
<p>Comparison of δ<sup>30</sup>Si of experimental samples with different geological reservoirs (Revised from Wang et al. [<a href="#B43-minerals-15-00270" class="html-bibr">43</a>]; Zhang et al. [<a href="#B44-minerals-15-00270" class="html-bibr">44</a>]; Deng et al. [<a href="#B45-minerals-15-00270" class="html-bibr">45</a>]; and Savage et al. [<a href="#B46-minerals-15-00270" class="html-bibr">46</a>,<a href="#B47-minerals-15-00270" class="html-bibr">47</a>]).</p> "> Figure 6
<p>U–Pb dating results of silica (red) and calcite (blue) in sampled fractures by LA-MC-ICP-MS. (<b>a</b>–<b>k</b>) Silica U–Pb dating of GL1, GL2, GL3, GL3-H (cryptocrystalline silica), GL3-H (radial silica), YM5, YM6, YM703, MS5 (cryptocrystalline silica of bioclast), MS5 (cryptocrystalline silica of matrix), and MS711, respectively; (<b>l</b>–<b>p</b>) Calcite U–Pb dating of GL2, GL3-H, YM703, MS5, and MS711; more details shown in <a href="#minerals-15-00270-t001" class="html-table">Table 1</a> and <a href="#minerals-15-00270-f003" class="html-fig">Figure 3</a>.</p> "> Figure 7
<p>The petrological characteristics and U–Pb age of siliceous rocks in the siliceous streak, 20 cm away from diabase intrusion of the Penglaiba Formation in the Yong’anba outcrop. (<b>a</b>) Outcrop photo; (<b>b</b>) sample photo of YAB; (<b>c</b>) optical microscope photo of YAB; (<b>d</b>) U–Pb dating result of YAB.</p> "> Figure 8
<p>The developments of strike-slip faults in the Fuman oilfield based on U–Pb dating [<a href="#B31-minerals-15-00270" class="html-bibr">31</a>,<a href="#B51-minerals-15-00270" class="html-bibr">51</a>].</p> "> Figure 9
<p>Seismic profiles and strike-slip fault interpretation of GL3-H well in F<sub>I</sub>5 (<b>a</b>), YM5 well in F<sub>I</sub>7 (<b>b</b>), and MS5 well in F<sub>I</sub>17 (<b>c</b>).</p> "> Figure 10
<p>Seismic profile (<b>a</b>) and evolution process at different periods (<b>b</b>–<b>f</b>) of F<sub>I</sub>17.</p> ">
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Collection of Samples
3.2. Experimental Methods
4. Results
4.1. Petrological Characteristics
4.2. Major Elements
4.3. Silicon Isotopes
4.4. U–Pb Dating of Fracture-Fillng Silica
5. Discussion
5.1. Origin of Siliceous Minerals
5.2. Geochronology of Siliceous Minerals
5.3. Stages and Evolution of Strike-Slip Faults
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gogonenkov, G.; Timurziev, A. Strike-slip faults in the West Siberian basin: Implications for petroleum exploration and development. Russ. Geol. Geophys. 2010, 51, 304–316. [Google Scholar] [CrossRef]
- Wang, Q. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China. Pet. Explor. Dev. 2023, 50, 1128–1139. [Google Scholar] [CrossRef]
- Li, Y.; Bian, C.; Li, S.; Liu, G.; Sun, W.; Zhang, L.; Li, Z. Discovery of deep strike-slip faults and its exploration significance in Zitong area, western Sichuan Basin. Chin. J. Geol. 2023, 58, 36–50. [Google Scholar]
- Ma, Y.; Cai, X.; Li, M.; Li, H.; Zhu, D.; Qiu, N.; Pang, X.; Zeng, D.; Kang, Z.; Ma, A.; et al. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates. Pet. Explor. Dev. 2024, 51, 692–707. [Google Scholar] [CrossRef]
