Assessing Ecosystem Service Value Dynamics in Japan’s National Park Based on Land-Use and Land-Cover Changes from a Tourism Promotion Perspective
<p>The location of the study site.</p> "> Figure 2
<p>Framework of this study.</p> "> Figure 3
<p>LULC maps of 2014 and 2023.</p> "> Figure 4
<p>The proportion of land-use types in the total study area.</p> "> Figure 5
<p>The changing trend of the area of each land-use type in the study period (Note: Here, we used different scales for each land-use type).</p> "> Figure 6
<p>Annual visitor numbers to Akan-Mashu National Park from 2014 to 2022 [<a href="#B36-land-14-00554" class="html-bibr">36</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Workflow
2.3. Land Use and Land Cover Classification
2.3.1. Data Collection
2.3.2. Data Processing
2.3.3. Machine Learning Algorithm
2.3.4. Dynamic Analysis of LULC
2.4. Estimation of Ecosystem Services Values
3. Results
3.1. LULC Analysis
3.1.1. Results of LULC
3.1.2. Dynamic of LULC
3.2. Ecosystem Services Valuation
3.2.1. The Results of ESV
3.2.2. The Temporal Variation of the ESV
3.3. Summary of the Tourism Promotion Policy Document
4. Discussion
4.1. Changes of LULC
4.2. Changes of ESV
4.3. Management Recommendations
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment [Program] (Ed.) Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Wang, H.; Xie, J.; Luo, S.; Ta, D.T.; Wang, Q.; Zhang, J.; Su, D.; Furuya, K. Exploring the interplay between landscape planning and human well-being: A scientometric review. Land 2023, 12, 1321. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Potschin, M.; Haines-Young, R.; Montes, C. National Parks, buffer zones and surrounding lands: Mapping ecosystem service flows. Ecosyst. Serv. 2013, 4, 104–116. [Google Scholar] [CrossRef]
- Hiwasaki, L. Toward sustainable management of national parks in Japan: Securing local community and stakeholder participation. Environ. Manag. 2005, 35, 753–764. [Google Scholar] [CrossRef]
- Adewumi, I.B.; Usui, R.; Funck, C. Perceptions of multiple stakeholders about environmental issues at a nature-based tourism destination: The case of Yakushima Island, Japan. Environments 2019, 6, 93. [Google Scholar] [CrossRef]
- van der Duim, R.; Caalders, J. Biodiversity and tourism. Ann. Tourism Res. 2002, 29, 743–761. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; Solomonides, S. Update of Global Ecosystem Service Valuation Database (ESVD); FSD report No 2020-06. Wageningen, The Netherlands, 2020. Available online: https://www.es-partnership.org/wp-content/uploads/2020/08/ESVD_Global-Update-FINAL-Report-June-2020.pdf (accessed on 15 January 2025).
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Chen, Y.; Wang, L.; Zheng, G.; Liang, T. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in Sanjiangyuan region of the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116539. [Google Scholar] [CrossRef]
- Amindin, A.; Siamian, N.; Kariminejad, N.; Clague, J.J.; Pourghasemi, H.R. An integrated GEE and machine learning framework for detecting ecological stability under land use/land cover changes. Glob. Ecol. Conserv. 2024, 53, e03010. [Google Scholar] [CrossRef]
- Bessinger, M.; Lück-Vogel, M.; Skowno, A.; Conrad, F. Landsat-8 based coastal ecosystem mapping in South Africa using random forest classification in Google Earth Engine. S. Afr. J. Bot. 2022, 150, 928–939. [Google Scholar] [CrossRef]
- Lahon, D.; Sahariah, D.; Debnath, J.; Nath, N.; Meraj, G.; Kumar, P.; Hashimoto, S.; Farooq, M. Assessment of ecosystem service value in response to LULC changes using geospatial techniques: A case study in the Merbil wetland of the Brahmaputra valley, Assam, India. ISPRS Int. J. Geo Inf. 2023, 12, 165. [Google Scholar] [CrossRef]
