Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment
"> Figure 1
<p>Chemical structure of Polyurethane/urea copolymers based on poly(ethylene glycol) (PURPEG) polymer.</p> "> Figure 2
<p>SEM image of an untreated PURPEG sample.</p> "> Figure 3
<p>Schematic of the experimental setup: 1—plasma reactor, 2—sample, 3—oxygen flask, 4—high pressure valve, 5—leak valve, 6—gate valves, 7—double electrical probe, 8—optical spectrometer, 9—catalytic probe, 10—absolute vacuum gauge, 11—capillary, 12—high vacuum chamber, 13—high vacuum gauge, 14—residual gas analyzer, 15—turbomolecular pump, 16—rotary pumps.</p> "> Figure 4
<p>An optical spectrum of plasma created in the empty chamber at a forward power of 150 W and a pressure of 33 Pa.</p> "> Figure 5
<p>OES spectrum of the plasma during the etching of a PURPEG sample with oxygen plasma generated at 900 W forward RF power.</p> "> Figure 6
<p>OES spectrum after 30 s of plasma treatment at 33 Pa and forward power of 150 W.</p> "> Figure 7
<p>OES spectrum after 600 s of plasma treatment at 33 Pa and forward power of 150 W.</p> "> Figure 8
<p>Time evolution of the CO emission peak (519.5 nm), O (777.4 nm) line and Balmer Hα line during sample etching with oxygen plasma generated at a pressure of 33 Pa and 150 W forward RF power.</p> "> Figure 9
<p>Time evolution of the CO emission peak (519.5 nm) normalized by the O (777.4 nm) line during sample treatment with oxygen plasma; the RF forward power is shown in the key.</p> "> Figure 10
<p>A mass spectrum measured in an empty chamber filled with oxygen at pressure 33 Pa and forward power of 150 W.</p> "> Figure 11
<p>A mass spectrum measured in a chamber loaded with PURPEG samples after plasma treatment for 30 s. The pressure was 33 Pa and forward power 150 W.</p> "> Figure 12
<p>A mass spectrum measured in a chamber loaded with PURPEG samples after plasma treatment for 600 s. The pressure was 33 Pa and forward power 150 W.</p> "> Figure 13
<p>Time evolution of CO<sub>2</sub>, CO, O<sub>2</sub> and H<sub>2</sub>O partial pressures during samples treatment with oxygen plasma at 33 Pa and 150 W forward RF power.</p> "> Figure 14
<p>Time evolution of CO during sample treatment with oxygen plasma generated at various forward RF power levels.</p> "> Figure 15
<p>Time evolution of CO<sub>2</sub>, CO, O<sub>2</sub> and H<sub>2</sub>O partial pressures during sample treatment with oxygen plasma at 33 Pa and 300 W forward RF power.</p> "> Figure 16
<p>The slope of the oxygen partial pressure during the first few minutes of plasma treatment at 33 Pa and 150 W.</p> "> Figure 17
<p>The composition of the surface film as calculated from the XPS survey spectra. The pressure was 33 Pa and the forward power was 150 W.</p> "> Figure 18
<p>Evolution of XPS C1s spectra for PURPEG samples as a result of treatment with oxygen plasma at 33 Pa and 150 W.</p> "> Figure 19
<p>Water contact angle <span class="html-italic">versus</span> plasma treatment time at 33 Pa and 150 W.</p> "> Figure 20
<p>Absorption time of a water droplet <span class="html-italic">versus</span> plasma treatment time at 33 Pa and 150 W.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Plasma Treatment
2.3. Plasma Characterization
2.4. Surface Characterization
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AMU | Atomic Mass Unit |
OES | Optical Emission Spectroscopy |
PCL | Polycaprolactone |
PGA | Polyglycolic Acid |
PLA | Polylactic Acid |
