Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes
<p>(<b>a</b>) Tectonic subdivision map of China, showing the location of the Qinling Orogen (modified after [<a href="#B24-minerals-14-01173" class="html-bibr">24</a>]); (<b>b</b>) tectonic subdivision map of the Qinling Orogen, showing the location of the Luanchuan orefield (modified after [<a href="#B24-minerals-14-01173" class="html-bibr">24</a>]); (<b>c</b>) geological map of Luanchuan orefield, showing the granitoid and deposits distribution (modified after [<a href="#B25-minerals-14-01173" class="html-bibr">25</a>]).</p> "> Figure 2
<p>Geological map of Shibaogou deposit (modified after [<a href="#B34-minerals-14-01173" class="html-bibr">34</a>]). The number of drill holes: 1. ZK6002; 2. ZK6204; 3. ZK6402; 4. ZK6602.</p> "> Figure 3
<p>Geological profiles for prospecting lines L64 (<b>a</b>) and L03 (<b>b</b>) of the Shibaogou deposit [<a href="#B34-minerals-14-01173" class="html-bibr">34</a>].</p> "> Figure 4
<p>Photographs showing petrography of the Shibaogou granite. (<b>a</b>) Hand specimen of monzogranite; (<b>b</b>) monzogranite under plane-polarized light (PPL), with euhedral-tabular plagioclase phenocrysts and anhedral microcline and quartz; (<b>c</b>) monzogranite under crossed-nicols light (CN); (<b>d</b>) sericitized monzogranite (PPL), with chloritized biotite and sericitized–kaolinized orthoclase; (<b>e</b>) hand specimen of K-feldspar-altered monzogranite; (<b>f</b>) K-feldspar alteration in monzogranite (PPL), with plagioclase phenocrysts altered to orthoclase, while orthoclase phenocrysts remain unaltered; (<b>g</b>) hand specimen of syenogranite; (<b>h</b>) microphotograph of syenogranite (PPL), with anhedral quartz and orthoclase phenocrysts as the main components; (<b>i</b>) microphotograph of syenogranite (CN). Mineral abbreviations: Bi. biotite; Mc. microcline; Or. orthoclase; Pl. plagioclase; Qz. quartz; Ttn. titanite.</p> "> Figure 5
<p>Cathodoluminescence (CL) images of zircons from the Shibaogou granite. The red circles indicate the locations of U-Pb dating analyses.</p> "> Figure 6
<p>Zircon U-Pb Concordia diagram of samples from the Shibaogou granite. Monzogranite samples: (<b>a</b>) 6602-11, (<b>b</b>) 6204-60. Syenogranite samples: (<b>c</b>) 6402-36, (<b>d</b>) 6002-1.</p> "> Figure 7
<p>Major elements variation diagrams for the Shibaogou granite: (<b>a</b>) SiO<sub>2</sub> vs. K<sub>2</sub>O plots (base map after [<a href="#B47-minerals-14-01173" class="html-bibr">47</a>]); (<b>b</b>) A/NK vs. A/CNK discriminant diagram (base map after [<a href="#B47-minerals-14-01173" class="html-bibr">47</a>]).</p> "> Figure 8
<p>Chondrite-normalized REE patterns ((<b>a</b>,<b>c</b>), normalized values are from [<a href="#B49-minerals-14-01173" class="html-bibr">49</a>]) and primitive mantle-normalized trace element patterns ((<b>b</b>,<b>d</b>), normalized values are from [<a href="#B50-minerals-14-01173" class="html-bibr">50</a>]) for the Shibaogou granite.</p> "> Figure 9
<p>Whole-rock lead isotopic composition diagram of Shibaogou granite. (<b>a</b>) <sup>208</sup>Pb/<sup>204</sup>Pb vs. <sup>206</sup>Pb/<sup>204</sup>Pb diagram; (<b>b</b>) <sup>207</sup>Pb/<sup>204</sup>Pb vs. <sup>206</sup>Pb/<sup>204</sup>Pb diagram. The Pb isotope of strata has been recalculated to 150 Ma, and the initial data are from Taihua and Xiong’er Group [<a href="#B55-minerals-14-01173" class="html-bibr">55</a>,<a href="#B56-minerals-14-01173" class="html-bibr">56</a>,<a href="#B57-minerals-14-01173" class="html-bibr">57</a>,<a href="#B58-minerals-14-01173" class="html-bibr">58</a>], Luanchuan and Guandaokou Group [<a href="#B59-minerals-14-01173" class="html-bibr">59</a>], and Kuanping and Erlangping Group [<a href="#B60-minerals-14-01173" class="html-bibr">60</a>]. The trends for U (upper crust), O (orogenic belt), M (mantle), and L (lower crust) are from [<a href="#B54-minerals-14-01173" class="html-bibr">54</a>].</p> "> Figure 10