- Pu, L.; Lu, C.; Yang, X.; Chen, X. Spatio-temporal variation of the ecosystem service value in Qilian Mountain National Park (Gansu area) based on land use. Land 2023, 12, 201. [Google Scholar] [CrossRef]
- Simeon, M.; Wana, D. Impacts of Land use Land cover dynamics on Ecosystem services in maze national park and its environs, southwestern Ethiopia. Heliyon 2024, 10, e30704. [Google Scholar] [CrossRef]
- Lahon, D.; Meraj, G.; Hashimoto, S.; Debnath, J.; Baba, A.M.; Farooq, M.; Islam, M.N.; Singh, S.K.; Kumar, P.; Kanga, S.; et al. Projected trends in ecosystem service valuation in response to land use land cover dynamics in Kishtwar High Altitude National Park, India. Landsc. Ecol. Eng. 2024, 21, 81–106. [Google Scholar] [CrossRef]
- Gupta, A. Analyzing land use/land cover dynamics in mountain tourism areas: A case study of the core and buffer zones of Sagarmatha and Khaptad national parks, Nepal. Sustainability 2024, 16, 10670. [Google Scholar] [CrossRef]
- Rimba, A.B.; Atmaja, T.; Mohan, G.; Chapagain, S.K.; Arumansawang, A.; Payus, C.; Fukushi, K. Identifying land use and land cover (LULC) change from 2000 to 2025 driven by tourism growth: A study case in BALI. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII–B3, 1621–1627. [Google Scholar] [CrossRef]
- Vijay, R.; Kushwaha, V.K.; Chaudhury, A.S.; Naik, K.; Gupta, I.; Kumar, R.; Wate, S.R. Assessment of tourism impact on land use/land cover and natural slope in Manali, India: A geospatial analysis. Environ. Earth Sci. 2016, 75, 20. [Google Scholar] [CrossRef]
- Qu, L.; Chen, Z.; Li, M.; Zhi, J.; Wang, H. Accuracy improvements to pixel-based and object-based LULC classification with auxiliary datasets from Google earth engine. Remote Sens. 2021, 13, 453. [Google Scholar] [CrossRef]
- Piao, Y.; Xiao, Y.; Ma, F.; Park, S.; Lee, D.; Mo, Y.; Jeong, S.; Hwang, I.; Kim, Y. Monitoring land use/land cover and landscape pattern changes at a local scale: A case study of Pyongyang, North Korea. Remote Sens. 2023, 15, 1592. [Google Scholar] [CrossRef]
- Jarvis, A.; Guevara, E.; Reuter, H.I.; Nelson, A.D. Hole-Filled SRTM for the Globe: Version 4: Data Grid. 2008. Available online: https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid (accessed on 15 January 2025).
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sankalpa, J.K.S.; Rathnayaka, A.M.R.W.S.D.; Ishani, P.G.N.; Liyanaarachchi, L.A.T.S.; Gayan, M.W.H.; Wijesuriya, W.; Karunaratne, S. Fusion of spectral and topographic features for land use mapping using a machine learning framework for a regional scale application. Environ. Monit. Assess. 2024, 196, 1030. [Google Scholar] [CrossRef]
- Piao, Y.; Jeong, S.; Park, S.; Lee, D. Analysis of land use and land cover change using time-series data and random forest in North Korea. Remote Sens. 2021, 13, 3501. [Google Scholar] [CrossRef]
- Sarıkaya Levent, Y.; Şahin, E.; Levent, T. The role of tourism planning in land-use/land-cover changes in the Kızkalesi tourism destination. Land 2024, 13, 151. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Huang, C. Dynamic changes analysis and hotspots detection of land use in the central core functional area of Jing-Jin-Ji from 2000 to 2015 based on remote sensing data. Math. Probl. Eng. 2017, 2017, 2183585. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Muthee, K.; Rifaee Rasheed, A.; Costanza, R.; Suzuki, M.; Noel, S.; Schauer, M. The costs of increasing precision for ecosystem services valuation studies. Ecol. Indic. 2022, 135, 108551. [Google Scholar] [CrossRef]
- Akan-Mashu National Park Enjoyment Project Regional Council. Akan-Mashu National Park Enjoyment Project Step-Up Program 2025. 2021. Available online: https://hokkaido.env.go.jp/kushiro/%28%E5%88%A5%E6%B7%BB%E8%B3%87%E6%96%991%29.pdf (accessed on 15 January 2025).