- Li, C.; Jia, C.; Li, B.; Yang, G.; Yang, H.; Luo, C.; Han, J.; Wang, X. Distribution and Tectonic Evolution of the Paleozoic Fault System, the North Slope of Tazhong Uplift, Tarim Basin. Acta Geol. Sin. 2009, 83, 1065–1073. [Google Scholar]
- Deng, S.; Li, H.; Zhang, Z.; Zhang, J. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin. Am. Assoc. Pet. Geol. 2019, 103, 109–137. [Google Scholar] [CrossRef]
- Jia, C.; Ma, D.; Yuan, J.; Wei, G.; Yang, M.; Yan, L.; Tian, F.; Jiang, L. Structural characteristics, formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin. Nat. Gas Ind. 2021, 41, 81–91. [Google Scholar]
- Li, G.; Li, S.; Li, H.; Sun, C.; Xie, Z.; Li, F. Distribution pattern and formation mechanism of the strike-slip fault system in the central Tarim Basin. Nat. Gas Ind. 2021, 41, 30–37. [Google Scholar]
- Dooley, T.; Schreurs, G. Analogue Modelling of Intraplate Strike—Slip Tectonics: A Review and New Experimental Results. Tectonophysics 2012, 574–575, 1–71. [Google Scholar] [CrossRef]
- Schmid, T.; Schreurs, G.; Adam, J. Characteristics of Continental Rifting in Rotational Systems: New Findings from Spatiotemporal High Resolution Quantified Crustal Scale Analogue Models. Tectonophysics 2022, 822, 229174. [Google Scholar] [CrossRef]
- Fu, X.; Feng, J.; Wang, H.; Deng, S.; Ma, Q.; Lan, M.; Yi, Z. Sandbox Physical Simulation on “Different Period-Different Direction” Deformation Process of Strike-Slip Faults: A Case Study of Northern Segment of Shunbei No. 5 Fault in Tarim Basin. Earth Sci. 2023, 48, 2104–2116. [Google Scholar]
- Reynolds, S.; Coblentz, D.; Hillis, R. Tectonic forces controlling the regional interpolate stress field in continental Australia: Results from new finite element modeling. J. Geophys. Res. 2002, 107, 2131. [Google Scholar]
- Wang, Y.; Hou, G.; Li, J.; Pan, Y. Numercial simulation of tectonic stress field at the end of Neocene in the Midwest of Tabei uplift. Acta Sci. Nat. Univ. Pekin. 2008, 3, 52–57. [Google Scholar]
- Zhang, S. Fault Structures and Accumulating Dynamic Systems in Rifting Basin; Seismological Press: Beijing, China, 1997; pp. 208–230. [Google Scholar]
- Xie, X.; Liu, X.; Hu, X.; Qin, C. Hydrofracturing and associated episodic hydrocarbon-expulsion of mudstones in over-pressured basin. Geol. Sci. Technol. Inf. 1998, 17, 60–64. [Google Scholar]
- Sibson, R.; Moore, J.; Rankin, A. Seismic pumping-a hydrothermal fluid transport mechanism. J. Geol. Soc. 1975, 131, 653–659. [Google Scholar] [CrossRef]
- Ramsay, J.; Huber, M. The Techniques of Modern Structural Geology; Academic Press: London, UK, 1987. [Google Scholar]
- Hooper, E. Fluid migration along growth faults in compacting sediments. J. Pet. Geol. 1991, 14, 161–180. [Google Scholar] [CrossRef]
- Losh, S.; Eglinton, L.; Schoell, M.; Wood, J. Vertical and Lateral Fluid Flow Related to a Large Growth Fault, South Eugene Island Block 330 Field, Offshore Louisiana1. Am. Assoc. Pet. Geol. 1999, 83, 244–276. [Google Scholar]
- Uysal, I.; Zhao, J.; Golding, S.; Lawrence, M.; Glikson, M.; Collerson, K. Sm-Nd dating and rare-earth element tracing of calcite: Implications for fluid-flow events in the Bowen Basin, Australia. Chem. Geol. 2007, 238, 63–71. [Google Scholar] [CrossRef]
