Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India
<p>The map illustrates the location of the Merbil wetland within the broader geographical context. The red line encircles a 500-meter buffer zone surrounding the wetland. Key features include: (<b>A</b>) marking the boundary of India, (<b>B</b>) denoting the Dibrugarh district, (<b>C</b>) signifying the 500-meter buffer zone from the wetland, and (<b>D</b>) identifying the wetland itself. This visualization highlights the spatial relationship between the wetland and its surrounding areas, emphasizing the importance of understanding the potential impacts of land use and environmental changes on the wetland ecosystem.</p> "> Figure 2
<p>Methodology flowchart adopted in the study.</p> "> Figure 3
<p>Land-use/land cover map of the study area for 1990, 2000, 2010, 2021, 2030, and 2040.</p> "> Figure 4
<p>Spatio-temporal differences of the ESV (in USD 10<sup>3</sup>) based on Costanza et al. (1997).</p> "> Figure 5
<p>Spatio-temporal differences of the ESV (in USD 10<sup>3</sup>) based on Costanza et al. (2014).</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Database
3.2. LULC Classification and Change Detection
3.3. LULC Change Prediction Using the CA-Markov Model
3.4. Assessment of Ecosystem Service Value (ESV)
4. Results
4.1. Analysis of LULC Dynamics
4.2. Estimation and Prediction of Ecosystem Service Value (ESV)
4.3. Spatio-Temporal Variation of ESV
5. Discussion
5.1. Causes and Trends of LULC Dynamics
5.2. Change of ESV in Response to LULC
5.3. Comparison of ESV Changes between the Value Coefficients Applied
5.4. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang, C.; Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995–2035. PeerJ 2019, 2019, e7665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millenium Ecosystem Services. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Song, X.P. Global Estimates of Ecosystem Service Value and Change: Taking into Account Uncertainties in Satellite-Based Land Cover Data. Ecol. Econ. 2018, 143, 227–235. [Google Scholar] [CrossRef]
- Farley, J. The role of prices in conserving critical natural capital. Conserv. Biol. 2008, 22, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, J.; Su, J.; Sun, W. Ecosystem service value evaluation method in a complex ecological environment: A case study of Gansu Province, China. PLoS ONE 2021, 16, e0240272. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Hu, H.; Liu, W.; Cao, M. Impact of land use and land cover changes on ecosystem services in Menglun, Xishuangbanna, Southwest China. Environ. Monit. Assess. 2008, 146, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Shit, P.K.; Patel, P.P. Ecosystem services value assessment and forecasting using integrated machine learning algorithm and CA-Markov model: An empirical investigation of an Asian megacity. Geocarto Int. 2021, 37, 8417–8439. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Vinayak, B.; Lee, H.S.; Gadem, S. Prediction of land use land cover for 2050 in Mumbai City, India, using multi-layer perceptron neural network-based Markov Chain model. Arab. J. Geosci. 2020. [Google Scholar]