PURPEG | Polyurethane/urea copolymers based on poly(ethylene glycol) |
RGA | Residual Gas Analyzer |
RF | Radio Frequency |
XPS | X-ray Photoelectron Spectroscopy |
References
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, D.; Niu, Y.; He, T.; Chen, K.C.; Xu, K. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials. J. Biomed. Mater. Res. A 2014, 102, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Li, L.; Chen, K.C.; Chen, F.; Liu, X.; Ye, J.; Li, W.; Xu, K. Scaffolds from alternating block polyurethanes of poly(ɛ-caprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft. J. Biomed. Mater. Res. A 2015, 103, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Desmet, T.; Morent, R.; Geyter, N.D.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef] [PubMed]
- Jaganjac, M.; Vesel, A.; Milkovic, L.; Recek, N.; Kolar, M.; Zarkovic, N.; Latiff, A.; Kleinschek, K.S.; Mozetic, M. Oxygen-rich coating promotes binding of proteins and endothelialization of polyethylene terephthalate polymers. J. Biomed. Mater. Res. A 2014, 102, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Recek, N.; Jaganjac, M.; Kolar, M.; Milkovic, L.; Mozetič, M.; Stana-Kleinschek, K.; Vesel, A. Protein adsorption on various plasma-treated polyethylene terephthalate substrates. Molecules 2013, 18, 12441–12463. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Saha, A.; Jayachandran, V.P.; Thomas, S.; Kalarikkal, N. Dose-dependent effects of γ irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int. J. Polym. Mater. Polym. 2015, 64, 526–533. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—A review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Shin, Y.N.; Kim, B.S.; Ahn, H.H.; Lee, J.H.; Kim, K.S.; Lee, J.Y.; Kim, M.S.; Khang, G.; Lee, H.B. Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment. Appl. Surface Sci. 2008, 255, 293–296. [Google Scholar] [CrossRef]
- Dowling, D.P.; Miller, I.S.; Ardhaoui, M.; Gallagher, W.M. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J. Biomater. Appl. 2011, 26, 327–347. [Google Scholar] [CrossRef] [PubMed]
- Koo, G.-H.; Jang, J. Surface modification of poly(lactic acid) by UV/Ozone irradiation. Fibers Polym. 2008, 9, 674–678. [Google Scholar] [CrossRef]
- Kiss, É.; Bertóti, I.; Vargha-Butler, E.I. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films. J. Colloid Interface Sci. 2002, 245, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Vargha-Butler, E.I.; Kiss, E.; Lam, C.N.C.; Keresztes, Z.; Kálmán, E.; Zhang, L.; Neumann, A.W. Wettability of biodegradable surfaces. Colloid. Polym. Sci. 2001, 279, 1160–1168. [Google Scholar] [CrossRef]
- Zhu, H.; Ji, J.; Lin, R.; Gao, C.; Feng, L.; Shen, J. Surface engineering of poly(dl-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis. Biomaterials 2002, 23, 3141–3148. [Google Scholar] [CrossRef]
- Paragkumar, N.T.; Edith, D.; Six, J.-L. Surface characteristics of PLA and PLGA films. Appl. Surface Sci. 2006, 253, 2758–2764. [Google Scholar] [CrossRef]
- Gao, J.M.; Niklason, L.; Langer, R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res. 1998, 42, 417–424. [Google Scholar] [CrossRef]
- Silvio, L.D. Cellular Response to Biomaterials; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Kang, J.; Chen, L.; Okubayashi, S.; Sukigara, S. Preparation of electrospun polycaprolactone nanofibers with water-soluble eggshell membrane and catechin. J. Appl. Polym. Sci. 2012, 124, E83–E90. [Google Scholar] [CrossRef]