<p>Discriminant diagrams for tectonic environment of Shibaogou granite. (<b>a</b>) Granite (Y + Nb)-Rb tectonic diagram (base map from [<a href="#B63-minerals-14-01173" class="html-bibr">63</a>]). (<b>b</b>) Granite Hf-Rb/30-Ta × 3 tectonic diagram (base map from [<a href="#B64-minerals-14-01173" class="html-bibr">64</a>]).</p> "> Figure 11
<p>(<b>a</b>) La/Sm vs. La plot shows a batch partial melting trend [<a href="#B70-minerals-14-01173" class="html-bibr">70</a>]; (<b>b</b>) Ba vs. Sr plot shows the trend of mineral fractionation phase (arrow direction are after Rollinson [<a href="#B71-minerals-14-01173" class="html-bibr">71</a>]), ruling out the influence from the fractionation of plagioclase and hornblende. Bi = biotite, Hb = hornblende, Kf = K-feldspar, Ms = muscovite, Pl = plagioclase.</p> "> Figure 12
<p>The <span class="html-italic">I</span><sub>Sr</sub>-<span class="html-italic">ε</span><sub>Nd</sub>(<span class="html-italic">t</span>) diagram of Shibaogou granite (t = 150 Ma). The Sr-Nd isotope of strata has been recalculated to 150 Ma, and the initial data are from the Taihua Supergroup [<a href="#B57-minerals-14-01173" class="html-bibr">57</a>,<a href="#B86-minerals-14-01173" class="html-bibr">86</a>,<a href="#B87-minerals-14-01173" class="html-bibr">87</a>], Xiong’er Group [<a href="#B58-minerals-14-01173" class="html-bibr">58</a>,<a href="#B88-minerals-14-01173" class="html-bibr">88</a>,<a href="#B89-minerals-14-01173" class="html-bibr">89</a>], Qinling Group [<a href="#B90-minerals-14-01173" class="html-bibr">90</a>], Kuanping Group and Erlangping Group [<a href="#B60-minerals-14-01173" class="html-bibr">60</a>], Yudongzi Group, and Kongling Group [<a href="#B84-minerals-14-01173" class="html-bibr">84</a>,<a href="#B91-minerals-14-01173" class="html-bibr">91</a>].</p> "> Figure 13
<p>Zircon Hf isotopic diagram of Shibaogou granite (t = 150 Ma). Data on Shibaogou granite are from <a href="#app1-minerals-14-01173" class="html-app">Table S6</a>. Data of strata are from the Guandaokou Group [<a href="#B92-minerals-14-01173" class="html-bibr">92</a>], Kuanping and Erlangping Group (the crustal material of North Qinling) [<a href="#B92-minerals-14-01173" class="html-bibr">92</a>,<a href="#B93-minerals-14-01173" class="html-bibr">93</a>], Qinling Group [<a href="#B93-minerals-14-01173" class="html-bibr">93</a>], Xiong’er Group [<a href="#B89-minerals-14-01173" class="html-bibr">89</a>,<a href="#B94-minerals-14-01173" class="html-bibr">94</a>], and Taihua Supergroup [<a href="#B26-minerals-14-01173" class="html-bibr">26</a>,<a href="#B95-minerals-14-01173" class="html-bibr">95</a>,<a href="#B96-minerals-14-01173" class="html-bibr">96</a>,<a href="#B97-minerals-14-01173" class="html-bibr">97</a>].</p> "> Figure 14
<p>Yanshanian tectonic model of Qinling orogen and genesis model of the Shibaogou pluton (modified after [<a href="#B9-minerals-14-01173" class="html-bibr">9</a>]).</p> ">
Abstract
:1. Introduction
2. Regional Geology
3. Deposit and Pluton Geology
3.1. Feature of Orebody and Alteration
3.2. Petrography of Shibaogou Pluton
4. Samples and Analytical Methods
5. Results
5.1. Zircon U-Pb Geochronology
5.2. Major and Trace Element Geochemistry
5.3. Whole-Rock Sr-Nd-Pb Isotopes
6. Discussion
6.1. Categorization of the Shibaogou Granite
6.2. Tectonic Characteristics of the Magmatic Source
6.3. Magma Origin
6.4. Tectonic Setting and Metallogenic Significance
7. Conclusions
- The ore-causative lithology of the Shibaogou intrusion consists of porphyritic biotite monzogranite and porphyritic biotite syenogranite, with characteristics of both S-type and I-type granites.
