[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India

  • Original Article
  • Published:
Environmental Geology

Abstract

The Palar and Cheyyar River Basins in Tamil Nadu state of Southern India are characterised by different geological formations, and groundwater is the major source for domestic, agricultural and other water-related activities. Hydrogeochemical studies were carried out in this area with the objective of identifying the geochemical processes and their relation to groundwater quality. Groundwater samples were collected once a month from 43 groundwater wells in this area from January 1998 to July 1999. Sampling procedures and chemical analysis were carried out as per the standard methods. Chemical data are used for mathematical calculations and graphical plots to understand the chemical process and its relation to the groundwater quality. The chemical composition of groundwater in the central part of the study area mainly depends on the recharge from lakes and the river, which is explained by a mixing mechanism. In addition, weathering of silicate minerals controls the concentration of major ions such as sodium, calcium, magnesium and potassium in the groundwater of this area. Further, the activity ratios indicate that the groundwater is in equilibrium with kaolinite, smectite and montmorrillonite. The reverse ion exchange process controls the concentration of calcium, magnesium and sodium in hard rock formations, and dissolution of carbonate minerals and accessory minerals is the source of Ca and Mg, in addition to cation exchange in the sedimentary formations. In general, the chemical composition of the groundwater in this area is influenced by rock–water interaction, dissolution and deposition of carbonate and silicate minerals, ion exchange, and surface water interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • APHA (1995) Standard methods for the examination of water and wastewater, 17th edn. APHA, Washington, DC

  • Ballukraya PN, Ravi R (1999) Characterisation of groundwater in the unconfined aquifer of Chennai city, India. J Geol Soc India 54:1–11

    CAS  Google Scholar 

  • Bartarya SK (1993) Hydrochemistry and rock weathering in a sub-tropical lesser himalayan river basin in Kumaun, India. J Hydrol 146:149–174

    CAS  Google Scholar 

  • Cerling TE, Pederson BL, Damm KLV (1989) Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology 17:552–554

    Article  CAS  Google Scholar 

  • Chourasia LP, Tellam JH (1992) Determination of the effect of surface water irrigation on the groundwater chemistry of a hard rock terrain in central India. Hydrolog Sci J 37(4):313–328

    Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. CRC, Boca Raton, Florida

    Google Scholar 

  • Elango L (1992) Hydrogeochemistry and mass balance modelling of multilayered aquifers. PhD Thesis, Anna University, Chennai, India (unpublished)

  • Elango L, Ramachandran S (1991) Salt balance model for an alluvial aquifer. In: Modeling groundwater flow and pollution. Nanjing University Press, Nanjing, China, 1:479–486

  • Elango L, Kannan R, Senthil Kumar M (2003) Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. J Environ Geosci 10(4):157–166

    Google Scholar 

  • Fisher RS, Mulican III WF (1997) Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16

    Article  Google Scholar 

  • Fritz B (1975) Etude thermodynamique et simulation des reactions entre mineraux et solutions, Application a la geochimie des alterations et des eaux cintinentales. Mem Sci Geol Univ Strasbourg 41:153

    Google Scholar 

  • Garrels RM (1967) Genesis of some groundwaters from igneous rocks. In: Abelson PH (ed) Researchers in geochemistry 2. Wiley, New York, pp 405–420

  • Gibbs RJ (1970) Mechanisms controlling worlds water chemistry. Science 170:1088–1090

    CAS  Google Scholar 

  • Hamilton PA, Helsel DR (1995) Effects of agriculture on groundwater quality in five regions of the United States. Groundwater 33(2):217–226

    CAS  Google Scholar 

  • Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions – I. Thermodynamic relations. Geochim Cosmochim Acta 32:853–877

    Article  CAS  Google Scholar 

  • Helgeson HC, Garrels RM, Mackenzie FT (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions – II. Applications. Geochim Cosmochim Acta 33:455–481

    Article  CAS  Google Scholar 

  • Jacks G (1973) Chemistry of groundwater in a district in Southern India. J Hydrol 18:185–200

