Optical–Physical Characteristics of Low Clouds and Aerosols in South America Based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
<p>The geographical location and zoning of South America. The color bar represents the altitude (elevation). Divided into four regions: A, B, C, and D.</p> "> Figure 2
<p>Seasonal spatial distribution of probability of occurrence of low clouds (OP<sub>lc</sub>), AOD of low clouds (AOD<sub>lc</sub>), percentage of AOD for low clouds (PAOD<sub>lc</sub>), and depolarization ratio of low clouds (DR<sub>lc</sub>) over South America during the day.</p> "> Figure 3
<p>Seasonal spatial distributions of OP<sub>lc</sub>, AOD<sub>lc</sub>, PAOD<sub>lc</sub>, and DR<sub>lc</sub> over South America at night.</p> "> Figure 4
<p>Seasonal variation of AOD<sub>lc</sub>, PAOD<sub>lc</sub>, and DR<sub>lc</sub> over South America during the day and at night ((<b>a</b>) AOD<sub>lc</sub> daytime; (<b>b</b>) PAOD<sub>lc</sub> daytime; (<b>c</b>) DR<sub>lc</sub> daytime; (<b>d</b>) AOD<sub>lc</sub> nighttime; (<b>e</b>) PAOD<sub>lc</sub> nighttime; (<b>f</b>) DR<sub>lc</sub> nighttime).</p> "> Figure 5
<p>Seasonal spatial distributions of the probability of color ratio of low clouds (CR<sub>lc</sub>), base altitude of low clouds (B<sub>lc</sub>), top height of low clouds (H<sub>lc</sub>), and thickness of low clouds (T<sub>lc</sub>) over South America during the day.</p> "> Figure 6
<p>Seasonal spatial distributions of CR<sub>lc</sub>, B<sub>lc</sub>, H<sub>lc</sub>, and T<sub>lc</sub> over South America at night.</p> "> Figure 7
<p>Seasonal variation in CR<sub>lc</sub>, B<sub>lc</sub>, H<sub>lc</sub>, and T<sub>lc</sub> over South America during the day and at night ((<b>a</b>) CR<sub>lc</sub> daytime; (<b>b</b>) B<sub>lc</sub> daytime; (<b>c</b>) H<sub>lc</sub> daytime; (<b>d</b>) T<sub>lc</sub> nighttime; (<b>e</b>) CR<sub>lc</sub> nighttime; (<b>f</b>) B<sub>lc</sub> nighttime; (<b>g</b>) H<sub>lc</sub> nighttime; (<b>h</b>) T<sub>lc</sub> nighttime).</p> "> Figure 8
<p>Correlation of PAOD<sub>lc</sub> and AOD<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 9
<p>Correlation of Tlc and Hlc over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 10
<p>Correlation of B<sub>lc</sub> and H<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) winter daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 11
<p>Correlation of B<sub>lc</sub> and DR<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 12
<p>Correlation of AODR<sub>lc</sub> and DR<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 13
<p>Correlation of PAODR<sub>lc</sub> and DR<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 14
<p>Correlation of B<sub>la</sub> and B<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 15
<p>Correlation of H<sub>la</sub> and H<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 16
<p>Correlation of T<sub>la</sub> and T<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> "> Figure 17
<p>Correlation of PAOD<sub>la</sub> and PAOD<sub>lc</sub> over South America from 2006 to 2021: (<b>a</b>) MMA daytime; (<b>b</b>) JJA daytime; (<b>c</b>) SON daytime; (<b>d</b>) DJF nighttime; (<b>e</b>) MMA nighttime; (<b>f</b>) JJA nighttime; (<b>g</b>) SON nighttime; (<b>h</b>) DJF nighttime.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Materials and Methods
- (1)
- Data acquisition and quality control. Data were obtained from reliable sources, such as NASA’s Langley Atmospheric Research Center (LARC). Quality control of the data was necessary when using these parameters. The data were considered reliable when the parameters met the criteria listed in Appendix A Table A2. Additionally, we filtered the data according to the definition of low clouds (CBH < 2.5 km), retaining only the data where the first-layer base was below 2.5 km. Only the data that satisfied all the conditions mentioned in the table were retained, ensuring high reliability for further processing and analysis.