- Annual Visitor Numbers of Japan’s National Parks. Available online: https://www.env.go.jp/park/doc/data/natural/naturalpark_04.pdf (accessed on 17 February 2025).
- Sofue, Y.; Kohsaka, R. Conversion patterns of agricultural lands in plains and mountains: An analysis of underpinning factors by temporal comparison with geographically weighted regression in depopulating rural Japan. Environ. Sustain. Indic. 2024, 22, 100346. [Google Scholar] [CrossRef]
- Huang, W.; Hashimoto, S.; Yoshida, T.; Saito, O.; Meraj, G. Understanding Japan’s land-use dynamics between 1987 and 2050 using land accounting and scenario analysis. Sustain. Sci. 2024, 19, 1561–1577. [Google Scholar] [CrossRef]
- Su, G.; Okahashi, H.; Chen, L. Spatial Pattern of Farmland Abandonment in Japan: Identification and Determinants. Sustainability 2018, 10, 3676. [Google Scholar] [CrossRef]
- Butler, R.W. The Concept of Carrying Capacity for Tourism Destinations: Dead or Merely Buried? Prog. Tour. Hosp. Res. 1996, 2, 283–293. [Google Scholar] [CrossRef]
- Dragovich, D.; Bajpai, S. Managing Tourism and Environment—Trail Erosion, Thresholds of Potential Concern and Limits of Acceptable Change. Sustainability 2022, 14, 4291. [Google Scholar] [CrossRef]
- McCool, S.F. Limits of acceptable change: A framework for managing national protected areas: Experiences from the united states. In Proceedings of the Workshop on Impact Management in Marine Parks, Maritime Institute of Malaysia, Kuala Lumpur, Malaysia, 13–14 August 1996. [Google Scholar]
Special Zone | Ordinary Zone | ||||
---|---|---|---|---|---|
Special Protection Zone | Class I Special Zone | Class II Special Zone | Class III Special Zone | ||
Area | 10,460 | 20,718 | 24,299 | 17,386 | 18,550 |
Proportion | 11.44% | 22.66% | 26.58% | 19.02% | 20.29% |
LULC Types | Referred Biome from ESVD | Description |
---|---|---|
Forests | Temperate forests | Forests in the study area, including plantation and non-plantation forests |
Cultivated areas | Cultivated areas | All land used for artificial cultivation and planting, including paddy fields, dry fields, and greenhouse planting areas |
Built-up areas | Desert | All artificial construction land, including buildings, parking lots, and some hard paving |
Water bodies | Rivers and lakes | Rivers and lakes in the study area |
Grassland | Grassland | Grasslands with scattered trees, herbs, and shrubs |
Bare land | Desert | Non-vegetated areas dominated by rock outcrops and eroded and degraded lands |
Features | Description | Data Source |
---|---|---|
Spectral features | Red, green, blue, near-infrared (NIR), and short-wave infrared (SWIR-1 and SWIR-2) spectral bands | Landsat 8 surface reflectance data |
Spectral indices | Modified Normalized Difference Water Index (MNDWI), Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Green Chlorophyll Index (GCI), Bare Soil Index (BSI), Index-Based Built-up Index (IBI) | Landsat 8 surface reflectance data |
Topographic features | Elevation, slope, and aspect | Shuttle Radar Topography Mission (SRTM) digital elevation dataset |
Climatic features | Soil moisture, runoff, minimum temperature, and vapor pressure | TerraClimate dataset |
Gray-level co-occurrence matrix (GLCM) texture metrics | Mean (SAVG), contrast (CON), correlation (CORR), and variance (VARI) | Landsat 8 bands |