- Courouble, M.; Davidson, N.; Dinesen, L.; Fennessy, S.; Galewski, T.; Guelmami, A.; Kumar, R.; McInnes, R.; Perennou, C.; Rebelo, L.-M.; et al. Global Wetland Outlook: Special Edition 2021; Design, N.D., Ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2021. [Google Scholar]
- Rahman, A.; Kumar, S.; Fazal, S.; Siddiqui, M.A. Assessment of Land use/land cover Change in the North-West District of Delhi Using Remote Sensing and GIS Techniques. J. Indian Soc. Remote Sens. 2012, 40, 689–697. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Abijith, D.; Saravanan, S. Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environ. Sci. Pollut. Res. 2021, 29, 86055–86067. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 2016, 9, 249. [Google Scholar] [CrossRef]
- Jafarpour Ghalehteimouri, K.; Shamsoddini, A.; Mousavi, M.N.; Binti Che Ros, F.; Khedmatzadeh, A. Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environ. Chall. 2022, 6, 100399. [Google Scholar] [CrossRef]
- Ruben, G.B.; Zhang, K.; Dong, Z.; Xia, J. Analysis and projection of land-use/land-cover dynamics through scenario-based simulations using the CA-Markov model: A case study in guanting reservoir basin, China. Sustainability 2020, 12, 3747. [Google Scholar] [CrossRef]
- Talukdar, N.C.; Bhattacharyya, D.; Hazarika, S. Soils and Agriculture. In The Brahmaputra Basin Water Resources; Singh, V.P., Ed.; Springer-Science+Business Media, B.V.: Berlin/Heidelberg, Germany, 2004; pp. 35–69. ISBN 9789048164813. [Google Scholar]
- Talukdar, S.; Singha, P.; Shahfahad; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Hepinstall, J.A.; Alberti, M.; Marzluff, J.M. Predicting land cover change and avian community responses in rapidly urbanizing environments. Landsc. Ecol. 2008, 23, 1257–1276. [Google Scholar] [CrossRef]
- Kumar, D.; Dimri, A.P. Regional climate projections for Northeast India: An appraisal from CORDEX South Asia experiment. Theor. Appl. Climatol. 2018, 134, 1065–1081. [Google Scholar] [CrossRef]
- Datta, B.; Singh, V.P. Hydrology. In The Brahmaputra Basin Water Resources; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Lahon, D.; Sahariah, D.; Debnath, J.; Nath, N. Growth of water hyacinth biomass and its impact on the floristic composition of aquatic plants in a wetland ecosystem of the Brahmaputra floodplain of Assam. PeerJ, 2023; 11, e14811. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction of Land Use/Land Cover Change Using Remote Sensing and the CA-Markov Model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. Sci. World J. 2021, 2021, 6685045. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zheng, X.Q.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Modell. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling- A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Fitzsimmons, P.J.; Getoor, R.K. Homogeneous random measures and strongly supermedian kernels of a markov process. Electron. J. Probab. 2003, 8, 1–54. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Omar, N.Q.; Ahamad, M.S.S.; Wan Hussin, W.M.A.; Samat, N.; Binti Ahmad, S.Z. Markov CA, Multi Regression, and Multiple Decision Making for Modeling Historical Changes in Kirkuk City, Iraq. J. Indian Soc. Remote Sens. 2014, 42, 165–178. [Google Scholar] [CrossRef]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef] [Green Version]