- (2)
- Data preprocessing. Data were categorized according to geographical regions (e.g., different sub-regions of South America). Temporal and spatial matching was performed to ensure that cloud and aerosol data fell within the same time window and spatial extent.
- (3)
- Temporal and spatial variation analysis. The primary optical and physical parameters of low clouds were thoroughly examined, and their spatiotemporal variation trends were analyzed. Specifically, seasonal statistical analyses of low cloud parameters were conducted in four regions of South America, covering both daytime and nighttime data.
- (4)
- Statistical analysis. Correlation analysis was conducted to explore the relationships between different parameters of low clouds and between low clouds and the underlying aerosols.
- (5)
- Result interpretation. The optical and physical characteristics of clouds and aerosols and their changes were interpreted in the context of South America’s geographical, meteorological, and environmental background. The influence of aerosols on cloud physical properties and radiative effects, as well as their impacts on regional climate and weather systems, was discussed.
3. Results and Discussion
3.1. Seasonal Variations in Optical Properties of Low Clouds over South America
3.2. Autocorrelation Analysis of Low-Cloud Optical Properties
3.3. Correlation of Properties Between Low Clouds and the Lowest Aerosol Layer
4. Conclusions
- (1)
- The highest AODlc values were observed in the La Plata Plain, while the lowest AODlc values were found in the Orinoco and Amazon plain areas for South America. AODlc and PAODlc were generally higher in June–August, which may be attributed to the higher water vapor content in the air during winter in most regions of South America, leading to an increase in AODlc. Additionally, a strong positive correlation was observed between PAODlc and AODlc.
- (2)
- The seasonal average values of DRlc were higher in September–February. In terms of the spatial distribution, the La Plata Plain and Brazilian Plateau had higher values than the Andes, the Orinoco Basin, and the Amazon Plain, which may be attributed to topographical variations that facilitated the accumulation of aerosols in these regions. Additionally, during the dry season, the soils in the La Plata Plain and the Brazilian Plateau were more susceptible to dust generation, leading to the increased release of mineral dust. In contrast, the vegetation cover in the Amazon Plain protected the soil, reducing the release of dust. Furthermore, the DR values of low clouds were higher during the day than at night.
- (3)
- CRlc values were higher in the Andes, Orinoco, and Amazon plains. Orographic lifting over the Andes Mountains caused water vapor to condense into clouds, increasing their thickness and density and affecting the color ratio. The humid conditions in the Orinoco Basin and Amazon Plain favored the formation and maintenance of low clouds, which typically exhibited higher color ratios under high humidity. The DRlc values over South America, within the range of 0 to 0.35, showed a strong correlation with Blc, AODlc and PAODlc. This indicates that the presence of aerosols indeed likely influenced the depolarization ratio by affecting the microphysical processes and radiative properties of clouds.
- (4)
- HLlc and BLlc were positively correlated, and there was a certain positive correlation with the geographical elevation. The nighttime TLlc values in the Orinoco Basin and Amazon Plain were significantly higher than those in other regions. This may have been influenced by a combination of factors, including the temperature, water vapor, and atmospheric conditions, which facilitated the accumulation of aerosols in the low-cloud layer at night in this region. Additionally, there was a positive correlation between the base height and top height of low clouds.