- Middleton, A.; Uysal, I.; Bryan, S.; Hall, C.; Golding, M. Integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology of authigenic illite to evaluate tectonic reactivation in an intraplate setting, central Australia. Geochim. Cosmochim. Acta 2014, 234, 155–174. [Google Scholar] [CrossRef]
- Uysal, I.; Mutlu, H.; Altunel, E.; Karabacak, V.; Golding, M. Clay mineralogical and isotopic (K–Ar, δ18O, δD) constraints on the evolution of the North Anatolian Fault Zone, Turkey. Earth Planet. Sci. Lett. 2006, 243, 181–194. [Google Scholar] [CrossRef]
- Pleuger, J.; Mancktelow, N.; Zwingmann, H.; Manser, M. K–Ar dating of synkinematic clay gouges from Neoalpine faults of the Central, Western and Eastern Alps. Tectonophysics 2012, 550–553, 1–16. [Google Scholar] [CrossRef]
- Djouder, H.; Uysal, I.; Silva, A.; Bourdet, J.; Todd, A.; Ramanaïdou, E.; Lamouri, B.; Crosdale, P.; Boulvain, F. Diagenesis and thermal maturity-evolution of the Silurian unconventional hydrocarbon deposits (Tassili n’Ajjer plateau, Algeria): Clay mineralogy, graptolite reflectance, and K-Ar dating. Mar. Pet. Geol. 2023, 148, 106020. [Google Scholar] [CrossRef]
- Zuccari, C.; Mazzarini, F.; Tavarnelli, E.; Viola, G.; Aldega, L.; Moretto, V.; Xie, R.; Musumeci, G. How brittle detachments form and evolve through space and time. Earth Planet. Sci. Lett. 2024, 648, 119108. [Google Scholar] [CrossRef]
- Del Sole, L.; Viola, G.; Aldega, L.; Moretto, V.; Curzi, M.; Xie, R.; Cantelli, L.; Vignaroli, G. High-resolution investigations of fault architecture in space and time. Sci. Rep. 2025, 15, 2258. [Google Scholar] [CrossRef]
- Curzi, M.; Viola, G.; Zuccari, C.; Aldega, L.; Billi, A.; Van der lelij, R.; Kylander-clark, A.; Vignaroli, G. Tectonic evolution of the Eastern Southern Alps (Italy): A reappraisal from new structural data and geochronological constraints. Tectonics 2024, 43, e2023TC008013. [Google Scholar] [CrossRef]
- Mutlu, H.; Uysal, I.; Altunel, E.; Karabacak, V.; Feng, Y.; Zhao, J.; Atalay, O. Rb-Sr systematics of fault gouges from the North Anatolian Fault Zone (Turkey). J. Struct. Geol. 2010, 32, 216–221. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Clauer, N.; Uysal, I.; Kröner, A. A Rb-Sr, Sm-Nd and Pb-Pb isotopic contribution to their tectonic-thermal history (Kaapvaal Craton, South Africa). Precambrian Res. 2021, 365, 106393. [Google Scholar] [CrossRef]
- Pan, L.; Shen, A.; Zhao, J.; Hu, A. LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sediment. Geol. 2020, 407, 105728. [Google Scholar] [CrossRef]
- Qiao, Z.; Shen, A.; Zhang, S.; Hu, A.; Liang, F.; Luo, X.; Shao, G.; Wang, Y.; Zhao, J.; Cao, P.; et al. Origin of giant Ordovician cavern reservoirs in the Halahatang oil field in the Tarim Basin, northwestern China. Am. Assoc. Pet. Geol. 2023, 107, 1105–1135. [Google Scholar] [CrossRef]
- Wei, D.; Gao, Z.; Zhang, L.; Fan, T.; Wang, J.; Zhang, C.; Zhu, D.; Ju, J.; Luo, W. Application of blocky calcite vein LA-MC-ICP-MS U-Pb dating and geochemical analysis to the study of tectonic–fault–fluid evolutionary history of the Tabei Uplift, Tarim Basin. Sediment. Geol. 2023, 453, 106425. [Google Scholar] [CrossRef]