- Wangyel, S.; Munkhnasan, L.; Lee, W. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Ravikanth, G.; Aravind, N.A. A review of research and conservation of Myristica swamps, a threatened freshwater swamp of the Western Ghats, India. Wetl. Ecol. Manag. 2022, 30, 171–189. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Chen, Y.; Yan, H. Assessing spatio—Temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou. Sci. Rep. 2021, 11, 3027. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the san antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhang, H. An ecosystem service valuation of land use change in Taiyuan City, China. Ecol. Modell. 2012, 225, 127–132. [Google Scholar] [CrossRef]
- Long, X.; Lin, H.; An, X.; Chen, S.; Qi, S. Evaluation and analysis of ecosystem service value based on land use / cover change in Dongting Lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Hazarika, N.; Das, A.K.; Borah, S.B. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote Sens. Sp. Sci. 2015, 18, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying landscape pattern and ecosystem service value changes: A case study at the county level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01110. [Google Scholar] [CrossRef]
- Das, S.; Kumar Shit, P.; Bera, B.; Adhikary, P.P. Effect of urbanization on the dynamics of ecosystem services: An analysis for decision making in Kolkata urban agglomeration. Urban Ecosyst. 2022, 25, 1541–1559. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of international importance: Status, threats, and future protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef] [Green Version]
- Coupe, R.H.; Barlow, J.R.B.; Capel, P.D. Complexity of human and ecosystem interactions in an agricultural landscape. Environ. Dev. 2012, 4, 88–104. [Google Scholar] [CrossRef]
- Eguiguren, P.; Fischer, R.; Günter, S. Degradation of ecosystem services and deforestation in landscapes with and without incentive-based forest conservation in the Ecuadorian Amazon. Forests 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Zhang, S. Ecosystem service decline in response to wetland loss in the Sanjiang Plain, Northeast China. Ecol. Eng. 2019, 130, 117–121. [Google Scholar] [CrossRef]
- Debnath, J.; Sahariah, D.; Lahon, D.; Nath, N.; Chand, K.; Meraj, G.; Farooq, M.; Kumar, P.; Kanga, S.; Singh, S.K. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environ. Sci. Pollut. Res. 2022. [CrossRef]
- Nath, N.; Sahariah, D.; Meraj, G.; Debnath, J.; Kumar, P.; Lahon, D.; Chand, K.; Farooq, M.; Chandan, P.; Singh, S.K.; et al. Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model. Land 2023, 12, 151. [Google Scholar] [CrossRef]
- Debnath, J.; Meraj, G.; Das Pan, N.; Chand, K.; Debbarma, S.; Sahariah, D.; Gualtieri, C.; Kanga, S.; Singh, S.K.; Farooq, M.; et al. Integrated remote sensing and field-based approach to assess the temporal evolution and future projection of meanders: A case study on River Manu in North-Eastern India. PLoS ONE 2022, 17, e0271190. [Google Scholar] [CrossRef] [PubMed]
