An Assessment of Seasonal Water Quality in Phewa Lake, Nepal, by Integrating Geochemical Indices and Statistical Techniques: A Sustainable Approach
<p>Study area map showing sampling sites in Phewa Lake, Nepal.</p> "> Figure 2
<p>Methodological steps of this research.</p> "> Figure 3
<p>Physicochemical parameters for Phewa Lake, Nepal, during pre- and post-monsoon periods.</p> "> Figure 4
<p>Principal components of the loading plot for Phewa Lake, Nepal. The figure illustrates the relationships among various water quality parameters using different symbols and colors. The red circle represents the chloride ion (Cl<sup>−</sup>), while blue squares denote other ions such as sulfate (SO<sub>4</sub><sup>2−</sup>), nitrate (NO<sub>3</sub><sup>−</sup>), ammonium (NH<sub>4</sub><sup>+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), and phosphate (PO<sub>4</sub><sup>3−</sup>). Green triangles represent physicochemical parameters, including electrical conductivity (EC), total dissolved solids (TDS), magnesium (Mg<sup>2+</sup>), calcium (Ca<sup>2+</sup>), and bicarbonate (HCO<sub>3</sub><sup>−</sup>). The background planes correspond to the projections of the data points onto the component 1 (PC1), component 2 (PC2), and component 3 (PC3) planes, respectively, derived from a dimensionality reduction technique, i.e., principal component analysis (PCA).</p> "> Figure 5
<p>Piper diagram characterizing the hydrochemical facies for Phewa Lake, Nepal. Note: Region 1 corresponds to waters dominated by alkaline earths (Ca<sup>2+</sup> + Mg<sup>2+</sup>) and weak acids (HCO<sub>3</sub><sup>−</sup>), typically reflecting carbonate weathering. Region 2 denotes waters with alkaline earths and strong acids (Cl<sup>−</sup> + SO<sub>4</sub><sup>2−</sup>), often linked to gypsum dissolution or anthropogenic inputs. Region 3 represents mixed waters without a dominant ion type, suggesting blending of sources. Region 4 includes waters dominated by alkali metals (Na<sup>+</sup> + K<sup>+</sup>) and weak acids, indicating silicate weathering or ion exchange. Region 5 features waters rich in alkali metals and strong acids, possibly due to evaporite dissolution or industrial contamination. Lastly, and Region 6 represents transitional waters with no clear dominance, indicating complex geochemical processes or mixing.</p> "> Figure 6
<p>Piper diagram showing dominant hydrochemical facies for Phewa Lake compared to Lesser Himalayan freshwater lakes in Nepal. Note: Region 1 corresponds to waters dominated by alkaline earths (Ca<sup>2+</sup> + Mg<sup>2+</sup>) and weak acids (HCO<sub>3</sub><sup>−</sup>), typically reflecting carbonate weathering. Region 2 denotes waters with alkaline earths and strong acids (Cl<sup>−</sup> + SO<sub>4</sub><sup>2−</sup>), often linked to gypsum dissolution or anthropogenic inputs. Region 3 represents mixed waters without a dominant ion type, suggesting blending of sources. Region 4 includes waters dominated by alkali metals (Na<sup>+</sup> + K<sup>+</sup>) and weak acids, indicating silicate weathering or ion exchange. Region 5 features waters rich in alkali metals and strong acids, possibly due to evaporite dissolution or industrial contamination. Lastly, and Region 6 represents transitional waters with no clear dominance, indicating complex geochemical processes or mixing.</p> "> Figure 7
<p>Gibbs diagram showing (<b>a</b>) TDS vs. Na<sup>+</sup>/ (Na<sup>+</sup> + Ca<sup>2+</sup>) and (<b>b</b>) TDS vs. Cl<sup>−</sup>/(Cl<sup>−</sup> + HCO<sub>3</sub><sup>−</sup>) for Phewa Lake, Nepal.</p> "> Figure 8
<p>Variation in weight ratio of (<b>a</b>) Na<sup>+</sup>/(Na<sup>+</sup> + Ca<sup>2+</sup>) and (<b>b</b>) Cl<sup>−</sup>/(Cl<sup>−</sup> + HCO<sub>3</sub><sup>−</sup>), as a function of TDS, in Gibbs diagram for Phewa Lake compared to Lesser Himalayan freshwater lakes in Nepal.</p> "> Figure 9