- Zircon U-Pb dating indicates an emplacement age of approximately 151–148 Ma, corresponding to the compressional–extensional transition in the collisional orogeny between the Yangtze Plate and the North China Craton.
- Geochemical data suggest a significant continental crust origin, with garnet and rutile as residual phases, indicating that the magma was derived from partial melting of thickened lower crust at depths of 40–60 km.
- Sr-Nd-Pb isotopic analyses reveal a mixed source, primarily from the Taihua and Xiong’er Groups of the Huaxiong Block, with contributions from juvenile crustal rocks in the Kuanping and Erlangping Groups of the North Qinling Accretion Belt.
- The Shibaogou deposit underwent prolonged magmatic–hydrothermal activity lasting approximately 5 million years. Elevated oxygen fugacity conditions facilitated the mineralization of W and Mo, similar to other large hydrothermal systems globally.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, W.H.; Bookstrom, A.A.; Kamilli, R.J.; Ganster, M.W.; Smith, R.P.; Ranta, D.E.; Steininger, R.C. Character and origin of Climax-type molybdenum deposits. Econ. Geol. 1981, 75, 270–316. [Google Scholar]
- Shannon, J.R.; Nelson, E.P.; Smith, R.P. Climax porphyry molybdenum deposit, Colorado: A summary. Econ. Geol. Bull. Soc. Econ. Geol. 2006, 38, 5–22. [Google Scholar]
- Taylor, R.D.; Hammarstrom, J.M.; Piatak, N.M.; Seal, R.R. Arc-related porphyry molybdenum deposit model. Sci. Investig. Rep. 2012, 2010, 1–64. [Google Scholar]
- Carten, R.B.; White, W.H.; Stein, H.J. High-grade granite-related molybdenum systems: Classification and origin. Geol. Assoc. Can. 1993, 40, 521–554. [Google Scholar]
- Chen, Y.J.; Li, N. Nature of ore-fluids of intracontinental intrusion-related hypothermal deposits and its difference from those in island arcs. Acta Petrol. Sin. 2009, 25, 2477–2508, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Franco, P.; Li, N.; Deng, X.H.; Yang, Y.F. Geology and Geochemistry of Molybdenum Deposits in the Qinling Orogen, PR China; Springer: Singapore, 2022; pp. 1–842. [Google Scholar]
- Li, N.; Ulrich, T.; Chen, Y.J.; Thomsen, T.B.; Pease, V.; Pirajno, F. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geol. Rev. 2012, 48, 442–459. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wang, P.; Li, N.; Yang, Y.F.; Pirajno, F. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geol. Rev. 2017, 81, 405–430. [Google Scholar] [CrossRef]
- Qi, N.; Williams-Jones, A.E.; Yu, J.; Chen, Y. The geochronology, geochemistry, and petrogenesis of the Leimengou porphyries, Qinling Orogen: A case study of intrusions associated with a Dabie-type porphyry Mo deposit. Ore Geol. Rev. 2023, 163, 105781. [Google Scholar] [CrossRef]
- Yang, F.; Xue, F.; Santosh, M.; Wang, G.; Kim, S.W.; Shen, Z.; Jia, W.; Zhang, X. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications. Geosci. Front. 2019, 10, 1803–1821. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zhang, H.; Zhu, A.M.; Wang, H.M.; Shi, X.F.; Ye, H.S.; Yang, Y.Q. Petrogenesis and tectonic setting of the Mesozoic Huoshenmiao intrusion in the Luanchuan ore district, Henan Province, North China. J. Asian Earth Sci. 2018, 160, 239–257. [Google Scholar] [CrossRef]
- Guo, B.; Yan, C.H.; Zhang, S.T.; Han, J.W.; Yun, H.; Tan, H.Y.; Song, Q.C.; Meng, F.X. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo-W deposit at the southern margin of the North China Craton. Geol. J. 2018, 55, 95–116. [Google Scholar] [CrossRef]