Forests (Temperate Forests) | Cultivated Areas (Cultivated Areas) | Water Bodies (Rivers and Lakes) | Grassland (Grassland) | Built-Up Areas (Desert) | Bare Land (Desert) | |
---|---|---|---|---|---|---|
Provisioning | ||||||
Food | 4 | 510 | 2288 | - | - | - |
Water | - | 604 | 9198 | 313 | - | - |
Raw materials | 33 | 6 | 92 | 637 | - | - |
Regulating | ||||||
Air quality regulation | 1593 | 10 | - | 8 | - | - |
Climate regulation | 481 | 10 | 251 | 73 | - | - |
Moderation of extreme events | 6 | 993 | 18 | - | - | - |
Regulation of water flows | 68 | 17 | 4221 | 43 | - | - |
Waste treatment | - | 40 | 50,760 | - | - | - |
Erosion prevention | 6 | 173 | - | - | - | - |
Maintenance of soil fertility | 117 | 34 | 6189 | - | - | - |
Pollination | - | 1498 | - | - | - | - |
Biological control | - | 621 | 142 | - | - | - |
Habitat | ||||||
Maintenance of species’ life cycles (incl. nursery service) | - | - | 803 | - | - | - |
Maintenance of genetic diversity | - | - | 17,987 | - | - | - |
Cultural | ||||||
Aesthetic information | 35 | 395 | 2276 | - | - | - |
Opportunities for recreation and tourism | 281 | 3101 | 13,633 | 92 | - | - |
Inspiration for culture, art, and design | 196 | 16 | 310 | 284 | - | - |
Spiritual experience | - | - | 76 | - | - | - |
Information for cognitive development | 147 | - | 116 | 147 | - | - |
Existence and bequest ‘values’ | 2416 | - | - | - | - | - |
Sum | 5383 | 8026 | 108,361 | 1597 | - | - |
Year | 2014 | 2023 | ||
---|---|---|---|---|
PA | UA | PA | UA | |
Forests | 93.88% | 86.79% | 96.55% | 80.00% |
Cultivated areas | 96.88% | 83.78% | 87.18% | 89.47% |
Built-up areas | 80.00% | 96.00% | 86.67% | 86.67% |
Water bodies | 96.30% | 100.00% | 96.00% | 96.00% |
Grassland | 87.10% | 96.43% | 84.38% | 96.43% |
Bare land | 100.00% | 100.00% | 96.97% | 100.00% |
Overall accuracy | 92.15% | 90.96% | ||
Kappa coefficient | 90.42% | 89.12% |
Land Use in 2023 (Rate %) | ||||||
---|---|---|---|---|---|---|
Land Use in 2014 (Rate %) | Forests | Cultivated Areas | Built-Up Area | Water Bodies | Grassland | Bare Land |
Forests | 0.96 | 0.01 | 0.00 | 0.00 | 0.02 | 0.00 |
Cultivated areas | 0.09 | 0.75 | 0.14 | 0.00 | 0.02 | 0.00 |
Built-up area | 0.18 | 0.42 | 0.36 | 0.00 | 0.02 | 0.01 |
Water bodies | 0.01 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
Grassland | 0.27 | 0.01 | 0.00 | 0.00 | 0.72 | 0.00 |
Bare land | 0.08 | 0.00 | 0.01 | 0.01 | 0.05 | 0.85 |
Area (ha) in 2014 | Area (ha) in 2023 | Percent Annual Change (2014–2023) | |
---|---|---|---|
Forests | 68,942.87848 | 68,598.89781 | −0.06% |
Cultivated areas | 4364.250524 | 4834.85305 | 1.20% |
Built-up areas | 1080.534794 | 1362.018005 | 2.89% |
Water bodies | 11,427.55309 | 11,544.68741 | 0.11% |
Grassland | 6823.193704 | 6341.036997 | −0.79% |
Bare land | 706.1257991 | 664.0890898 | −0.66% |
Year | Forests | Cultivated Areas | Water Bodies | Grassland | Sum | |
---|---|---|---|---|---|---|
2014 | ESV | 371.12 | 35.03 | 1238.30 | 10.90 | 1655.34 |
Proportion | 22.42% | 2.12% | 74.81% | 0.66% | ||
2015 | ESV | 378.84 | 37.63 | 1237.86 | 7.54 | 1661.87 |
Proportion | 22.80% | 2.26% | 74.49% | 0.45% | ||
2016 | ESV | 374.92 | 30.18 | 1248.33 | 9.33 | 1662.76 |
Proportion | 22.55% | 1.82% | 75.08% | 0.56% | ||
2017 | ESV | 376.17 | 38.35 | 1268.49 | 8.44 | 1691.44 |
Proportion | 22.24% | 2.27% | 74.99% | 0.50% | ||