<p>Mixing diagram for Phewa Lake, showing Na<sup>+</sup>-normalized molar ratios of (<b>a</b>) Ca<sup>2+</sup> vs. HCO<sub>3</sub><sup>−</sup>, and (<b>b</b>) Ca<sup>2+</sup> vs. Mg<sup>2+</sup>.</p> "> Figure 10
<p>Mixing diagram showing Na<sup>+</sup>-normalized molar ratios of (<b>a</b>) Ca<sup>2+</sup> vs. HCO<sub>3</sub><sup>−</sup>, and (<b>b</b>) Ca<sup>2+</sup> vs. Mg<sup>2+</sup>, for Phewa Lake, compared to lesser Himalayan freshwater lakes, in Nepal.</p> "> Figure 11
<p>Quantitative correlation of sustainable management strategy (SMS) with sustainable development goals (SDGs) for Phewa Lake, Nepal.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical and Geographical Background of Phewa Lake
2.2. Research Methodology
2.2.1. Sampling and Physicochemical Analysis
- In Situ Measurements
- Laboratory Evaluations
2.2.2. Statistical Tools and Techniques
2.2.3. Linkages Between Study Findings and Sustainable Development Goals (SDGs)
3. Results
3.1. Spatio-Temporal Variations in Physicochemical Parameters
3.2. Correlations Between Physicochemical Parameters
3.3. Principal Component Analysis (PCA)
3.4. Characterization of Geochemical Facies
3.5. Hydrochemistry of Phewa Lake
3.6. Mixing Diagram
3.7. Sustainable Management Strategy (SMS) Linked to Study Findings
3.7.1. Environmental-Based SDGs
3.7.2. Economic-Based SDGs
3.7.3. Social-Based SDGs
4. Discussion
4.1. Spatio-Temporal Variations in Water Quality of Phewa Lake
4.2. Hydrochemical Comparison of Present Study with Previous Studies on Phewa Lake
4.3. Comparative Analysis of Major Ion Concentrations in Phewa Lake with Those in Other Lesser Himalayan Lakes
4.4. Statistical Analysis
4.5. Implications of Sustainable Management Strategy (SMS)
4.5.1. Environmental Pillar
4.5.2. Economic Pillar
4.5.3. Social Pillar
5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paudel, G.; Pant, R.R.; Joshi, T.R.; Saqr, A.M.; Ðurin, B.; Cetl, V.; Kamble, P.N.; Bishwakarma, K. Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus. Water 2024, 16, 3373. [Google Scholar] [CrossRef]
- Khadka, U.R.; Ramanathan, A.L. Hydrogeochemical analysis of phewa lake: A lesser himalayan lake in the pokhara valley, Nepal. Environ. Nat. Resour. J. 2021, 19, 68–83. [Google Scholar] [CrossRef]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Mohd Izam, N.A.; Azman, S.N.; Jonit, E.; Sallehoddin, S.M.H.; Khairul, D.C.; Zainul Abidin, M.K.; Farinordin, F.A. Freshwater Ecosystem: A Short Review of Threats and Mitigations in Malaysia. Gading J. Sci. Technol. 2021, 4, 109–117. [Google Scholar]
- Ghimire, N.P.; Jha, P.K.; Caravello, G. Water Quality of High-Altitude Lakes in the Sagarmatha (Everest) National Park, Nepal. J. Environ. Prot. 2013, 04, 22–28. [Google Scholar] [CrossRef]
- Gautam, R.; Shrestha, S.M. Hydrogeochemical evaluation and characterization of water quality in the Phewa Lake, Pokhara, Nepal. Environ. Sci. Pollut. Res. 2024, 31, 60568–60586. [Google Scholar] [CrossRef]
- Noman, M.; Ullah, I.; Khan, M.A.; Qazi, A.; Farooq, W.; Saqr, A.; Elsheikh, A. Analysis of overcurrent protective relaying as minimum adopted fault protection for small-scale hydropower plants. Int. J. Environ. Sci. Technol. 2024, 21, 4457–4470. [Google Scholar] [CrossRef]
- Gissi, E.; Manea, E.; Mazaris, A.D.; Fraschetti, S.; Almpanidou, V.; Bevilacqua, S.; Coll, M.; Guarnieri, G.; Lloret-Lloret, E.; Pascual, M.; et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 2021, 755, 142564. [Google Scholar] [CrossRef]
- Alao, J.O.; Ayejoto, D.A.; Fahad, A.; Mohammed, M.A.A.; Saqr, A.M.; Joy, A.O. Environmental Burden of Waste Generation and Management in Nigeria. In Technical Landfills and Waste Management; Souabi, S., Anouzla, A., Eds.; Springer: Cham, Switzerland, 2024; pp. 27–56. [Google Scholar] [CrossRef]