- Xue, F.; Wang, G.W.; Santosh, M.; Yang, F.; Shen, Z.W.; Kong, L.; Guo, N.N.; Zhang, X.H.; Jia, W.J. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration. J. Asian Earth Sci. 2018, 157, 57–77. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Cao, H.W.; Xu, M.; Zhang, S.T.; Tang, L.; Wang, S.Y.; Pei, Q.M.; Cai, G.J.; Shen, T. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: Implications for the tectono-magmatic evolution of eastern Qinling. Geosci. J. 2018, 22, 253–272. [Google Scholar] [CrossRef]
- Bao, Z.W.; Wang, C.Y.; Zhao, T.P.; Li, C.J.; Gao, X.Y. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China. Ore Geol. Rev. 2014, 57, 132–153. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Zhang, H.; Zhao, T.P.; Deng, X.H.; Wang, Y.; Ni, Z.Y. Molybdenum deposits in East Qinling. Earth Sci. Front. 2007, 14, 186–198, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.F.; Mao, J.W.; Hu, H.B.; Guo, B.J.; Bai, F.J. Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Miner. Deposits 2005, 24, 292–304, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Pirajno, F.; Ye, H.S.; Wang, Y.B.; Li, Y.F.; Xiang, J.F.; Zhao, H.J. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Aust. J. Earth Sci. 2010, 57, 51–78. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.X.; Ke, C.H.; Li, J.B. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province. Geol. China 2012, 39, 1525–1542, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z.L.; Ren, L.; Deng, M.G.; Zhang, Z.J.; Jia, Z.; Yang, J.F.; Yang, Z.X. Pluton age and minerallogenic significance of oxygen fugacity of Shibaogou Mo deposit in Luanchuan, Henan. Nonferrous Met. (Min. Sect.) 2023, 75, 134–145, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Santosh, M. Triassic tectonics and mineral systems in the Qinling Orogen, central China. Geol. J. 2014, 49, 338–358. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Santosh, M.; Pirajno, F. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance. Earth-Sci. Rev. 2018, 182, 141–173. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Mao, S.D.; Chen, Y.J.; Santosh, M. U-Pb ages and Lu-Hf isotopes of detrital zircons from the southern Qinling Orogen: Implications for Precambrian to Phanerozoic tectonics in central China. Gondwana Res. 2016, 35, 323–337. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Pirajno, F.; Li, N.; Yao, J.M.; Sun, Y.L. The geology and geochronology of the Waifangshan Mo-quartz vein cluster in eastern Qinling, China. Ore Geol. Rev. 2017, 81, 548–564. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, G.W.; Ma, Z.B.; Carranza, E.J.M.; Jia, W.J.; Du, J.G.; Tao, G.S.; Deng, Z.P. Batholith-stock scale exploration targeting based on multi-source geological and geophysical datasets in the Luanchuan Mo polymetallic district, China. Ore Geol. Rev. 2020, 118, 103225. [Google Scholar] [CrossRef]
- Diwu, C.R.; Sun, Y.; Lin, C.L.; Wang, H.L. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chin. Sci. Bull. 2010, 55, 2557–2571. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Mcnaughton, N.J.; Ling, X.X.; Deng, X.H.; Yao, J.M.; Wu, Y.S. Formation and tectonic evolution of the khondalite series at the southern margin of the North China Craton: Geochronological constraints from a 1.85-Ga Mo deposit in the Xiong’ershan area. Precambrian Res. 2015, 269, 1–17. [Google Scholar] [CrossRef]
- Jia, X.L.; Zhai, M.G.; Xiao, W.J.; Li, L.; Ratheesh-Kumar, R.T.; Wu, J.L.; Liu, Y. Mesoarchean to Paleoproterozoic crustal evolution of the Taihua Complex in the southern North China Craton. Precambrian Res. 2020, 337, 105451. [Google Scholar] [CrossRef]