2018 | ESV | 377.65 | 35.00 | 1244.47 | 8.26 | 1665.39 |
Proportion | 22.68% | 2.10% | 74.73% | 0.50% | ||
2019 | ESV | 371.87 | 37.12 | 1268.51 | 9.85 | 1687.35 |
Proportion | 22.04% | 2.20% | 75.18% | 0.58% | ||
2020 | ESV | 374.11 | 33.96 | 1247.92 | 10.24 | 1666.23 |
Proportion | 22.45% | 2.04% | 74.89% | 0.61% | ||
2021 | ESV | 367.09 | 34.61 | 1260.50 | 11.63 | 1673.82 |
Proportion | 21.93% | 2.07% | 75.31% | 0.69% | ||
2022 | ESV | 380.64 | 26.55 | 1232.38 | 8.76 | 1648.33 |
Proportion | 23.09% | 1.61% | 74.77% | 0.53% | ||
2023 | ESV | 369.27 | 38.80 | 1250.99 | 10.13 | 1669.19 |
Proportion | 22.12% | 2.32% | 74.95% | 0.61% |
2014–2023 | Change Rate | |
---|---|---|
Forests | −1.85 | −0.50% |
Cultivated areas | 3.78 | 10.78% |
Built-up area | - | - |
Water bodies | 12.69 | 1.03% |
Grassland | −0.77 | −7.07% |
Bare land | - | - |
Total | 13.85 | 0.84% |
Main Types of Measures | Specific Implementation Measures | Selected Cases Description | The Potential Impact of LULC and ESV |
---|---|---|---|
Promoting adventure travel (AT) | AT is positioned as an important target. As a result of aggressive activities to attract visitors, the Adventure Travel World Summit (ATWS) will be held in Hokkaido in 2021. |
| This move may contribute to smooth changes in land use and the protection of ecological values |
New use of the national park | The project promoted new utilization of previously unused resources and areas of national parks, considering the conservation of the natural environment. |
| Newly opened guided tours and trails may increase the area of construction areas, resulting in a decrease in ESV |
Promote private investment through public–private partnerships | The project to fully enjoy the national park has encouraged new private investment from within and outside the region, and efforts to revitalize the region have progressed. |
| |
Development of public spaces | Reorganization and multilingual support were promoted to ensure stress-free and comfortable use of public facilities such as visitor centers, park grounds, and restrooms within national parks. |
| New facilities for visitor use and the transformation of a range of public spaces may increase the area of built-up areas, leading to a reduction in ESV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xie, Y.; Ta, D.T.; Zhang, J.; Furuya, K. Assessing Ecosystem Service Value Dynamics in Japan’s National Park Based on Land-Use and Land-Cover Changes from a Tourism Promotion Perspective. Land 2025, 14, 554. https://doi.org/10.3390/land14030554
Wang H, Xie Y, Ta DT, Zhang J, Furuya K. Assessing Ecosystem Service Value Dynamics in Japan’s National Park Based on Land-Use and Land-Cover Changes from a Tourism Promotion Perspective. Land. 2025; 14(3):554. https://doi.org/10.3390/land14030554
Chicago/Turabian StyleWang, Huixin, Yilan Xie, Duy Thong Ta, Jing Zhang, and Katsunori Furuya. 2025. "Assessing Ecosystem Service Value Dynamics in Japan’s National Park Based on Land-Use and Land-Cover Changes from a Tourism Promotion Perspective" Land 14, no. 3: 554. https://doi.org/10.3390/land14030554
APA StyleWang, H., Xie, Y., Ta, D. T., Zhang, J., & Furuya, K. (2025). Assessing Ecosystem Service Value Dynamics in Japan’s National Park Based on Land-Use and Land-Cover Changes from a Tourism Promotion Perspective. Land, 14(3), 554. https://doi.org/10.3390/land14030554