- Debnath, J.; Sahariah, D.; Lahon, D.; Nath, N.; Chand, K.; Meraj, G.; Kumar, P.; Singh, S.K.; Kanga, S.; Farooq, M. Assessing the impacts of current and future changes of the planforms of river Brahmaputra on its land use-land cover. Geosci. Front. 2023, 14, 101557. [Google Scholar] [CrossRef]
- Debnath, J.; Sahariah, D.; Saikia, A.; Meraj, G.; Nath, N.; Lahon, D.; Annayat, W.; Kumar, P.; Chand, K.; Singh, S.K.; et al. Shifting Sands: Assessing Bankline Shift Using an Automated Approach in the Jia Bharali River, India. Land 2023, 12, 703. [Google Scholar] [CrossRef]
- Meraj, G. Assessing the Impacts of Climate Change on Ecosystem Service Provisioning in Kashmir Valley India. Ph.D. Thesis, Suresh Gyan Vihar University, Jaipur, India, 2021. [Google Scholar]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, M.N. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2021, 8, 15–34. [Google Scholar] [CrossRef]
- Meraj, G.; Farooq, M.; Singh, S.K.; Islam, M.N.; Kanga, S. Modeling the sediment retention and ecosystem provisioning services in the Kashmir valley, India, Western Himalayas. Model. Earth Syst. Environ. 2022, 8, 3859–3884. [Google Scholar] [CrossRef]
Sl. No. | Class | Description |
---|---|---|
1 | Open water | Clearwater surface (no vegetation cover) of the wetland |
2 | Aquatic plant | Water with vegetated cover, including free-floating, floating leaves, and emergent aquatic plants |
3 | Vegetation | Sparsely vegetated areas, densely vegetated areas, and grassland |
4 | Agricultural land | Cropland, plantation cultivated land, and agricultural fallow land |
5 | Built-up area | Settlements, road networks, concrete surfaces, and commercial buildings |
LULC Types | Coefficient Value of Ecosystem Services (USD ha−1 yr−1) | ||
---|---|---|---|
Similar Biome (Costanza et al., 2014) | Costanza et al. (1997) | Costanza et al. (2014) | |
Open water | Lake/River | 11,727 | 12,512 |
Aquatic plant | Swamps | 27,021 | 25,681 |
Vegetation | Forest | 1338 | 3800 |
Agricultural land | Cropland | 126 | 5567 |
Built-up area | Urban | 0 | 6661 |
S. No. | Ecosystem Service Types | Open Water | Aquatic Plant | Vegetation | Agricultural Land | Built-Up | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
1997 | 2014 | 1997 | 2014 | 1997 | 2014 | 1997 | 2014 | 1997 | 2014 | ||
Provisioning | |||||||||||
1 | Food production | 57 | 106 | 65 | 614 | 59 | 270 | 75 | 2323 | - | - |
2 | Raw materials | - | - | 68 | 539 | 191 | 152 | - | 219 | - | - |
3 | Genetic resource | - | - | - | 99 | 22 | 448 | - | 1042 | - | - |
4 | Water supply | 2922 | 1808 | 10,488 | 408 | 4 | 143 | - | 400 | - | - |
Regulating | |||||||||||
5 | Gas regulation | - | - | 366 | - | - | 4 | - | - | - | - |
6 | Disturbance regulation | - | - | 9991 | 2986 | 3 | 19 | - | - | - | - |
7 | Erosion control | - | - | - | 2607 | 132 | 100 | - | 107 | - | - |
8 | Pollination | - | - | - | - | - | 9 | 19 | 22 | - | - |
9 | Climate regulation | - | - | - | 488 | 194 | 711 | - | 411 | - | 905 |
10 | Biological control | - | - | - | 948 | 3 | 169 | 32 | 33 | - | - |