- He, Y.H.; Zhao, G.C.; Sun, M.; Xia, X.P. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Res. 2009, 168, 213–222. [Google Scholar] [CrossRef]
- Zhao, G.C.; He, Y.H.; Sun, M. The Xiong’er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo–Mesoproterozoic Columbia Supercontinent. Gondwana Res. 2009, 16, 170–181. [Google Scholar] [CrossRef]
- Hu, G.H.; Zhao, T.P.; Zhou, Y.Y.; Wang, S.Y. Meso–Neoproterozoic sedimentary formation in the southern margin of the North China Craton and its geological implications. Acta Petrol. Sin. 2013, 29, 2491–2507, (In Chinese with English Abstract). [Google Scholar]
- Dong, Y.P.; Zhang, G.W.; Hauzenberger, C.; Neubauer, F.; Yang, Z.; Liu, X.M. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos 2011, 122, 39–56. [Google Scholar] [CrossRef]
- Cao, H.W.; Zhang, S.T.; Santosh, M.; Zheng, L.; Tang, L.; Li, D.; Zhang, X.H.; Zhang, Y.H. The Luanchuan Mo-W-Pb-Zn-Ag magmatic–hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. J. Asian Earth Sci. 2015, 111, 751–780. [Google Scholar] [CrossRef]
- Lv, W.Q.; Liu, J.J.; Wu, F.; Zhang, H. The Geological Features and Genetic Analysis of Shibaogou Molybdenite Deposit in Luanchuan County, Henan Province. China Molybdenum Ind. 2014, 38, 20–24, (In Chinese with English Abstract). [Google Scholar]
- He, Y.L.; Han, J.W.; Yun, H.; Hu, H.L. The discovery of a world-class tungsten and molybdenum ore deposit from deep exploration in the Luanchuan molybdenum ore concentration area, Henan Province. Geol. China 2020, 47, 1934–1936. (In Chinese) [Google Scholar]
- Zhang, Y.Z.; Weng, J.C.; Yun, H. Geological characteristics and ore-searching prospects of tge Zhuyuangou tungsten-molybdenum ore deposit. Geol. China 2009, 36, 166–173, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Bierlein, F.; Qü, W.J.; Du, A.D.; Ye, H.S.; Pirajno, F.; Li, H.M.; Guo, B.J.; Li, Y.F.; et al. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta 2008, 72, 4607–4626. [Google Scholar] [CrossRef]
- Thompson, J.M.; Meffre, S.; Danyushevsky, L. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS. J. Anal. At. Spectrom. 2018, 33, 221–230. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, 866. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2008; pp. 1–77. [Google Scholar]
- Yang, Y.H.; Zhang, H.F.; Chu, Z.Y.; Xie, L.W.; Wu, F.Y. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass Spectrom. 2010, 290, 120–126. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons; geochronology of the Ivrea Zone (southern Alps). Contrib. Mineral. Petrol. 1999, 134, 380–404. [Google Scholar] [CrossRef]
- Harley, S.L.; Carrington, D.P. The distribution of H2O between cordierite and granitic melt: H2O incorporation in cordierite and its application to high-grade metamorphism and crustal anatexis. J. Petrol. 2001, 42, 1595–1620. [Google Scholar] [CrossRef]
- Carson, C.J.; Ague, J.J.; Grove, M.; Coath, C.D.; Harrison, T.M. U-Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, East Antarctica. Earth Planet. Sci. Lett. 2002, 199, 287–310. [Google Scholar] [CrossRef]
- Kelly, N.M.; Harley, S.L. An integrated microtextural and chemical approach to zircon geochronology: Refining the Archaean history of the Napier Complex, east Antarctica. Contrib. Mineral. Petrol. 2005, 149, 57–84. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Monecke, T.; Kempe, U.; Monecke, J.; Sala, M.; Wolf, D. Tetrad effect in rare earth element distribution patterns; a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 2002, 66, 1185–1196. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Mcdonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 4, pp. 1–51. [Google Scholar]