- (5)
- In South America, seasonal mean values of Blc and Bla, Hlc and Hla, Tlc and Tla, and PAODlc and PAODla showed some correlation. All these indicate that there is a close interaction between low clouds and low-level aerosols, which is worthy of further investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type | Parameter | Abbreviation |
---|---|---|
Aerosol | Sum of AOD of all aerosol layers | SAODa |
AOD of the lowest aerosol layer | AODla | |
Percentage of AOD in the lowest aerosol layer | PAODla | |
Base height of the lowest aerosol layer | Bla | |
Top height of the lowest aerosol layer | Hla | |
Thickness of the lowest aerosol layer | Tla | |
Depolarization ratio of the lowest aerosol layer | DRla | |
Color ratio of the lowest aerosol layer | CRla | |
Cloud | Sum of AOD of all cloud layers | SAODc |
Satellite sampling dataset for clouds | Dc | |
Satellite sampling data for low clouds | Dlc | |
Probability of occurrence of low clouds | OPlc | |
AOD of low clouds | AODlc | |
Percentage of AOD for low clouds | PAODlc | |
Base altitude of low clouds | Blc | |
Top height of low clouds | Hlc | |
Thickness of low clouds | Tlc | |
Depolarization ratio of low clouds | DRlc | |
Color ratio of low clouds | CRlc |
Parameter | Elevation Selection Range (km) |
---|---|
Blc, Bla | 0~2.5 |
DRlc, DRla | 0~5 |
CRlc, CRla | 0~10 |
AODlc, AODla | 0~20 |
SAODc, SAODa | 0~30 |
Hlc, Hla | 0~30 |
Appendix B
Region | Season | Day | |||||||
---|---|---|---|---|---|---|---|---|---|
SAODc | AODlc | PAODlc | Blc | Hlc | Tlc | DRlc | CRlc | ||
A | MAM | 4.60 ± 4.23 | 3.81 ± 4.31 | 0.74 ± 0.33 | 1.46 ± 0.66 | 2.25 ± 0.82 | 0.79 ± 0.61 | 0.27 ± 0.39 | 1.15 ± 0.97 |
JJA | 4.66 ± 4.33 | 3.92 ± 4.42 | 0.76 ± 0.32 | 1.38 ± 0.66 | 2.16 ± 0.89 | 0.79 ± 0.61 | 0.27 ± 0.37 | 1.17 ± 0.92 | |
SON | 4.40 ± 4.15 | 3.58 ± 4.23 | 0.72 ± 0.34 | 1.47 ± 0.66 | 2.25 ± 0.85 | 0.78 ± 0.62 | 0.33 ± 0.48 | 1.13 ± 1.00 | |
DJF | 4.38 ± 4.21 | 3.55 ± 4.29 | 0.72 ± 0.33 | 1.53 ± 0.65 | 2.32 ± 0.81 | 0.79 ± 0.63 | 0.33 ± 0.49 | 1.15 ± 1.09 | |
B | MAM | 3.28 ± 3.67 | 2.32 ± 3.48 | 0.64 ± 0.34 | 1.23 ± 0.72 | 1.93 ± 0.80 | 0.70 ± 0.65 | 0.26 ± 0.44 | 1.08 ± 1.03 |
JJA | 3.07 ± 3.96 | 2.34 ± 3.83 | 0.70 ± 0.34 | 1.19 ± 0.67 | 1.84 ± 0.76 | 0.65 ± 0.64 | 0.27 ± 0.46 | 1.15 ± 1.07 | |
SON | 2.41 ± 3.08 | 1.37 ± 2.62 | 0.56 ± 0.34 | 1.11 ± 0.70 | 1.87 ± 0.73 | 0.76 ± 0.73 | 0.32 ± 0.59 | 1.12 ± 1.24 | |
DJF | 3.35 ± 3.48 | 2.31 ± 3.29 | 0.62 ± 0.34 | 1.31 ± 0.72 | 1.99 ± 0.82 | 0.69 ± 0.63 | 0.30 ± 0.52 | 1.08 ± 1.05 | |
C | SON | 5.29 ± 4.75 | 4.41 ± 4.92 | 0.73 ± 0.33 | 1.25 ± 0.66 | 1.82 ± 0.78 | 0.57 ± 0.51 | 0.41 ± 0.61 | 0.92 ± 0.85 |
DJF | 6.64 ± 5.06 | 5.81 ± 5.33 | 0.77 ± 0.31 | 1.17 ± 0.70 | 1.72 ± 0.80 | 0.55 ± 0.44 | 0.42 ± 0.58 | 0.99 ± 0.84 | |
MAM | 4.89 ± 4.55 | 3.89 ± 4.71 | 0.69 ± 0.34 | 1.28 ± 0.70 | 1.87 ± 0.82 | 0.60 ± 0.62 | 0.52 ± 0.76 | 0.91 ± 0.97 | |
JJA | 3.68 ± 3.79 | 2.41 ± 3.66 | 0.59 ± 0.34 | 1.24 ± 0.70 | 1.80 ± 0.81 | 0.55 ± 0.61 | 0.60 ± 0.83 | 0.70 ± 0.88 | |
D | SON | 3.56 ± 3.90 | 2.61 ± 3.83 | 0.65 ± 0.34 | 1.44 ± 0.65 | 2.11 ± 0.74 | 0.67 ± 0.65 | 0.39 ± 0.63 | 0.96 ± 1.01 |
DJF | 4.01 ± 4.28 | 3.37 ± 4.32 | 0.76 ± 0.32 | 1.49 ± 0.64 | 2.16 ± 0.71 | 0.67 ± 0.60 | 0.40 ± 0.65 | 0.94 ± 0.87 | |