- Tavani, S.; Smeraglia, L.; Fabbi, S.; Aldega, L.; Sabbatino, M.; Cardello, G.L.; Maresca, A.; Schirripa Spagnolo, G.; Kylander-Clark, A.; Billi, A.; et al. Timing, thrusting mode, and negative inversion along the Circeo thrust, Apennines, Italy: How the accretion-to-extension transition operated during slab rollback. Tectonics 2023, 42, e2022TC007679. [Google Scholar] [CrossRef]
- Curzi, M.; Bernasconi, S.M.; Billi, A.; Boschi, C.; Aldega, L.; Franchini, S.; Albert, R.; Gerdes, A.; Barberio, M.D.; Looser, N.; et al. U-Pb age of the 2016 Amatrice earthquake causative fault (Mt. Gorzano, Italy) and paleo-fluid circulation during seismic cycles inferred from inter- and co-seismic calcite. Tectonophysics 2021, 819, 229076. [Google Scholar] [CrossRef]
- Marchesini, B.; Tavani, S.; Mercuri, M.; Mondillo, N.; Pizzati, M.; Balsamo, F.; Aldega, L.; Carminati, E. Structural control on the alteration and fluid flow in the lithocap of the Allumiere-Tolfa epithermal system. J. Struct. Geol. 2024, 179, 105035. [Google Scholar] [CrossRef]
- Tian, J.; Yang, H.; Zhu, Y.; Deng, X.; Xie, Z.; Zhang, Y.; Li, S.; Cai, Q.; Zhang, Y.; Huang, L. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin. Acta Pet. Sin. 2021, 42, 971–985. [Google Scholar]
- Song, X.; Chen, S.; Xie, Z.; Kang, P.; Li, T.; Yang, M.; Liang, X.; Peng, Z.; Shi, X. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin. Oil Gas Geol. 2023, 44, 335–349. [Google Scholar]
- Jia, C. Tectonic Characteristics and Petroleum Tarim Basin China; Petroleum Industry Press: Beijing, China, 1997; pp. 133–177. [Google Scholar]
- Han, J.; Su, Z.; Chen, L.; Guo, D.; Zhang, Y.; Ji, Y.; Zhang, H.; Yuan, J. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin. Acta Pet. Sin. 2019, 40, 1296–1310. [Google Scholar]
- Jiang, T.; Han, J.; Wu, G.; Yu, H.; Su, Z.; Xiong, C.; Chen, J.; Zhang, H. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China. Pet. Explor. Dev. 2020, 47, 213–224. [Google Scholar] [CrossRef]
- Deng, S.; Li, H.; Zhang, Z.; Wu, X.; Zhang, J. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin. Oil Gas Geol. 2018, 39, 878–888. [Google Scholar]
- Wang, Q.; Yang, H.; Li, Y.; Lv, X.; Zhang, Y.; Zhang, Y.; Sun, C.; Ouyang, S. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim. Earth Sci. Front. 2022, 29, 239–251. [Google Scholar]
- Wang, W.; Wei, H.; Jiang, S.; Liu, X.; Lei, F.; Lin, Y.; Zhao, Y. Silicon Isotope Geochemistry: Fractionation Linked to Silicon Complexations and Its Geological Applications. Molecules 2019, 24, 1415. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Duan, L.; Zhang, S.; Zhu, R.; Chen, B. The isotopic characteristics of silicon and oxgen and the genesis of the Dengying Siliceous rock series in the North Verge of the Upper Yangtze Block. Bulletion Mineral. Petrol. Geochem. 2014, 33, 452–456. [Google Scholar]
- Deng, Z.; Chaussidon, M.; Guitreau, M.; Puchtel, I.; Dauphas, N.; Moynier, F. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nat. Geosci. 2019, 12, 774–778. [Google Scholar] [CrossRef]
- Savage, P. Silicon Isotopes and the Development of the Earth. Doctor of Thesis, University of Oxford, London, UK, 2011. [Google Scholar]