- Alderton, D.H.M.; Pearce, J.A.; Potts, P.J. Rare earth element mobility during granite alteration; evidence from Southwest England. Earth Planet. Sci. Lett. 1980, 49, 149–165. [Google Scholar] [CrossRef]
- Jin, X. Petrogenesis of the Shibaogou Granitoid Pluton and Evaluation of Metallogenic Potential, Western Henan Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Fan, H.R.; Xie, Y.H.; Zhao, R.; Wang, Y.L. Stable Isotope Geochemistry of Rocks and Gold Deposits in the Xiongershan Area Western Henan Province. Contrib. Geol. Miner. Resour. Res. 1994, 9, 54–64, (In Chinese with English Abstract). [Google Scholar]
- Luo, M.J.; Zhang, F.M.; Dong, Q.Y.; Xu, Y.R.; Li, S.M.; Li, K.H. Molybdenum Deposits in China; Henan Science Technology Press: Zhengzhou, China, 1991; pp. 1–445. (In Chinese) [Google Scholar]
- Ni, Z.Y.; Li, N.; Zhang, H.; Xue, L.W. Pb-Sr-Nd isotope constraints on the source of ore-forming elements of the Dahu Au-Mo deposit, Henan province. Acta Petrol. Sin. 2009, 25, 2823–2932, (In Chinese with English Abstract). [Google Scholar]
- Zhao, T.P. The Characteristics and Genesis of the High-K Volcanic Rocks Within the Proterozoic Xiong’er Group at the Southern Margin of the North China Block. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2000. (In Chinese with English Abstract). [Google Scholar]
- Duan, S.G.; Xue, C.J.; Liu, G.Y.; Yan, C.H.; Feng, Q.W.; Song, Y.W.; Gao, B.Y. Geology, fluid inclusions and stable isotopic geochemistry of Bailugou Pb-Zn deposit in Luanchuan area, Henan Province. Miner. Depos. 2010, 29, 810–826, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Z.Q.; Zhang, G.W.; Liu, D.Y.; Wang, Z.Q.; Tang, S.H.; Wang, J.H. Isotopic Geochronology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt; Geological Publishing House: Beijing, China, 2006; pp. 1–348. (In Chinese) [Google Scholar]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Pearce, J. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. In Collision Tectonics; Coward, M.P., Ries, A.C., Eds.; Geological Society Special Publication: London, UK, 1986; Volume 19, pp. 67–81. [Google Scholar]
- Chen, Y.J.; Li, C.; Zhang, J.; Li, Z.; Wang, H.H. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Sci. China Ser. D 2000, 43, 82–94. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R.; Allen, C.M. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Hu, F.Y.; Ducea, M.N.; Liu, S.W.; Chapman, J.B. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Sci. Rep. 2017, 7, 7058. [Google Scholar] [CrossRef]
- Dong, Y.P.; Yang, Z.; Liu, X.M.; Sun, S.S.; Li, W.; Cheng, B.; Zhang, F.F.; Zhang, X.N.; He, D.F.; Zhang, G.W. Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Res. 2016, 30, 144–158. [Google Scholar] [CrossRef]
- Allegre, C.J.; Minster, J.F. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Routledge: London, UK, 2014; pp. 1–352. [Google Scholar]
- Sisson, T.W. Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol. 1994, 117, 331–344. [Google Scholar] [CrossRef]
- Peacock, S.M.; Rushmer, T.; Thompson, A.B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 1994, 121, 227–244. [Google Scholar] [CrossRef]
- Morata, D.; Oliva, C.; Cruz, R.D.L.; Suárez, M. The Bandurrias gabbro: Late Oligocene alkaline magmatism in the Patagonian Cordillera. J. S. Am. Earth Sci. 2005, 18, 147–162. [Google Scholar] [CrossRef]
- Watson, E.B.; Green, T.H. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet. Sci. Lett. 1981, 56, 405–421. [Google Scholar] [CrossRef]