MAM | 3.40 ± 3.83 | 2.36 ± 3.70 | 0.63 ± 0.34 | 1.34 ± 0.69 | 2.13 ± 0.77 | 0.79 ± 0.78 | 0.46 ± 0.73 | 0.90 ± 1.09 | |
JJA | 3.13 ± 3.25 | 1.75 ± 2.84 | 0.54 ± 0.34 | 1.34 ± 0.67 | 2.02 ± 0.78 | 0.69 ± 0.71 | 0.52 ± 0.78 | 0.85 ± 1.10 |
Region | Season | Night | |||||||
---|---|---|---|---|---|---|---|---|---|
SAODc | AODlc | PAODlc | Blc | Hlc | Tlc | DRlc | CRlc | ||
A | MAM | 5.66 ± 4.36 | 4.46 ± 4.53 | 0.70 ± 0.36 | 1.30 ± 0.73 | 2.39 ± 1.08 | 1.09 ± 0.87 | 0.18 ± 0.21 | 1.14 ± 1.03 |
JJA | 5.76 ± 4.44 | 4.61 ± 4.69 | 0.71 ± 0.36 | 1.24 ± 0.72 | 2.32 ± 1.12 | 1.08 ± 0.88 | 0.19 ± 0.20 | 1.18 ± 1.04 | |
SON | 5.43 ± 4.30 | 4.17 ± 4.45 | 0.68 ± 0.37 | 1.20 ± 0.73 | 2.32 ± 1.19 | 1.12 ± 0.97 | 0.19 ± 0.25 | 1.20 ± 1.13 | |
DJF | 5.46 ± 4.21 | 4.24 ± 4.37 | 0.69 ± 0.36 | 1.30 ± 0.72 | 2.40 ± 1.05 | 1.10 ± 0.82 | 0.19 ± 0.25 | 1.18 ± 1.12 | |
B | MAM | 4.77 ± 3.84 | 3.09 ± 3.64 | 0.58 ± 0.35 | 0.93 ± 0.78 | 2.06 ± 1.24 | 1.13 ± 1.14 | 0.14 ± 0.17 | 1.04 ± 1.15 |
JJA | 4.58 ± 3.96 | 3.08 ± 3.82 | 0.61 ± 0.36 | 0.92 ± 0.78 | 2.11 ± 1.22 | 1.19 ± 1.14 | 0.13 ± 0.19 | 1.05 ± 1.16 | |
SON | 3.87 ± 3.61 | 2.12 ± 3.06 | 0.51 ± 0.35 | 0.78 ± 0.73 | 2.06 ± 1.40 | 1.28 ± 1.37 | 0.11 ± 0.17 | 0.96 ± 1.20 | |
DJF | 4.79 ± 3.66 | 3.15 ± 3.52 | 0.59 ± 0.36 | 1.02 ± 0.80 | 2.14 ± 1.14 | 1.12 ± 1.03 | 0.14 ± 0.18 | 1.03 ± 1.09 | |
C | SON | 6.73 ± 4.74 | 5.75 ± 4.99 | 0.77 ± 0.32 | 1.10 ± 0.77 | 1.88 ± 0.93 | 0.78 ± 0.56 | 0.27 ± 0.43 | 1.06 ± 0.89 |
DJF | 7.35 ± 5.02 | 6.43 ± 5.33 | 0.79 ± 0.32 | 1.13 ± 0.80 | 1.94 ± 0.96 | 0.80 ± 0.56 | 0.28 ± 0.44 | 1.05 ± 0.91 | |
MAM | 5.93 ± 4.76 | 4.83 ± 4.95 | 0.72 ± 0.34 | 1.03 ± 0.79 | 1.94 ± 1.06 | 0.91 ± 0.80 | 0.29 ± 0.53 | 1.02 ± 1.06 | |
JJA | 4.96 ± 4.39 | 3.61 ± 4.38 | 0.64 ± 0.36 | 1.05 ± 0.77 | 1.81 ± 0.97 | 0.76 ± 0.70 | 0.33 ± 0.63 | 0.92 ± 1.05 | |
D | SON | 4.73 ± 4.19 | 3.49 ± 4.17 | 0.65 ± 0.36 | 1.08 ± 0.68 | 1.96 ± 0.91 | 0.88 ± 0.73 | 0.21 ± 0.39 | 1.05 ± 1.03 |
DJF | 4.82 ± 4.26 | 4.01 ± 4.34 | 0.77 ± 0.34 | 1.06 ± 0.66 | 1.95 ± 0.85 | 0.89 ± 0.64 | 0.21 ± 0.42 | 1.07 ± 0.99 | |
MAM | 4.52 ± 4.51 | 3.50 ± 4.55 | 0.69 ± 0.35 | 0.88 ± 0.62 | 1.85 ± 0.96 | 0.97 ± 0.83 | 0.20 ± 0.40 | 0.97 ± 1.10 | |
JJA | 4.44 ± 4.01 | 2.90 ± 3.84 | 0.58 ± 0.36 | 1.03 ± 0.68 | 1.91 ± 0.96 | 0.88 ± 0.80 | 0.23 ± 0.46 | 1.00 ± 1.11 |
References
- Ackerman, A.; Kirkpatrick, M.; Stevens, D.; Toon, O. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 2004, 432, 1014–1017. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef]
- Johnson, B.T.; Heese, B.; Mcfarlane, S.A.; Chazette, P.; Jones, A.; Bellouin, N. Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. J. Geophys. Res. 2008, 113, D00C12. [Google Scholar] [CrossRef]
- Stephens, G.L.; Tsay, S.C.; Stackhouse, P.W., Jr.; Flatau, P.J. The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback. J. Atmos. Sci. 1990, 47, 1742–1754. [Google Scholar] [CrossRef]
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef]
- Li, Z.; Niu, F.; Fan, J.; Liu, Y.; Ding, Y. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 2011, 4, 888–894. [Google Scholar] [CrossRef]
- Khain, A.P.; Benmoshe, N.; Pokrovsky, A. Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification. J. Atmos. Sci. 2008, 65, 1721–1748. [Google Scholar] [CrossRef]