- Savage, P.; Armytage, R.; Georg, R.; Halliday, A. High temperature silicon isotope geochemistry. Lithos 2014, 190, 500–519. [Google Scholar] [CrossRef]
- Jiang, S.; Palmer, M. Silicon isotope geochemistry of the Sullivan Pb-Zn deposit, Canada: A preliminary study. Econ. Geol. 1994, 89, 1623–1629. [Google Scholar] [CrossRef]
- Li, Y.; Su, W.; Kong, P.; Qian, Y.; Zhang, K.; Zhang, M.; Chen, Y.; Cai, X.; You, D. Zircon U-Pb ages of the Early Permian magmatic rocks in the Tazhong-Bachu region, Traim basin by LA-ICP-MS. Acta Petrol. Sin. 2007, 23, 1097–1107. [Google Scholar]
- Chen, M.; Tian, W.; Zhang, Z.; Pan, W.; Song, Y. Geochronology of the Permian basic-intermediate-acidic magma suite from Tarim, Northwest China and its geological implications. Acta Petrol. Sin. 2010, 26, 559–572. [Google Scholar]
- Wu, G.; Ma, B.; Han, J.; Guan, B.; Chen, X.; Yang, P.; Xie, Z. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China. Pet. Explor. Dev. 2021, 48, 510–520. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Deng, X.; Zhang, Y.; Yuan, J.; Xie, Z.; Li, T.; Luo, X.; Ma, X. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation: A case study of the northern depression in the Tarim Basin. Nat. Gas Ind. 2021, 41, 10–20. [Google Scholar]
- Ma, Q.; Zeng, L.; Xu, X.; Geng, F.; Tong, H.; Jiang, H.; Xiao, K. Characteristics and genetic mechanism of the strike-slip fault system in the Ordovician of the Tahe oilfield. Acta Geol. Sin. 2023, 97, 496–506. [Google Scholar]
- He, Z.; Yun, L.; You, D.; Peng, S.; Zhang, H.; Wang, K.; Qian, Y.; Jiao, C.; Zhang, J. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin. Earth Sci. Frotiers 2019, 26, 13–21. [Google Scholar]
Sample | Host Rock | Depth/m | Strata | Siliceous Mineral | Siliceous U–Pb Dating | Calcite U–Pb Dating | |||
---|---|---|---|---|---|---|---|---|---|
Diagenesis | δ30SiV-NBS28 ‰ | Target | Age Ma | Target | Age Ma | ||||
YAB | Fine-powder dolomite | Outcrop | O1p | Cryptocrystalline silica replacing dolomite, Crystalline and radial silica filling in vug | 2.8 | Crystalline silica | 285.2 ± 7 | / | / |
GL1 | Grain limestone | 7318.18 | O2y | Cryptocrystalline silica replacing calcareous grain, crystalline silica cementing intergranular boundaries | 0.8 | Cryptocrystalline silica | 458 ± 78 | / | / |
GL2 | 7389.10 | O2y | Cryptocrystalline silica replacing calcareous grain, crystalline silica cementing intergranular boundaries | 1.1 | Cryptocrystalline silica | 440 ± 67 | Rhombic calcite at the edge of silica | 284 ± 60 | |
GL3 | 7938.42 | O1-2y | Cryptocrystalline silica replacing calcareous grain, radial silica filling in vug | 1.4 | Crystalline silica filling in the vug | 292 ± 47 | / | / | |
GL3-H | 7789.23 | O2y | Cryptocrystalline silica replacing matrix | 0.9 | Cryptocrystalline silica | 403 ± 41 | Rhombic calcite at the siliceous edge | 322 ± 28 | |
Radial silica filling in fracture and vug | 1.5 | Radial silica filling in fracture and vug | 252 ± 56 | ||||||
YM5 | 7276.42 | O2y | Cryptocrystalline silica replacing matrix, crystalline silica cementing intergranular and radial silica filling in fracture and vug | 0.9 | Radial silica filling in vug | 174 ± 35 | / | / | |