11 | Water regulation | 7514 | 7514 | 41 | 5606 | 3 | 3 | - | - | - | 16 |
12 | Waste-treatment | 918 | 918 | 2289 | 3015 | 120 | 120 | - | 396 | - | - |
Supporting | |||||||||||
13 | Nutrient cycling | - | - | - | 1713 | 498 | 66 | - | - | - | - |
14 | Soil formation | - | - | - | - | 14 | 14 | - | 532 | - | - |
15 | Habitat/refugia | - | - | 605 | 2455 | - | 619 | - | - | - | - |
Cultural | |||||||||||
16 | Cultural | - | - | 2430 | 1992 | 3 | 1 | - | - | - | - |
17 | Recreation | 317 | 2166 | 678 | 2211 | 91 | 953 | - | 82 | - | 5740 |
Total ESV | 11,728 | 12,512 | 27,021 | 25,681 | 1338 | 3800 | 126 | 5567 | - | 6661 |
LULC Classes | 1990 Area (ha) | 2000 Area (ha) | 2010 Area (ha) | 2021 Area (ha) | 2030 Area (ha) | 2040 Area (ha) |
---|---|---|---|---|---|---|
Open water | 28.61 | 26.94 | 43.91 | 10.61 | 3.50 | 1.35 |
Aquatic plant | 74.98 | 83.3 | 66.14 | 95.76 | 99.23 | 97.18 |
Vegetation | 283.25 | 253.3 | 265.52 | 212.8 | 181.15 | 155.56 |
Agricultural land | 187.11 | 199.07 | 178.01 | 227.84 | 259.50 | 286.57 |
Built-up area | 15.7 | 27.3 | 36.22 | 43.36 | 45.27 | 48.04 |
LULC Classes | Actual Area (A) (2021) | Predicted Area (P) (2021) | (P−A)2/A |
---|---|---|---|
Open water | 1.8 | 3.49 | 1.59 |
Aquatic plant | 16.22 | 12.3 | 0.95 |
Vegetation | 36.05 | 44.75 | 2.1 |
Agricultural land | 38.59 | 33.62 | 0.64 |
Built-up area | 7.34 | 5.84 | 0.31 |
Total | 100 | 100 | 5.59 |
LULC Class | 1990–2000 | 2000–2010 | 2010–2021 | 2021–2030 | 2030–2040 | 1990–2040 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area in ha | Area in % | Area in ha | Area in % | Area in ha | Area in % | Area in ha | Area in % | Area in ha | Area in % | Area in ha | Area in % | |
Open water | −1.67 | −5.84 | 16.96 | 62.96 | −33.29 | −75.82 | −7.11 | −67.01 | −2.15 | −61.43 | −27.26 | −95.61 |
Aquatic plant | 8.32 | 11.1 | −17.16 | −20.61 | 29.62 | 44.78 | 3.47 | 3.62 | −2.05 | −2.06 | 22.20 | 29.61 |
Vegetation | −29.95 | −10.57 | 12.23 | 4.83 | −52.72 | −19.86 | −31.55 | −14.82 | −25.7 | −14.18 | −127.69 | −45.08 |
Agricultural land | 11.95 | 6.39 | −21.05 | −10.58 | 49.82 | 27.99 | 31.66 | 13.90 | 27.07 | 10.43 | 99.46 | 53.15 |
Built-up area | 11.61 | 73.94 | 8.91 | 32.65 | 7.14 | 19.72 | 1.91 | 4.40 | 2.77 | 6.11 | 32.34 | 205.98 |
LULC Classes | 1990 | 2000 | 2010 | 2021 | 2030 | 2040 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
*Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | |
Open water | 335.51 | 357.97 | 315.93 | 337.07 | 514.93 | 549.4 | 124.42 | 132.75 | 41.04 | 43.79 | 15.83 | 16.89 |
Aquatic plant | 2026.03 | 1925.56 | 2250.85 | 2139.23 | 1787.17 | 1698.54 | 2587.53 | 2459.21 | 2681.29 | 2548.33 | 2625.9 | 2495.68 |
Vegetation | 378.99 | 1076.35 | 338.92 | 962.54 | 355.27 | 1008.98 | 284.73 | 808.64 | 242.38 | 688.37 | 208.14 | 591.13 |
Agricultural land | 23.58 | 1041.64 | 25.08 | 1108.22 | 22.43 | 990.98 | 28.71 | 1268.39 | 32.7 | 1444.64 | 36.1 | 1594.78 |
Built-up area | 0 | 104.58 | 0 | 181.85 | 0 | 241.26 | 0 | 288.82 | 0 | 301.54 | 0 | 319.99 |
Total | 2764.11 | 4506.10 | 2930.78 | 4728.91 | 2679.80 | 4489.16 | 3025.39 | 4957.93 | 2997.41 | 5026.67 | 2885.97 | 5018.47 |
LULC Classes | 1990–2021 | 2021–2040 | ||