- Cooke, S.J.; Frempong-Manso, A.; Piczak, M.L.; Karathanou, E.; Clavijo, C.; Ajagbe, S.O.; Akeredolu, E.; Strauch, A.M.; Piccolo, J. A freshwater perspective on the United Nations decade for ecosystem restoration. Conserv. Sci. Pract. 2022, 4, 11. [Google Scholar] [CrossRef]
- Deka, J.P.; Tayeng, G.; Singh, S.; Hoque, R.R.; Prakash, A.; Kumar, M. Source and seasonal variation in the major ion chemistry of two eastern Himalayan high altitude lakes, India. Arab. J. Geosci. 2015, 8, 10597–10610. [Google Scholar] [CrossRef]
- Jones, J.R.; Knowlton, M.F.; Swar, D.B. Limnological reconnaissance of waterbodies in central and southern Nepal. Hydrobiologia 1989, 184, 171–189. [Google Scholar] [CrossRef]
- Anshumali; Ramanathan, A.L. Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh, India. Appl. Geochem. 2007, 22, 1736–1747. [Google Scholar] [CrossRef]
- Alm, A.L. Nonpoint source pollution. Environ. Sci. Technol. 1991, 25, 1369. [Google Scholar] [CrossRef]
- Tripathee, L.; Kang, S.; Sharma, C.M.; Rupakheti, D.; Paudyal, R.; Huang, J.; Sillanpää, M. Preliminary Health Risk Assessment of Potentially Toxic Metals in Surface Water of the Himalayan Rivers, Nepal. Bull. Environ. Contam. Toxicol. 2016, 97, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Malla-Pradhan, R.; Pradhan, B.L.; Prasai Joshi, T.; Phoungthong, K. Water quality assessment through numerical indices in Phewa Lake, Nepal. Int. J. Environ. Anal. Chem. 2022, 104, 6446–6460. [Google Scholar] [CrossRef]
- Naidoo, S.; Olaniran, A.O. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int. J. Environ. Res. Public Health 2013, 11, 249–270. [Google Scholar] [CrossRef]
- Raj Pant, R.; Ur Rehman Qaiser, F.; Chandra Yadav, I.; Wang, G.; Bishwakarma, K.; Bahadur Pal, K.; Thapa, L.B.; Panthi, K.; Joshi, S. Hydrochemical Characterization of Surface Water in Phewa Lake, Gandaki Province, Nepal. 2022. Available online: https://www.researchsquare.com/article/rs-2142071/latest (accessed on 1 December 2024).
- Tussupova, K.; Anchita, K.; Hjorth, P.; Moravej, M. Drying lakes: A review on the applied restoration strategies and health conditions in contiguous areas. Water 2020, 12, 749. [Google Scholar] [CrossRef]
- Watson, C.S.; Kargel, J.S.; Regmi, D.; Rupper, S.; Maurer, J.M.; Karki, A. Shrinkage of Nepal’s second largest lake (Phewa Tal) due to watershed degradation and increased sediment influx. Remote Sens. 2019, 11, 444. [Google Scholar] [CrossRef]
- Husen, M.A.; Storey, R.G.; Gurung, T.B. Water quality patterns, trends and variability over 17+ years in Phewa Lake, Nepal. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2023, 28, 1. [Google Scholar] [CrossRef]
- Saqr, A.M.; Ibrahim, M.G.; Fujii, M.; Nasr, M. Simulation-Optimization Modeling Techniques for Groundwater Management and Sustainability: A Critical Review. Adv. Eng. Forum 2022, 47, 89–100. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Chakrapani, G.J. Water and sediment geochemistry of major Kumaun Himalayan lakes, India. Environ. Geol. 2002, 43, 99–107. [Google Scholar] [CrossRef]
- Fan, B.L.; Zhao, Z.Q.; Tao, F.X.; Liu, B.J.; Tao, Z.H.; Gao, S.; Zhang, L.H. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. J. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Tefas, A.; Pitas, I. Principal Component Analysis. In The Industrial Electronics Handbook—Five Volume Set; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S.; Singh, V.P. Determination of runoff and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrol. Process. 2007, 21, 3035–3045. [Google Scholar] [CrossRef]