- Prowatke, S.; Klemme, S. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim. Cosmochim. Acta 2005, 69, 695–709. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Xiong, X.L.; Adam, J.; Green, T.H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 2005, 218, 339–359. [Google Scholar] [CrossRef]
- Sen, C.; Dunn, T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib. Mineral. Petrol. 1994, 117, 394–409. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B.; Miller, C.F.; Haapala, I.; Condie, K.C. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 1991, 51, 1–25. [Google Scholar] [CrossRef]
- Depaolo, D.J.; Wasserburg, G.J. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim. Cosmochim. Acta 1979, 43, 615–628. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zhou, G.Y.; Gao, S.; Liu, X.C.; Qin, Z.W.; Wang, H.; Yang, J.Z.; Yang, S.H. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Res. 2014, 254, 73–86. [Google Scholar] [CrossRef]
- Gao, S.; Yang, J.; Zhou, L.; Li, M.; Hu, Z.C.; Guo, J.L.; Yuan, H.L.; Gong, H.J.; Xiao, G.Q.; Wei, J.Q. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 ga granitoid gneisses. Am. J. Sci. 2011, 311, 153–182. [Google Scholar] [CrossRef]
- Zhang, G.W.; Meng, Q.R.; Lai, S.C. Tectonics and structure of Qinling orogenic belt. Sci. China Ser. B 1995, 38, 1379–1394. [Google Scholar]
- Huang, X.L.; Wilde, S.A.; Yang, Q.J.; Zhong, J.W. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong’er in the southern segment of the Trans-North China Orogen: Implications for tectonic transformation in the Early Paleoproterozoic. Lithos 2012, 134–135, 236–252. [Google Scholar] [CrossRef]
- Luan, S.W.; Cao, D.C.; Fang, Y.K.; Wang, J.Y. Geochemistry of Xiaoqinling Gold Deposits. Miner. Rocks 1985, 5, 1–118, (In Chinese with English Abstract). [Google Scholar]
- He, Y.H.; Zhao, G.C.; Sun, M.; Han, Y.G. Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr-Nd isotopic composition. Lithos 2010, 114, 186–199. [Google Scholar] [CrossRef]
- Wang, X.L.; Jiang, S.Y.; Dai, B.Z. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton. Precambrian Res. 2010, 182, 204–216. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liu, D.Y.; Fu, G.M. Study of Isotope Geochronology of Metamorphic Stratigraphy of North Qinling; Geological Publishing House: Beijing, China, 1994; pp. 1–191. (In Chinese) [Google Scholar]
- Chen, K.; Gao, S.; Wu, Y.B.; Guo, J.L.; Hu, Z.C.; Liu, Y.S.; Zong, K.Q.; Liang, Z.W.; Geng, X.L. 2.6–2.7Ga crustal growth in Yangtze craton, South China. Precambrian Res. 2013, 224, 472–490. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Chen, F.K.; Li, S.Q.; Yang, Y.Z.; Nie, H.; Siebel, W.; Zhai, M.G. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Res. 2011, 20, 194–204. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, J.; Santosh, M. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Res. 2013, 231, 19–60. [Google Scholar] [CrossRef]
- Liu, X.Y.; Cai, J.H.; Yan, G.H. Litho geochemistry and Geochronology of Xiong’er Group Yanyaozhai Subvolcanics in the Southern Margin of the North China Craton and Their Geological Significance. Acta Geol. Sin. 2011, 85, 1134–1145, (In Chinese with English Abstract). [Google Scholar]
- Yu, X.Q.; Liu, J.L.; Li, C.L.; Chen, S.Q.; Dai, Y.P. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: Constraints on the formation and evolution of the Trans-North China Orogen. Precambrian Res. 2013, 230, 31–44. [Google Scholar] [CrossRef]