- Dahutia, P.; Pathak, B.; Bhuyan, P.K. Vertical distribution of aerosols and clouds over north-eastern South Asia: Aerosol-cloud interactions. Atmos. Environ. 2019, 215, 116882.1–116882.20. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol-Cloud Interactions: Mechanisms, Significance and Challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Engelmann, R.; Althausen, D. Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys. Chem. Earth 2008, 8, 7281–7296. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; Mcgill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, 228–262. [Google Scholar] [CrossRef]
- Matthias, V.; Freudenthaler, V.; Amodeo, A.; Balin, I.; Balis, D.; Bosenberg, J.; Chaikovsky, A.; Chourdakis, G.; Comeron, A.; Delaval, A. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. Appl. Opt. 2004, 43, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.; Ginoux, P.; Ramaswamy, V.; Dubovik, O.; Welton, J.; Reid, E.A.; Holben, B.N. Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output. J. Geophys. Res. Atmos. 2009, 114, 424–448. [Google Scholar] [CrossRef]
- Niu, H.; Kang, S.; Gao, W.; Wang, Y.; Paudyal, R. Vertical distribution of the Asian tropopause aerosols detected by CALIPSO. Environ. Pollut. 2019, 253, 207–220. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; McCormick, M.P.; Langley, N. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Proceedings of the Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, 23-27 October 2002; Volume 9, pp. 1211–1229. [Google Scholar]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- Dong, W.U.; Yongxiang, H.U.; Mccormick, M.P.; Yan, F. Global cloud-layer distribution statistics from 1 year CALIPSO lidar observations. Int. J. Remote Sens. 2011, 32, 1269–1288. [Google Scholar]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Damiani, A.; Macdonell, S.; Pizarro, J.; Goubanova, K.; Valenzuela, R.; Wang, C.; Rester, L.; Beaulieu, A. South America is becoming warmer, drier, and more flammable. Commun. Earth Environ. 2024, 5, 501. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; Barreto, N.; Cunha, A.P.; Ramos, A.M.; Skansi, M.; Carpio, J.M.; Salinas, R. The heat wave of October 2020 in central South America. Int. J. Climatol. 2022, 42, 2281–2298. [Google Scholar] [CrossRef]
- Thornhill, G.D.; Ryder, C.L.; Highwood, E.J.; Shaffrey, L.C.; Johnson, B.T. The effect of South American biomass burning aerosol emissions on the regional climate. Atmos. Chem. Phys. Chem. Earth 2018, 18, 5321–5342. [Google Scholar] [CrossRef]
- Freire, J.L.; Longo, K.M.; Freitas, S.R.; Coelho, C.A.; Molod, A.M.; Marshak, J.; da Silva, A.; Ribeiro, B.Z. To What Extent Biomass Burning Aerosols Impact South America Seasonal Climate Predictions? Geophys. Res. Lett. 2020, 47, e2020GL088096. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Chung, C.E.; Ramanathan, V.; Kim, D.; Podgorny, I.A. Observationally derived vertical distribution of aerosol single scattering albedo. J. Geophys. Res. Atmos. 2012, D7, 117. [Google Scholar]