- Poudel, S.; Mishra, A.D.; Adhikari, K.G. Chemical Hydrological Features and Water Quality Evaluation of Phewa Lake of Pokhara Valley Gandaki Province of Nepal. J. Nepal Chem. Soc. 2023, 43, 65–69. [Google Scholar] [CrossRef]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Geochemistry of the Tigris River basin, Turkey: Spatial and seasonal variations of major ion compositions and their controlling factors. Quat. Int. 2013, 304, 22–32. [Google Scholar] [CrossRef]
- Eid, M.H.; Eissa, M.; Mohamed, E.A.; Ramadan, H.S.; Czuppon, G.; Kovács, A.; Szűcs, P. Application of stable isotopes, mixing models, and K-means cluster analysis to detect recharge and salinity origins in Siwa Oasis, Egypt. Groundw. Sustain. Dev. 2024, 25, 101124. [Google Scholar] [CrossRef]
- Das, B.D. Evaluation of Water Pollution Status During Pre-monsoon Period of Fewa Lake, Pokhra, Nepal. Ec Microbiol. 2017, 6, 264–269. [Google Scholar]
- Regmi, R.R.; Saha, S.K.; Subedi, D.S. Geospatial Analysis of Land Use Land Cover Change Modeling in Phewa Lake Watershed of Nepal by Using GEOMOD Model. Himal. Phys. 2017, 6, 65–72. [Google Scholar] [CrossRef]
- Ross, J.; Gilbert, R. Lacustrine sedimentation in a monsoon environment: The record from Phewa Tal, middle mountain region of Nepal. Geomorphology 1999, 27, 307–323. [Google Scholar] [CrossRef]
- Sikrikar, S.M.; Rimal, L.N.; Jager, S. Landslide hazard mapping of Phewa Lake catchment area, Pokhara, central west Nepal. J. Nepal Geol. Soc. 1998, 18, 335–341. [Google Scholar] [CrossRef]
- Giri, S.; Qiu, Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef]
- Chang, F.; Hou, P.; Wen, X.; Duan, L.; Zhang, Y.; Zhang, H. Seasonal Stratification Characteristics of Vertical Profiles and Water Quality of Lake Lugu in Southwest China. Water 2022, 14, 2554. [Google Scholar] [CrossRef]
- Caldwell Eldridge, S.L.; Schaar, M.A.; Reese, C.B.; Bussell, A.M.; Chapin, T. Sampling and Analysis Plan for the Koocanusa Reservoir and Upper Kootenai River, Montana, Water-Quality Monitoring Program, 2021. U.S. Geol. Surv. Open-File Rep. 2023, 2023, 1–32. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washingt, DC, USA, 2017. [Google Scholar]
- ISO 5667-3:2018; Water Quality—Sampling. Part 3: Preservation and Handling of Water Sample. 2018, Edition 5. ISO: Geneva, Switzerland. Available online: https://www.iso.org/standard/72370.html (accessed on 1 December 2024).
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Duić, N.; Urbaniec, K.; Huisingh, D. Components and structures of the pillars of sustainability. J. Clean. Prod. 2015, 88, 1–12. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Joshi, A.; Sharma, B. Analysis of Physico-Chemical Parameters and Conservation Practices at Mai Pokhari, Ilam. J. Environ. Sci. 2017, 3. Available online: https://www.researchgate.net/publication/342734431_Analysis_of_Physico-Chemical_Parameters_and_Conservation_Practices_at_Mai_Pokhari_Ilam (accessed on 1 December 2024).
- Khadka, U.R.; Ramanathan, A.L. Major ion composition and seasonal variation in the Lesser Himalayan lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arab. J. Geosci. 2013, 6, 4191–4206. [Google Scholar] [CrossRef]
- Gurung, S.; Gurung, A.; Sharma, C.M.; Jüttner, I.; Tripathee, L.; Bajracharya, R.M.; Raut, N.; Pradhananga, P.; Sitaula, B.K.; Zhang, Y.; et al. Hydrochemistry of Lake Rara: A high mountain lake in western Nepal. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2018, 23, 87–97. [Google Scholar] [CrossRef]
- Rajmohan, N.; Elango, L. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ. Geol. 2004, 46, 47–61. [Google Scholar] [CrossRef]
- Kafle, B.K.; Dahal, B.M.; Sharma, C.M.; Kafle, K.R.; Gurung, S.; Raut, N.; Manandhar, S. Physicochemical Characterization of Water Samples from Lake Phewa and Kulekhani Reservoir, Nepal. NRACC Conf. Pap. 2019, 85–95. Available online: https://login.research4life.org/tacsgr1www_cabdirect_org/cabdirect/abstract/20210296888 (accessed on 1 December 2024).