---|---|---|---|---|
*Cc1997 | Cc2014 | Cc1997 | Cc2014 | |
Change in % | ||||
Open water | −62.91 | −62.91 | −87.28 | −87.27 |
Aquatic plant | 27.71 | 27.6 | 1.57 | 1.48 |
Vegetation | −24.87 | −24.87 | −26.9 | −26.89 |
Agricultural land | 21.75 | 21.77 | 25.74 | 25.73 |
Built-up area | 0 | 176.17 | 0 | 10.8 |
Total change | 9.45 | 10.02 | −4.60 | 1.22 |
ESV Function | 1990 | 2000 | 2010 | 2021 | 2030 | 2040 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ecosystem Service Value (in USD 103) | ||||||||||||
*Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | Cc1997 | Cc2014 | |
Provisioning | ||||||||||||
Food production | 37.22 | 560.2 | 36.79 | 584.83 | 35.79 | 530.47 | 36.44 | 646.65 | 36.76 | 713.03 | 37.03 | 767.51 |
Raw materials | 59.2 | 124.45 | 54.04 | 127 | 55.21 | 114.99 | 47.26 | 133.86 | 41.35 | 137.85 | 36.34 | 138.73 |
Genetic resource | 6.23 | 329.29 | 5.57 | 329.29 | 5.88 | 310.9 | 4.68 | 342.22 | 3.99 | 361.38 | 3.43 | 377.92 |
Water supply | 871.08 | 197.63 | 953.33 | 198.94 | 822.99 | 215.55 | 1036.14 | 179.82 | 1051.63 | 176.52 | 1023.75 | 178.96 |
Total | 973.73 | 1211.57 | 1049.73 | 1240.06 | 919.87 | 1171.91 | 1124.52 | 1302.55 | 1133.73 | 1388.87 | 1100.55 | 1463.12 |
Regulating | ||||||||||||
Gas regulation | 27.45 | 1.13 | 30.56 | 1.01 | 24.22 | 1.06 | 35.06 | 0.85 | 36.33 | 0.72 | 35.58 | 0.62 |
Disturbance regulation | 750 | 229.24 | 832.99 | 253.55 | 661.58 | 202.54 | 957.35 | 289.98 | 991.92 | 299.74 | 971.37 | 293.14 |
Waste treatment | 34 | 33.99 | 30.48 | 30.4 | 31.86 | 31.86 | 25.58 | 25.54 | 21.74 | 21.74 | 18.67 | 18.67 |
Erosion control | 37.44 | 243.8 | 33.44 | 263.8 | 35.05 | 218.03 | 28.09 | 295.31 | 23.91 | 304.57 | 20.56 | 299.51 |
Pollination | 3.56 | 6.67 | 3.78 | 6.66 | 3.38 | 6.31 | 4.33 | 6.93 | 4.93 | 7.34 | 5.44 | 7.7 |
Climate regulation | 55.05 | 328.97 | 49.23 | 327.17 | 51.61 | 326.89 | 41.36 | 330.83 | 35.27 | 324.77 | 30.24 | 319.22 |
Biological control | 6.84 | 125.11 | 7.13 | 128.35 | 6.56 | 113.45 | 7.93 | 134.26 | 8.85 | 133.25 | 9.64 | 127.85 |
Water regulation | 218.93 | 636.42 | 206.67 | 669.91 | 333.47 | 702.1 | 84.32 | 617.89 | 30.94 | 583.75 | 14.63 | 556.17 |
Waste treatment | 197.89 | 326.42 | 215.4 | 354.7 | 191.7 | 310.2 | 228.93 | 388.68 | 230.35 | 405.15 | 223.69 | 407.72 |
Total | 1331.16 | 1931.75 | 1409.68 | 2035.55 | 1339.43 | 1912.44 | 1412.95 | 2090.27 | 1384.24 | 2081.03 | 1329.82 | 2030.6 |
Supporting | ||||||||||||
Nutrient cycling | 141.06 | 147.14 | 126.14 | 159.41 | 132.23 | 130.82 | 105.97 | 178.08 | 90.21 | 181.94 | 77.47 | 176.74 |
Soil formation | 3.97 | 103.51 | 3.55 | 109.45 | 3.78 | 98.42 | 2.98 | 124.19 | 2.54 | 140.59 | 2.18 | 154.63 |
Habitat/refugia | 45.45 | 359.41 | 50.42 | 361.3 | 40.04 | 326.73 | 57.96 | 366.8 | 60.07 | 355.74 | 58.82 | 334.81 |
Total | 190.48 | 610.06 | 180.11 | 630.16 | 176.05 | 555.97 | 166.91 | 669.07 | 152.82 | 678.27 | 138.47 | 666.18 |
Cultural | ||||||||||||
Cultural | 183.08 | 149.64 | 203.21 | 166.19 | 161.55 | 132.02 | 233.38 | 190.97 | 241.77 | 197.85 | 236.66 | 193.34 |
Recreation | 85.66 | 603.15 | 88.05 | 656.95 | 82.91 | 716.82 | 87.63 | 705.07 | 84.85 | 680.74 | 80.47 | 665.23 |