- Artaxo, P.; Rizzo, L.V.; Brito, J.F.; Barbosa, H.M.J.; Arana, A.; Sena, E.T.; Cirino, G.G.; Bastos, W.; Martin, S.T.; Andreae, M.O. Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss. 2013, 165, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, G.O.; Allen, A.G.; Cardoso, A.A. Influence of Agricultural Biomass Burning on Aerosol Size Distribution and Dry Deposition in Southeastern Brazil. Environ. Sci. Technol. 2005, 39, 5293–5301. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Matos, J.T.V.; Paula, A.S.; Lopes, S.P.; Pereira, G.; Vasconcellos, P. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe. Environ. Pollut. 2017, 227, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Videla, F.C.; Barnaba, F.; Angelini, F.; Cremades, P.; Gobbi, G.P. The relative role of Amazonian and non-Amazonian fires in building up the aerosol optical depth in South America: A five year study (2005–2009). Atmos. Res. 2013, 122, 298–309. [Google Scholar] [CrossRef]
- Darbyshire, E.; Morgan, W.T.; Allan, J.D.; Liu, D.; Flynn, M.J.; Dorsey, J.R.; O’Shea, S.J.; Lowe, D.; Szpek, K.; Marenco, F. The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmos. Chem. Phys. 2019, 19, 5771–5790. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Zhu, Y.; Wang, M.; Zheng, Y.; Goren, T.; Yu, S. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. Science 2019, 363, eaav0566. [Google Scholar] [CrossRef] [PubMed]
- Bréon, F.-M.; Tanré, D.; Generoso, S. Aerosol Effect on Cloud Droplet Size Monitored from Satellite. Science 2002, 295, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Wang, Z. Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun. 2018, 9, 3874. [Google Scholar] [CrossRef] [PubMed]
- Junk, W. Wetlands of Tropical South America; Springer: Dordrecht, The Netherlands, 1993; Volume 15, pp. 679–739. [Google Scholar]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.H.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Magill, B.E. The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef]
- Stull, R. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Huang, D.; Liu, Y.; Wiscombe, W.; Background, K.; Field, C.L. Stratocumulus cloud. Mon. Weather Rev. 2013, 140, 2373–2423. [Google Scholar]
- Li, J.; Lu, C.; Chen, J.; Zhou, X.; Yang, K.; Li, J.; Wu, X.; Xu, X.; Wu, S.; Hu, R.; et al. The influence of complex terrain on cloud and precipitation on the foot and slope of the southeastern Tibetan Plateau. Clim. Dyn. 2024, 62, 3143–3163. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. GISci. Remote Sens. 2021, 58, 235–260. [Google Scholar] [CrossRef]
- Zhang, M.; Su, B.; Bilal, M.; Atique, L.; Han, G. An Investigation of Vertically Distributed Aerosol Optical Properties over Pakistan Using CALIPSO Satellite Data. Remote Sens. 2020, 12, 2183. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, D.; Su, B.; Bilal, M.; Li, Y.; Li, B.L. Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over Canal Head Taocha Station, Henan Province. Remote Sens. 2020, 12, 3432. [Google Scholar] [CrossRef]
- Miao, Z.; Lunche, W.; Muhammad, B.; Wei, G.; Ziyue, Z.; Guangmeng, G. The Characteristics of the Aerosol Optical Depth within the Lowest Aerosol Layer over the Tibetan Plateau from 2007 to 2014. Remote Sens. 2018, 10, 696. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Bilal, M.; Zhang, C.; Zhao, F.; Xie, X.; Khedher, K.M. Optical and Physical Characteristics of the Lowest Aerosol Layers over the Yellow River Basin. Atmosphere 2019, 10, 638. [Google Scholar] [CrossRef]