- Cleaves, E.T.; Godfrey, A.E.; Bricker, O.P. Geochemical balance of a small watershed and its geomorphic implications. Bull. Geol. Soc. Am. 1970, 81, 3015–3032. [Google Scholar] [CrossRef]
- Li, C.; Chen, T.; Liu, T.; Liu, C.; Hao, L.; Zhou, X.; Sun, L.; Cheng, X.; Li, X. Corrosion behavior of Cr/RE alloyed rebar in carbonated simulated concrete pore solutions with chloride ions. J. Build. Eng. 2024, 94, 110075. [Google Scholar] [CrossRef]
- Bhatta, R.; Gurung, S.; Joshi, R.; Tuladhar, S.; Regmi, D.; Kafle, B.K.; Dahal, B.M.; Raut, N.; Kafle, K.R.; Kayastha, R.; et al. Spatio-Temporal Hydrochemistry of Two Selected Ramsar Sites (Rara and Ghodaghodi) of West Nepal. Heliyon 2022, 8. [Google Scholar] [CrossRef]
- Sapkota, M.; Pant, R.R.; Pathak, L.; Khanal, B.; Shrestha, S.; Poudel, B.; Poudel, S.; Thapa, L.B.; Pal, K.B.; Bishwakarma, K.; et al. Assessment of water quality using multivariate statistical approaches in Jagadishpur Reservoir, Lumbini Province, Nepal. Sustain. Water Resour. Manag. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Neupane, S.; Pant, R.R.; Thapa, L.B.; Shah, D.N.; Gautam, B.; Adhikari, B.; Khanal, B.; Acharya, A.; Bishwakarma, K.; Adhikari, S. Hydrochemical characterization of the Ramsar-listed Koshi Tappu Wetland, Nepal. J. Nepal Chem. Soc. 2023, 43, 53–64. [Google Scholar] [CrossRef]
- Pant, R.R.; Adhikari, B.; Baral, U.; Shrestha, S.; Neupane, S.; Khanal, B.; Acharya, A.; Bhattarai, H. Geochemical and multivariate assessment of water quality in the Rajarani Lake, Dhankuta, Nepal. J. Nepal Geol. Soc. 2020, 60, 37–49. [Google Scholar] [CrossRef]
- Thapa, B.; Khanal, L.; Pant, R.R.; Bhatta, C.R.; Subedi, P.; Upadhyaya, L.P.; Sunar, C.B.; Poudel, J.; Pandey, N.; Kyes, P.; et al. Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas. Limnol. Rev. 2024, 24, 30–52. [Google Scholar] [CrossRef]
- Aizaki, M.; Terashima, A.; Nakahara, H.; Nishio, T.; Ishida, Y. Trophic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia 1987, 153, 217–224. [Google Scholar] [CrossRef]
- Das, B.K.; Kaur, P. Major ion chemistry of Renuka Lake and weathering processes, Sirmaur District, Himachal Pradesh, India. Environ. Geol. 2001, 40, 908–917. [Google Scholar] [CrossRef]
- Jargal, N.; Atique, U.; Mamun, M.; An, K.G. Seasonal and long-term connections between trophic status, sestonic chlorophyll, nutrients, organic matter, and monsoon rainfall in a multipurpose reservoir. Water 2021, 13, 1720. [Google Scholar] [CrossRef]
- Lentz, D.L.; Dunning, N.P.; Scarborough, V.L.; Magee, K.S.; Thompson, K.M.; Weaver, E.; Carr, C.; Terry, R.E.; Islebe, G.; Tankersley, K.B.; et al. Forests, fields, and the edge of sustainability at the ancient Maya city of Tikal. Proc. Natl. Acad. Sci. USA 2014, 111, 18513–18518. [Google Scholar] [CrossRef]
- Sidibé, A.M.; Lin, X.; Koné, S. Assessing groundwater mineralization process, quality, and isotopic recharge origin in the Sahel region in Africa. Water 2019, 11, 789. [Google Scholar] [CrossRef]
- English, N.B.; Quade, J.; DeCelles, P.G.; Garzione, C.N. Geologic control of Sr and major element chemistry in Himalayan Rivers, Nepal. Geochim. Cosmochim. Acta 2000, 64, 2549–2566. [Google Scholar] [CrossRef]
- Paudyal, R.; Kang, S.; Sharma, C.M.; Tripathee, L.; Huang, J.; Rupakheti, D.; Sillanpää, M. Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environ. Earth Sci. 2016, 75, 46. [Google Scholar] [CrossRef]
- Vithanage, M.; Kumarathilaka, P.; Oze, C.; Karunatilake, S.; Seneviratne, M.; Hseu, Z.Y.; Gunarathne, V.; Dassanayake, M.; Ok, Y.S.; Rinklebe, J. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environ. Int. 2019, 131, 104974. [Google Scholar] [CrossRef]
- Barlow, M.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W.; Lim, Y.K.; Schumacher, R.S.; Wehner, M.F.; Agel, L.; Bosilovich, M.; Collow, A.; et al. North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2019, 53, 6835–6875. [Google Scholar] [CrossRef]
- Pablo Alvarez-Zaldívar. Pesticide Degradation and Transport at Catchment Scale: Compound-Specific Isotope Analysis and Numerical Modelling. 2021, pp. 1–192. Available online: https://theses.hal.science/tel-03227413 (accessed on 1 December 2024).