    Article  CAS  Google Scholar 

  • Jankowski J, Acworth RI. (1997) Impact of depris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the Yass River catchment, New South Wales, Australia. Hydrogeol J 5(4):71–88

    Article  Google Scholar 

  • Katz BG, Coplen TB, Bullen TD, Davis JH (1998) Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled Karst. Groundwater 35(6):1014–1028

    Google Scholar 

  • Kraft GS, Stites W, Mechenich DJ (1999) Impacts of irrigated vegetable agriculture on a Humid North-Central US. Sand plain aquifer. Groundwater 37(4):572–580

    CAS  Google Scholar 

  • Kramer JR (1968) Mineral-water equilibria in silicate weathering. In: Kantor J (ed) Rep XXIII Int Geol Congr, Prague, Czechoslovakia, 6:149–160

  • Lloyd JW, Heathcode JA (1985) Natural inorganic hydrochemistry in relation to groundwater. Oxford University Press, New York

  • Matthess G (1982) The properties of groundwater. Wiley, New York, p 498

  • Mayback M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    CAS  Google Scholar 

  • Maya AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. J Hydrol 172:31–59

    Article  Google Scholar 

  • Mohan R, Singh AK, Tripathi JK, Chowdhary GC (2000) Hydrochemistry and quality assessment of groundwater in naini industrial area, Allahabad district, Uttar Pradesh. J Geol Soc India 55:77–89

    CAS  Google Scholar 

  • Nativ R, Smith A (1987) Hydrogeology and geochemistry of the Ogallala aquifer southern high plains. J Hydrol 91:217–253

    Article  CAS  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Ac 48:1523–1534

    CAS  Google Scholar 

  • Njitchoua R, Dever L, Fontes JC, Naah E (1997) Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua sandstone aquifer, Northern Cameroon. J Hydrol 190:123–140

    Article  CAS  Google Scholar 

  • Paces T (1972) Chemical characteristic and equilibration in natural water-felsic rock-CO2 systems. Geochim Cosmochim Ac 36:217–240

    Article  CAS  Google Scholar 

  • PWD (2000) Groundwater perspectives: A profile of Kancheepuram District, Tamil Nadu. Public Works Department, India

    Google Scholar 

  • Rajmohan N, Elango L (2001) Modelling the movement of chloride and nitrogen in the unsaturated zone. In: Elango L, Jayakumar R (eds) Modelling in hydrogeology (Proc United Nations Educational, Scientific, and Cultural Organization – International Hydrological Program (UNESCO–IHP)). Allied, New Delhi, India, pp 209–225

  • Rajmohan N, Elango L, Ramachandran S, Natarajan M (2000) Major ion correlation in groundwater of Kancheepuram region, South India. Indian J Environ Prot 20(3):188–193

    CAS  Google Scholar 

  • Ramesam V (1982) Geochemistry of groundwater from a typical hard rock terrain. J Geol Soc India 23:201–204

    Google Scholar 

  • Rogers RJ (1989) Geochemical comparison of groundwater in areas of New England, New York, and Pennsylvania. Groundwater 27(5):690–712

    CAS  Google Scholar 

  • Sami K (1992) Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J Hydrol 139:27–48

    Article  CAS  Google Scholar 

  • Schoeller (1965) Hydrodynamique lans lekarst (ecoulemented emmagusinement). Actes Colloques Doubronik, I, AIHS et UNESCO, pp 3–20

  • Schuh WM, Klinkebiel DL, Gardner JC, Meyar RF (1997) Tracer and Nitrate movements to groundwater in the Norruem Great plains. J Environ Qual 26:335–1347

    Google Scholar 

  • Spears DA (1986) Mineralogical control of the chemical evolution of groundwater. In: Trudgill ST (ed) Solute processes. Wiley, Chichester, UK, p 512

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. Wiley, New York

Download references

Acknowledgements

Thanks are due to the University Grants Commission, New Dehli for financial support under the Centre with potential for Excellence in Environmental Sciences and DRS-SAP schemes. The authors would like to thank the reviewers of this paper for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Elango.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajmohan, N., Elango, L. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Env Geol 46, 47–61 (2004). https://doi.org/10.1007/s00254-004-1012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1012-5

Keywords