- Martins, A.; Pinho, E.D.; Faria, S.; Pashkuleva, I.; Marques, A.P.; Reis, R.L.; Neves, N.M. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 2009, 5, 1195–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorjanc, M.; Mozetic, M. Modification of Fibrous Polymers by Gaseous Plasma: Principles, Techniques and Applications; Lambert Academic Publishing: Saarbrücken, Germany, 2014. [Google Scholar]
- Kutasi, K.; Vasco, G.; Sa, P.A. Active species downstream of an Ar-O(2) surface-wave microwave discharge for biomedicine, surface treatment and nanostructuring. Plasma Sources Sci. T 2011, 20, 035006. [Google Scholar] [CrossRef]
- Kutasi, K.; Zaplotnik, R.; Primc, G.; Mozetic, M. Controlling the oxygen species density distributions in the flowing afterglow of O2/Ar-O2 surface-wave microwave discharges. J. Phys. D-Appl. Phys. 2014, 47, 025203. [Google Scholar] [CrossRef]
- Lopez-Garcia, J.; Primc, G.; Junkar, I.; Lehocky, M.; Mozetic, M. On the hydrophilicity and water resistance effect of styrene-acrylonitrile copolymer treated by CF4 and O2 plasmas. Plasma Process. Polym. 2015, 12, 1075–1084. [Google Scholar] [CrossRef]
- Recek, N.; Vesel, A. Surface modification of polymer polyethylene terephthalate with plasmas created in different gases. Mater. Tehnol. 2014, 48, 893–897. [Google Scholar]
- Canal, C.; Molina, R.; Bertran, E.; Erra, P. Wettability, ageing and recovery process of plasma-treated polyamide 6. J. Adhes. Sci. Technol. 2004, 18, 1077–1089. [Google Scholar] [CrossRef]
- Labay, C.; Canal, C.; Rodriguez, C.; Caballero, G.; Canal, J.M. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers. Appl. Surface Sci. 2013, 283, 269–275. [Google Scholar] [CrossRef]
- Owen, R.; Sherborne, C.; Paterson, T.; Green, N.H.; Reilly, G.C.; Claeyssens, F. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2016, 54, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Vesel, A.; Mozetic, M.; Zalar, A. XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma. Surface Interface Anal. 2008, 40, 661–663. [Google Scholar] [CrossRef]
- Gorjanc, M.; Mozetic, M. Modification of Fibrous Polymers by Gaseous Plasma; LAP LAMBERT Academic Publishing: Saartbrücken, Germany, 2014. [Google Scholar]
- Vesel, A.; Kolar, M.; Doliska, A.; Stana-Kleinschek, K.; Mozetic, M. Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma. Surface Interface Anal. 2012, 44, 1565–1571. [Google Scholar] [CrossRef]
- Vesel, A.; Mozetič, M. Low-pressure plasma-assisted polymer surface modifications. In Printing on Polymers: Fundamentals and Applications; Izdebska, J., Thomas, S., Eds.; William Andrew Publishing: Amsterdam, The Netherlands, 2016; pp. 101–121. [Google Scholar]
- Vesel, A.; Zaplotnik, R.; Primc, G.; Liu, X.; Xu, K.; Chen, K.C.; Wei, C.; Mozetic, M. Functionalization of polyurethane/urea copolymers with amide groups by polymer treatment with ammonia plasma. Plasma Chem. Plasma Process. 2016. [Google Scholar] [CrossRef]
- Izdebska, J.; Thomas, S. Printing on Polymers: Fundamentals and Applications; Elsevier Science Publishing Co Inc.: Waltham, MA, USA, 2016. [Google Scholar]
- Kregar, Z.; Biscan, M.; Milosevic, S.; Mozetic, M.; Vesel, A. Interaction of argon, hydrogen and oxygen plasma early afterglow with polyvinyl chloride (PVC) materials. Plasma Processes. Polym. 2012, 9, 1020–1027. [Google Scholar] [CrossRef]
- Vesel, A.; Mozetic, M.; Hladnik, A.; Dolenc, J.; Zule, J.; Milosevic, S.; Krstulovic, N.; Klanjšek-Gunde, M.; Hauptmann, N. Modification of ink-jet paper by oxygen-plasma treatment. J. Phys. D-Appl. Phys. 2007, 40, 3689–3696. [Google Scholar] [CrossRef]