- Guo, D.; Thomas, J.; Lazaro, A.B.; Matwewe, F.; Johnson, F. Modelling the influence of short-term climate variability on drinking water quality in tropical developing countries: A case study in Tanzania. Sci. Total Environ. 2020, 763, 142932. [Google Scholar] [CrossRef] [PubMed]
- Kämäri, M.; Tattari, S.; Lotsari, E.; Koskiaho, J.; Lloyd, C.E.M. High-frequency monitoring reveals seasonal and event-scale water quality variation in a temporally frozen river. J. Hydrol. 2018, 564, 619–639. [Google Scholar] [CrossRef]
- Mangadze, T.; Dalu, T.; William Froneman, P. Biological monitoring in southern Africa: A review of the current status, challenges and future prospects. Sci. Total Environ. 2019, 648, 1492–1499. [Google Scholar] [CrossRef]
- Song, C.; Yuan, L.; Yang, X.; Fu, B. Ecological-hydrological processes in arid environment: Past, present and future. J. Geogr. Sci. 2017, 27, 1577–1594. [Google Scholar] [CrossRef]
- Mawa, J. Promotion and preservation of indigenous knowledge systems and the traditional environmental knowledge of Garo communities in Bangladesh. In Digital Preservation and Documentation of Global Indigenous Knowledge Systems; IGI Global Scientific: Hershey, PA, USA, 2023; pp. 105–122. [Google Scholar] [CrossRef]
Temp | pH | EC | TDS | Ca2+ | Mg2+ | K+ | Na+ | NO3− | Cl− | SO42− | HCO3− | PO43− | NH4+ | DO | Turb | TH | CaH | MgH | F-CO2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | 1 | |||||||||||||||||||
pH | −0.12 | 1 | ||||||||||||||||||
EC | 0.30 * | −0.23 | 1 | |||||||||||||||||
TDS | 0.21 | −0.15 | 0.75 ** | 1 | ||||||||||||||||
Ca2+ | 0.12 | −0.25 | 0.45 ** | 0.45 ** | 1 | |||||||||||||||
Mg2+ | −0.16 | 0.04 | 0.27 * | 0.41 ** | 0.39 ** | 1 | ||||||||||||||
K+ | 0.10 | 0.05 | −0.02 | 0.02 | −0.04 | −0.38 ** | 1 | |||||||||||||
Na+ | 0.08 | 0.18 | −0.04 | 0.07 | −0.10 | −0.29 * | 0.86 ** | 1 | ||||||||||||
NO3− | −0.10 | −0.11 | −0.04 | −0.02 | 0.21 | 0.32 * | −0.76 ** | −0.72 ** | 1 | |||||||||||
Cl− | 0.005 | 0.22 | −0.03 | 0.06 | −0.22 | −0.17 | 0.17 | 0.24 | −0.19 | 1 | ||||||||||
SO42− | −0.04 | −0.11 | 0.07 | −0.01 | 0.06 | 0.29 * | −0.74 ** | −0.70 ** | 0.75 ** | −0.21 | 1 | |||||||||
HCO3− | 0.16 | 0.04 | 0.53 ** | 0.69 ** | 0.61 ** | 0.37 ** | 0.05 | 0.06 | 0.03 | 0.03 | 0.02 | 1 | ||||||||
PO43− | 0.05 | 0.25 | −0.11 | −0.05 | −0.16 | −0.31 * | 0.72 ** | 0.70 ** | −0.75 ** | 0.15 | −0.67 ** | −0.010 | 1 | |||||||
NH4+ | 0.07 | 0.25 | −0.05 | 0.07 | −0.15 | −0.27 * | 0.75 ** | 0.75 ** | −0.70 ** | 0.13 | −0.66 ** | −0.009 | 0.64 ** | 1 | ||||||
DO | −0.19 | 0.02 | −0.23 | −0.05 | −0.11 | −0.33 ** | 0.62 ** | 0.55 ** | −0.47 ** | 0.18 | −0.56 ** | −0.09 | 0.39 ** | 0.49 ** | 1 | |||||