- Xu, X.S.; Griffin, W.L.; Ma, X.; Reilly, S.Y.O.; He, Z.Y.; Zhang, C.L. The Taihua group on the southern margin of the North China craton: Further insights from U-Pb ages and Hf isotope compositions of zircons. Mineral. Petrol. 2009, 97, 43–59. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, J.H.; Xu, X.S.; Tang, H.F.; Qiu, J.S.; Chen, L.H. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area, Shaanxi Province. Acta Petrol. Sin. 2011, 27, 3095–3108, (In Chinese with English Abstract). [Google Scholar]
- Niu, Y.L.; Zhao, Z.D.; Zhu, D.C.; Mo, X.X. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Sci. Rev. 2013, 127, 96–110. [Google Scholar] [CrossRef]
- Green, T.H.; Mcdonough, W.F.; Arndt, N.T.; Shirey, S. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Mao, S.D.; Chen, Y.J.; Zhou, Z.J.; Lu, Y.H.; Guo, J.H.; Qin, Y.; Yu, J.Y. Zircon geochronology and Hf isotope geochemistry of the granitoids in the Yangshan gold field, western Qinling, China: Implications for petrogenesis, ore genesis and tectonic setting. Geol. J. 2014, 49, 359–382. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Lin, Z.W.; Qin, Y. Geology, geochemistry and genesis of the Huachanggou gold deposit, western Qinling Orogen, central China. Geol. J. 2014, 49, 424–441. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Chen, Y.J.; Jiang, S.Y.; Zhao, H.X.; Qin, Y.; Hu, C.J. Geology, geochemistry and ore genesis of the Wenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China Craton. Ore Geol. Rev. 2014, 59, 1–20. [Google Scholar] [CrossRef]
- Chen, Y.J. The development of continental collision metallogeny and its application. Acta Petrol. Sin. 2013, 29, 1–17, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.C.; Wang, G.W.; Gao, M.; Yang, W.D.; Yang, S.R.; Yun, H.; Wu, P.J.; Guo, N.N.; Feng, Y.T. Genesis of the Shibaogou Mo-Pb-Zn deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H-O-S-Pb isotopes. Front. Earth Sci. 2023, 10, 1032183. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Mercer, C.N.; Reed, M.H.; Mercer, C.M. Time scales of porphyry Cu deposit formation; insights from titanium diffusion in quartz. Econ. Geol. 2015, 110, 587–602. [Google Scholar] [CrossRef]
- Barra, F.; Alcota, H.; Rivera, S.; Valencia, V.; Munizaga, F.; Maksaev, V. Timing and formation of porphyry Cu-Mo mineralization in the Chuquicamata district, northern Chile; new constraints from the Toki cluster. Miner. Depos. 2013, 48, 629–651. [Google Scholar] [CrossRef]
- Ossandón, C.G.; Fréraut, C.R.; Gustafson, L.B.; Lindsay, D.D.; Zentilli, M. Geology of the Chuquicamata mine: A progress report. Econ. Geol. 2001, 96, 249–270. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Migdisov, A.A. Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems. Econ. Geol. 2014, 18, 77–95. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Zhou, Z.; Qi, N.; Huang, P.; Yao, J.; Feng, Y.; Chen, Y. Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes. Minerals 2024, 14, 1173. https://doi.org/10.3390/min14111173
Qiu Z, Zhou Z, Qi N, Huang P, Yao J, Feng Y, Chen Y. Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes. Minerals. 2024; 14(11):1173. https://doi.org/10.3390/min14111173
Chicago/Turabian StyleQiu, Zhiwei, Zhenju Zhou, Nan Qi, Pocheng Huang, Junming Yao, Yantao Feng, and Yanjing Chen. 2024. "Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes" Minerals 14, no. 11: 1173. https://doi.org/10.3390/min14111173
APA StyleQiu, Z., Zhou, Z., Qi, N., Huang, P., Yao, J., Feng, Y., & Chen, Y. (2024). Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes. Minerals, 14(11), 1173. https://doi.org/10.3390/min14111173