YM6 | 7303.92 | O2y | Cryptocrystalline silica replacing matrix | 0.7 | Metasomatic cryptocrystalline silica | 454 ± 50 | / | / | |
YM703 | 7292.78 | O2y | Cryptocrystalline silica replacing matrix, crystalline silica filling in fracture and vug | 1.2 | Cryptocrystalline siliceous bioclast | 399 ± 32 | Calcite in the siliceous vug | 290 ± 19 | |
MS5 | 7609.38 | O2y | Cryptocrystalline silica replacing matrix | 1.7 | Cryptocrystalline siliceous bioclast | 376 ± 19 | Calcite at the siliceous edge | 457 ± 13 | |
Cryptocrystalline silica replacing matrix, crystalline silica filling in fracture and vug | Cryptocrystalline silica | 371 ± 19 | |||||||
MS711 | 7712.1 | O1-2y | Cryptocrystalline silica replacing matrix, crystalline silica filling in fracture and vug | 1.1 | Metasomatic cryptocrystalline silica | 376 ± 30 | Rhombic calcite | 383 ± 64 |
Point | MgO | CaO | Na2O | K2O | SiO2 | SO3 | MnO | FeO | Sum |
---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 0.16 | 0.17 | 0.10 | 94.09 | 0.00 | 0.04 | 0.00 | 94.56 |
2 | 0.00 | 0.33 | 0.10 | 0.03 | 76.26 | 0.00 | 0.00 | 0.05 | 76.77 |
3 | 0.51 | 54.69 | 0.00 | 0.00 | 1.08 | 0.00 | 0.00 | 0.00 | 56.28 |
4 | 0.00 | 0.03 | 0.66 | 0.13 | 93.66 | 0.11 | 0.00 | 0.09 | 94.68 |
5 | 0.29 | 34.30 | 0.53 | 0.09 | 25.48 | 0.05 | 0.00 | 0.00 | 60.74 |
6 | 0.30 | 23.06 | 0.54 | 0.10 | 24.03 | 0.05 | 0.00 | 0.00 | 48.09 |
7 | 0.27 | 52.24 | 0.02 | 0.00 | 6.92 | 0.02 | 0.00 | 0.00 | 59.48 |
8 | 0.00 | 0.27 | 0.00 | 0.01 | 81.62 | 0.00 | 0.00 | 0.00 | 81.89 |
9 | 0.29 | 34.30 | 0.53 | 0.09 | 25.48 | 0.05 | 0.00 | 0.00 | 60.74 |
10 | 0.15 | 43.92 | 0.08 | 0.00 | 15.18 | 0.00 | 0.00 | 0.00 | 59.33 |
11 | 0.20 | 53.42 | 0.00 | 0.00 | 1.23 | 0.00 | 0.00 | 0.00 | 54.86 |
12 | 0.53 | 43.95 | 0.08 | 0.14 | 20.94 | 0.00 | 0.00 | 0.06 | 65.69 |
13 | 0.18 | 49.75 | 0.17 | 0.01 | 9.19 | 0.00 | 0.05 | 0.14 | 59.48 |
14 | 0.00 | 0.00 | 0.41 | 0.12 | 96.39 | 0.11 | 0.00 | 0.00 | 97.02 |
15 | 0.10 | 45.51 | 0.00 | 0.00 | 17.40 | 0.00 | 0.00 | 0.00 | 63.01 |
16 | 0.33 | 34.01 | 0.28 | 0.03 | 13.49 | 0.05 | 0.00 | 0.04 | 48.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Qiao, Z.; Luo, X.; Zhang, T.; Li, B.; Chang, S.; Zhang, Z.; Chen, J. Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals. Minerals 2025, 15, 270. https://doi.org/10.3390/min15030270
Yao C, Qiao Z, Luo X, Zhang T, Li B, Chang S, Zhang Z, Chen J. Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals. Minerals. 2025; 15(3):270. https://doi.org/10.3390/min15030270
Chicago/Turabian StyleYao, Chao, Zhanfeng Qiao, Xiao Luo, Tianfu Zhang, Bing Li, Shaoying Chang, Zhenyu Zhang, and Jiajun Chen. 2025. "Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals" Minerals 15, no. 3: 270. https://doi.org/10.3390/min15030270
APA StyleYao, C., Qiao, Z., Luo, X., Zhang, T., Li, B., Chang, S., Zhang, Z., & Chen, J. (2025). Stages and Evolution of Strike-Slip Faults of the Ultra-Deep-Burial Ordovician Strata in Fuman Oilfield, Tarim Basin: Evidence from U-Pb Geochronology of Siliceous Minerals. Minerals, 15(3), 270. https://doi.org/10.3390/min15030270