- Kregar, Z.; Biscan, M.; Milosevic, S.; Elersic, K.; Zaplotnik, R.; Primc, G.; Cvelbar, U. Optical emission characterization of extremely reactive oxygen plasma during treatment of graphite samples. Mater. Tehnol. 2012, 46, 25–30. [Google Scholar]
- Rond, C.; Bultel, A.; Boubert, P.; Chéron, B.G. Spectroscopic measurements of nonequilibrium CO2 plasma in RF torch. Chem. Phys. 2008, 354, 16–26. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Vesel, A.; Mozetic, M. A Powerful remote source of o atoms for the removal of hydrogenated carbon deposits. J. Fusion Energy 2013, 32, 78–87. [Google Scholar] [CrossRef]
- Doliska, A.; Vesel, A.; Kolar, M.; Stana-Kleinschek, K.; Mozetic, M. Interaction between model poly(ethylene terephthalate) thin films and weakly ionised oxygen plasma. Surface Interface Anal. 2012, 44, 56–61. [Google Scholar] [CrossRef]
- Belmonte, T.; Pintassilgo, C.D.; Czerwiec, T.; Henrion, G.; Hody, V.; Thiebaut, J.M.; Loureiro, J. Oxygen plasma surface interaction in treatments of polyolefines. Surface Coat. Technol. 2005, 200, 26–30. [Google Scholar] [CrossRef]
- Cvelbar, U.; Mozetic, M.; Junkar, I.; Vesel, A.; Kovac, J.; Drenik, A.; Vrlinic, T.; Hauptman, N.; Klanjsek-Gunde, M.; Markoli, B.; et al. Oxygen plasma functionalization of poly(p-phenilene sulphide). Appl. Surface Science 2007, 253, 8669–8673. [Google Scholar] [CrossRef]
- Shimizu, K.; Phanopoulos, C.; Loenders, R.; Abel, M.L.; Watts, J.F. The characterization of the interfacial interaction between polymeric methylene diphenyl diisocyanate and aluminum: A TOF-SIMS and XPS study. Surface Interface. Anal. 2010, 42, 1432–1444. [Google Scholar] [CrossRef] [Green Version]
- Moles, M.D.; Scotchford, C.A.; Campbell Ritchie, A. Oxidation state of a polyurethane membrane after plasma etching. Conf. Papers Sci. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Briggs, D.; Beamson, G. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Vesel, A. Modification of polystyrene with a highly reactive cold oxygen plasma. Surface Coat. Technol. 2010, 205, 490–497. [Google Scholar] [CrossRef]
- Vesel, A.; Junkar, I.; Cvelbar, U.; Kovac, J.; Mozetic, M. Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surface Interface. Anal. 2008, 40, 1444–1453. [Google Scholar] [CrossRef]
- Borcia, C.; Punga, I.L.; Borcia, G. Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma. Appl. Surface Sci. 2014, 317, 103–110. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaplotnik, R.; Vesel, A.; Primc, G.; Liu, X.; Chen, K.C.; Wei, C.; Xu, K.; Mozetic, M. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment. Polymers 2016, 8, 144. https://doi.org/10.3390/polym8040144
Zaplotnik R, Vesel A, Primc G, Liu X, Chen KC, Wei C, Xu K, Mozetic M. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment. Polymers. 2016; 8(4):144. https://doi.org/10.3390/polym8040144
Chicago/Turabian StyleZaplotnik, Rok, Alenka Vesel, Gregor Primc, Xiangyu Liu, Kevin C. Chen, Chiju Wei, Kaitian Xu, and Miran Mozetic. 2016. "Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment" Polymers 8, no. 4: 144. https://doi.org/10.3390/polym8040144
APA StyleZaplotnik, R., Vesel, A., Primc, G., Liu, X., Chen, K. C., Wei, C., Xu, K., & Mozetic, M. (2016). Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment. Polymers, 8(4), 144. https://doi.org/10.3390/polym8040144