- Moraes, E.C.; Franchito, S.H.; Rao, V.B. Amazonian Deforestation: Impact of Global Warming on the Energy Balance and Climate. J. Appl. Meteorol. Climatol. 2013, 52, 521–530. [Google Scholar] [CrossRef]
- Juárez-Orozco, S.; Siebe, C.; Fernández y Fernández, D. Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Trop. Conserv. Sci. 2017, 10, 194008291773720. [Google Scholar] [CrossRef]
- Liu, J.W.; Yang, L.; Xie, S.P. CALIPSO Observed Low Clouds Over the Subtropical Northeast Pacific: Summer Climatology and Interannual Variability. J. Geophys. Res. Atmos. 2024, 129, e2023JD039168. [Google Scholar] [CrossRef]
- Brunke, M.A.; de Szoeke, S.P.; Zuidema, P.; Zeng, X. A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck. Atmos. Chem. Phys. 2010, 10, 6527–6536. [Google Scholar] [CrossRef]
- Giovannettone, J.P.; Barros, A.P. Probing Regional Orographic Controls of Precipitation and Cloudiness in the Central Andes Using Satellite Data. J. Hydrometeorol. 2009, 10, 167–182. [Google Scholar] [CrossRef]
- Knippertz, P.; Coe, H.; Chiu, J.C.; Evans, M.J.; Fink, A.H. The DACCIWA Project: Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa. Bull. Am. Meteorol. Soc. 2015, 96, 1451–1460. [Google Scholar] [CrossRef]
- Qian, Y.; Huang, M.; Yang, B.; Berg, L.K. A Modeling Study of Irrigation Effects on Surface Fluxes and Land-Air-Cloud Interactions in the Southern Great Plains. J. Hydrometeorol. 2013, 14, 700–721. [Google Scholar] [CrossRef]
- Ghonima, M.S.; Norris, J.R.; Heus, T.; Kleissl, J. Reconciling and Validating the Cloud Thickness and Liquid Water Path Tendencies Proposed by R. Wood and J. J. van der Dussen et al. J. Atmos. Sci. 2015, 72, 2033–2040. [Google Scholar] [CrossRef]
- Adeyemi, A.A.; Zuidema, P. Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic. J. Clim. 2018, 31, 4329–4346. [Google Scholar]
- Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Biscaro, T.S.; Brito, J.; Calheiros, A.J.P.; et al. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bull. Am. Meteorol. Soc. 2017, 98, 981–997. [Google Scholar]
- Sato, Y.; Suzuki, K. How do aerosols affect cloudiness? Science 2019, 363, 580–581. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, B.; Lin, D.; Liu, Z.; Wu, Q.; Song, W.; Zhang, M. Optical–Physical Characteristics of Low Clouds and Aerosols in South America Based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation. Atmosphere 2024, 15, 1513. https://doi.org/10.3390/atmos15121513
Su B, Lin D, Liu Z, Wu Q, Song W, Zhang M. Optical–Physical Characteristics of Low Clouds and Aerosols in South America Based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation. Atmosphere. 2024; 15(12):1513. https://doi.org/10.3390/atmos15121513
Chicago/Turabian StyleSu, Bo, Dekai Lin, Ziji Liu, Qingyan Wu, Wenkai Song, and Miao Zhang. 2024. "Optical–Physical Characteristics of Low Clouds and Aerosols in South America Based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation" Atmosphere 15, no. 12: 1513. https://doi.org/10.3390/atmos15121513
APA StyleSu, B., Lin, D., Liu, Z., Wu, Q., Song, W., & Zhang, M. (2024). Optical–Physical Characteristics of Low Clouds and Aerosols in South America Based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation. Atmosphere, 15(12), 1513. https://doi.org/10.3390/atmos15121513