Turb | 0.13 | 0.06 | −0.09 | −0.20 | −0.08 | 0.006 | −0.22 | −0.20 | 0.23 | −0.03 | 0.27 * | −0.15 | −0.10 | −0.19 | −0.23 | 1 | ||||
TH | 0.08 | 0.04 | 0.54 ** | 0.63 ** | 0.72 ** | 0.65 ** | 0.02 | 0.07 | 0.008 | −0.16 | −0.03 | 0.75 ** | −0.003 | 0.07 | −0.15 | −0.22 | 1 | |||
CaH | −0.05 | 0.07 | 0.31 * | 0.23 | 0.57 ** | 0.25 | 0.09 | 0.11 | 0.009 | −0.14 | −0.08 | 0.39 ** | 0.007 | 0.005 | −0.03 | −0.29 * | 0.62 ** | 1 | ||
MgH | −0.06 | −0.06 | 0.26 * | 0.41 ** | 0.29 * | 0.80 ** | −0.23 | −0.19 | 0.18 | −0.15 | 0.20 | 0.36 ** | −0.14 | −0.14 | −0.21 | 0.06 | 0.57 ** | −0.14 | 1 | |
F-CO2 | 0.02 | −0.14 | 0.20 | 0.06 | 0.12 | 0.26 * | −0.57 ** | −0.54 ** | 0.667 ** | −0.20 | 0.69 ** | 0.15 | −0.60 ** | −0.55 ** | −0.53 ** | 0.21 | 0.04 | 0.05 | 0.13 | 1 |
Parameters | Components | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
EC | 0.195 | 0.827 | 0.098 |
TDS | 0.228 | 0.867 | 0.058 |
Ca2+ | −0.080 | 0.520 | −0.405 |
Mg2+ | −0.272 | 0.445 | −0.220 |
K+ | 0.919 | 0.045 | 0.053 |
Na+ | 0.901 | 0.121 | 0.101 |
NO3− | −0.925 | −0.053 | −0.081 |
Cl− | −0.005 | 0.049 | 0.934 |
SO42− | −0.833 | −0.077 | −0.036 |
HCO3− | −0.003 | 0.783 | 0.038 |
PO43− | 0.879 | 0.027 | −0.019 |
NH4+ | 0.724 | −0.080 | −0.047 |
Eigen Value | 4.778 | 2.483 | 1.086 |
% of Variance | 39.813 | 20.693 | 9.048 |
Cumulative % | 39.813 | 60.506 | 69.553 |
pH | EC | TDS | DO | Turb | Ca2+ | Mg2+ | K+ | Na+ | NO3− | Cl− | SO42− | HCO3− | PO43− | NH4+ | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.06 | 80.5 | 43.13 | 7.46 | 5.68 | 14.77 | 4.13 | 0.31 | 2.62 | 2.31 | 10.81 | 7.64 | 59.83 | 0.12 | 0.08 | Present study (pre-monsoon) |
8.24 | 109.17 | 58.3 | 8.62 | 2.57 | 13.39 | 3.02 | 2.68 | 6.04 | 0.74 | 11.62 | 1.79 | 61.4 | 0.15 | 0.15 | Present study (post-monsoon) |
6.83 | 50.04 | 24.78 | 9.87 | 20.78 | 5.52 | 2.41 | 1.61 | 5.41 | 0.043 | - | 7.48 | 22.2 | 0.025 | 0.629 | Kafle et al. [48] |
7.93 | 86.45 | 74.89 | 10.39 | - | 8.68 | 1.84 | 1.4 | 3.32 | 5.2 | 1.57 | 9.16 | 28.24 | 0.08 | - | Khadka and Ramanathan [2] |
7.98 | 77 | 42 | 6.08 | - | 8.74 | 1.25 | 1.33 | 1.54 | 0.91 | 1.48 | 1.79 | 22.65 | - | - | Pant et al. [18] |
7.93 | 67.1 | 33.54 | 7.2 | 10.71 | - | - | - | - | 0.48 | 13.52 | - | - | - | - | Pradhan et al. [16] |
Lakes | Ca2+ | Mg2+ | K+ | Na+ | NO3− | Cl− | SO42− | HCO3− | PO43− | NH4+ | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Phewa | 14.77 | 4.13 | 0.31 | 2.62 | 2.31 | 10.81 | 7.64 | 59.83 | 0.12 | 0.08 | Present study (pre-monsoon) |
Phewa | 13.39 | 3.02 | 2.68 | 6.04 | 0.74 | 11.62 | 1.79 | 61.4 | 0.15 | 0.15 | Present study (post-monsoon) |