Total | 268.74 | 752.79 | 291.26 | 823.14 | 244.46 | 848.46 | 321.01 | 896.04 | 326.62 | 878.59 | 317.13 | 858.57 |
Total ESV of all function | 2764.11 | 4506.17 | 2930.78 | 4728.91 | 2679.81 | 4489.16 | 3025.39 | 4957.93 | 2997.41 | 5026.67 | 2885.97 | 5018.47 |
ESV Categories | ESV Range (in USD 103) | Percentage of Area | |||||
---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2021 | 2030 | 2040 | ||
Very low | Below 12,000 | 0.98 | 0 | 0 | 0 | 0 | 0.84 |
Low | 12,000–16,000 | 9.52 | 2.53 | 8.50 | 0.18 | 5.86 | 10.25 |
Moderate | 16,000–20,000 | 17.01 | 14.71 | 18.73 | 20.08 | 17.17 | 15.49 |
High | 20,000–24,000 | 20.30 | 25.31 | 23.70 | 33.35 | 34.63 | 32.05 |
Very high | Above 24,000 | 52.18 | 57.44 | 49.08 | 46.38 | 42.33 | 41.36 |
ESV Categories | ESV Range (in USD 103) | Percentage of Area | |||||
---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2021 | 2030 | 2040 | ||
Very low | Below 30,000 | 14.1 | 4.96 | 0 | 2.4 | 5.21 | 9.54 |
Low | 30,000–33,000 | 22.16 | 22.03 | 11.31 | 26.1 | 18.28 | 30.8 |
Moderate | 33,000–36,000 | 30.6 | 38.65 | 49.73 | 39.77 | 40.74 | 47.78 |
High | 36,000–39,000 | 25.95 | 28.54 | 34.05 | 27.4 | 32.42 | 11.88 |
Very high | Above 39,000 | 7.17 | 5.8 | 4.9 | 4.32 | 3.33 | 0 |
LULC Types | Coefficient of Sensitivity (CS) | |||||
---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2021 | 2030 | 2040 | |
Open water | 0.12 | 0.11 | 0.19 | 0.04 | 0.01 | 0.01 |
Aquatic plant | 0.73 | 0.77 | 0.67 | 0.86 | 0.89 | 0.91 |
Vegetation | 0.14 | 0.12 | 0.13 | 0.09 | 0.08 | 0.07 |
Agricultural land | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Built-up | - | - | - | - | - | - |
LULC Types | Coefficient of Sensitivity (CS) | |||||
---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2021 | 2030 | 2040 | |
Open water | 0.08 | 0.07 | 0.12 | 0.03 | 0.01 | 0 |
Aquatic plant | 0.3 | 0.45 | 0.38 | 0.5 | 0.51 | 0.5 |
Vegetation | 0.24 | 0.2 | 0.22 | 0.16 | 0.14 | 0.12 |
Agricultural land | 0.23 | 0.23 | 0.22 | 0.26 | 0.29 | 0.32 |
Built-up | 0.02 | 0.04 | 0.05 | 0.06 | 0.06 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahon, D.; Sahariah, D.; Debnath, J.; Nath, N.; Meraj, G.; Kumar, P.; Hashimoto, S.; Farooq, M. Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India. ISPRS Int. J. Geo-Inf. 2023, 12, 165. https://doi.org/10.3390/ijgi12040165
Lahon D, Sahariah D, Debnath J, Nath N, Meraj G, Kumar P, Hashimoto S, Farooq M. Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India. ISPRS International Journal of Geo-Information. 2023; 12(4):165. https://doi.org/10.3390/ijgi12040165
Chicago/Turabian StyleLahon, Durlov, Dhrubajyoti Sahariah, Jatan Debnath, Nityaranjan Nath, Gowhar Meraj, Pankaj Kumar, Shizuka Hashimoto, and Majid Farooq. 2023. "Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India" ISPRS International Journal of Geo-Information 12, no. 4: 165. https://doi.org/10.3390/ijgi12040165
APA StyleLahon, D., Sahariah, D., Debnath, J., Nath, N., Meraj, G., Kumar, P., Hashimoto, S., & Farooq, M. (2023). Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India. ISPRS International Journal of Geo-Information, 12(4), 165. https://doi.org/10.3390/ijgi12040165