Begnas | 17.5 | 2.17 | 1.2 | 3.08 | 3.36 | 2.77 | 9.77 | 40.4 | 0.16 | - | Khadka and Ramanathan [45] |
Ghodaghodi | 21.48 | 2.78 | 2.76 | 3.52 | 0.15 | 0.38 | 0.045 | 81.48 | 0.255 | Bhatta et al. [51] | |
Jagadishpur | 10.73 | 5.2 | 2.92 | 8.53 | 0.99 | 10.89 | 100 | 0.2 | 2.44 | Sapkota et al. [52] | |
Koshi Tappu | 15.46 | 5.95 | 3.15 | 8.55 | 0.33 | 9.33 | 9.79 | 49.98 | 0.11 | 0.33 | Neupane et al. [53] |
Mai Pokhari | - | - | - | - | 1.39 | - | - | - | 1.88 | 0.99 | Josi and Sharma [44] |
Rajarani | 5.56 | 1.96 | 2.67 | 8.09 | 0.06 | 11.64 | - | 32.75 | 0.25 | 0.37 | Pant et al. [54] |
Ramaroshan | 12.02 | 3.51 | 1.67 | 5.89 | 0.44 | 4.41 | 0.48 | 61.58 | 0.16 | 0.13 | Thapa et al. [55] |
Tilicho | 20.7 | 5.75 | 0.31 | 0.86 | - | 1.8 | 8.6 | - | - | - | Aizaki et al. [56] |
Renuka | 57.74 | 38.3 | 2.02 | 8.33 | - | 11.92 | 6.41 | 146.42 | 6.4 | - | Das and Kaur [57] |
Pandoh | 17.96 | 3.31 | 2.06 | 3.82 | 10.33 | 2.37 | 2.74 | 49.17 | 1.28 | - | Anshumali and Ramanathan [13] |
Subfields | Water Type | Percentage of Sample |
---|---|---|
1 | Ca2+-HCO3− | 98.34% |
2 | Na+-Cl− | - |
3 | Mixed Ca2+-Na+-HCO3− | 1.66% |
4 | Mixed Ca2+-Mg2+-Cl− | - |
5 | Ca2+-Cl− | - |
6 | Na+-HCO3− | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timalsina, R.; Acharya, S.; Đurin, B.; Awasthi, M.P.; Pant, R.R.; Joshi, G.R.; Byanju, R.M.; Panthi, K.P.; Joshi, S.; Kumar, A.; et al. An Assessment of Seasonal Water Quality in Phewa Lake, Nepal, by Integrating Geochemical Indices and Statistical Techniques: A Sustainable Approach. Water 2025, 17, 238. https://doi.org/10.3390/w17020238
Timalsina R, Acharya S, Đurin B, Awasthi MP, Pant RR, Joshi GR, Byanju RM, Panthi KP, Joshi S, Kumar A, et al. An Assessment of Seasonal Water Quality in Phewa Lake, Nepal, by Integrating Geochemical Indices and Statistical Techniques: A Sustainable Approach. Water. 2025; 17(2):238. https://doi.org/10.3390/w17020238
Chicago/Turabian StyleTimalsina, Rojesh, Surendra Acharya, Bojan Đurin, Mahesh Prasad Awasthi, Ramesh Raj Pant, Ganesh Raj Joshi, Rejina Maskey Byanju, Khim Prasad Panthi, Susan Joshi, Amit Kumar, and et al. 2025. "An Assessment of Seasonal Water Quality in Phewa Lake, Nepal, by Integrating Geochemical Indices and Statistical Techniques: A Sustainable Approach" Water 17, no. 2: 238. https://doi.org/10.3390/w17020238
APA StyleTimalsina, R., Acharya, S., Đurin, B., Awasthi, M. P., Pant, R. R., Joshi, G. R., Byanju, R. M., Panthi, K. P., Joshi, S., Kumar, A., Thakur, T. K., & Saqr, A. M. (2025). An Assessment of Seasonal Water Quality in Phewa Lake, Nepal, by Integrating Geochemical Indices and Statistical Techniques: A Sustainable Approach. Water, 17(2), 238. https://doi.org/10.3390/w17020238