Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates
<p>XPS survey spectra for the control (untreated) PET sample and for PET samples treated in O<sub>2</sub> and CF<sub>4</sub> plasma.</p> "> Figure 2
<p>XPS high-resolution spectra of carbon C1s for the control PET sample and for the PET samples treated in O<sub>2</sub> and CF<sub>4</sub> plasma.</p> "> Figure 3
<p>XPS survey spectrum for: (<b>a</b>) the control (untreated) PET sample before and after incubation for 1 s and 1,000 s; (<b>b</b>) the PET sample treated in O<sub>2</sub> plasma before and after incubation for 1 s and 1,000 s and (<b>c</b>) the PET sample treated in CF<sub>4</sub> plasma before and after incubation for 1 s and 1,000 s in albumin solution.</p> "> Figure 4
<p>XPS high-resolution spectra of carbon C1s for the untreated sample and both plasma-treated samples after incubation in an albumin solution for 1,000 s.</p> "> Figure 5
<p>XPS high-resolution spectra of carbon C1s for the CF<sub>4</sub> plasma-treated PET sample after incubation in an albumin solution for various periods.</p> "> Figure 6
<p>Comparison of the N/C ratio after incubation of untreated PET samples and O<sub>2</sub> and CF<sub>4</sub> plasma-treated samples in albumin solution (<b>a</b>) and FCS/DMEM solution (<b>b</b>).</p> "> Figure 7
<p>AFM images (2 × 2 µm) of different plasma-treated surfaces before and after incubation in a protein solution.</p> "> Figure 8
<p>Frequency changes (<b>a</b>) and dissipation changes (<b>b</b>) for albumin adsorption on untreated and plasma-treated PET substrates.</p> "> Figure 9
<p>Frequency changes (<b>a</b>) and dissipation changes (<b>b</b>) for FCS adsorption on untreated and plasma-treated PET substrates.</p> "> Figure 10
<p>Frequency changes (<b>a</b>) and dissipation changes (<b>b</b>) for FCS/DMEM adsorption on untreated and plasma-treated PET substrates.</p> "> Figure 11
<p>Mass of adsorbed proteins on untreated and plasma-treated samples.</p> "> Figure 12
<p>Comparison of the adsorption process of different protein solutions to the oxygen plasma-treated surface.</p> "> Figure 13
<p>Δ<span class="html-italic">D</span> = f(Δ<span class="html-italic">f</span>) function for protein adsorption on plasma-treated PET substrates for albumin (<b>a</b>), FCS (<b>b</b>) and FCS with DMEM (<b>c</b>).</p> "> Figure 14
<p>A hypothetical model for protein adsorption on an oxygen plasma-treated (hydrophilic) surface with trapped water molecules (<b>A</b>) and a CF<sub>4</sub> plasma-treated (hydrophobic) surface (<b>B</b>).</p> "> Figure 15
<p>HOS cell adhesion and morphology on the PET polymer surface after plasma treatment, as measured using light microscopy and SEM analysis after 1 day of incubation.</p> "> Figure 16
<p>Proliferation of HOS cells on untreated and plasma-treated PET polymers, as measured using an MTT assay.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Characterisation of Plasma-Treated Samples
2.2. Surface Characterisation of the Adsorbed Protein Layer
t (s) | F (at.%) | F/C | d (nm) |
---|---|---|---|
1 | 8.4 | 0.14 | 1.9 |
10 | 4.4 | 0.07 | 4.2 |
100 | 2.8 | 0.04 | 5.3 |
1000 | 2.7 | 0.04 | 5.3 |
PET ctrl | C | H | O | S | F | N/C |
---|---|---|---|---|---|---|
1 s | 67.2 | 11.0 | 21.3 | 0.6 | / | 0.16 |
10 s | 69.8 | 12.2 | 17.5 | 0.5 | / | 0.18 |
100 s | 66.6 | 12.9 | 20.1 | 0.5 | / | 0.19 |
1000 s | 63.8 | 16.2 | 19.3 | 0.8 | / | 0.25 |
PET + O2 | C | N | O | S | F | N/C |
1 s | 66.1 | 12.0 | 21.3 | 0.6 | / | 0.18 |
10 s | 64.3 | 13.8 | 21.3 | 0.6 | / | 0.22 |
100 s | 63.6 | 15.5 | 20.2 | 0.7 | / | 0.24 |
1000 s | 63.6 | 15.2 | 20.5 | 0.7 | / | 0.24 |
PET + CF4 | C | N | O | S | F | N/C |
1 s | 61.4 | 11.9 | 17.7 | 0.7 | 8.4 | 0.19 |
10 s | 61.9 | 13.5 | 17.7 | 0.6 | 4.4 | 0.22 |
100 s | 61.8 | 15.0 | 19.8 | 0.7 | 2.8 | 0.24 |
1000 s | 61.9 | 15.1 | 19.7 | 0.7 | 2.7 | 0.24 |
2.3. Adsorption Kinetics of Proteins Studied by QCM
2.4. Cellular Response to Plasma-Treated Surfaces
2.5. Discussion of Cell- and Protein-Material Interactions
3. Experimental
3.1. Plasma Treatment
3.2. Protein Adsorption
3.3. Quartz Crystal Microbalance (QCM)
3.4. X-Ray Photoelectron Spectroscopy (XPS)
3.5. Atomic Force Microscopy (AFM)
3.6. Cell Adhesion, Growth and Viability (MTT Assay)
3.7. Scanning Electron Microscopy (SEM)
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kasemo, B. Biological surface science. Surf. Sci. 2002, 500, 656–677. [Google Scholar] [CrossRef]
- Klee, D.; Höcker, H. Polymers for Biomedical Applications: Improvement of the Interface Compatibility. In Biomedical Applications Polymer Blends; Eastmond, G.C., Höcker, H., Klee, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 149, pp. 1–57. [Google Scholar]
- Fong, E.L.S.; Lamhamedi-Cherradi, S.-E.; Burdett, E.; Ramamoorthy, V.; Lazar, A.J.; Kasper, F.K.; Farach-Carson, M.C.; Vishwamitra, D.; Demicco, E.G.; Menegaz, B.A.; et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc. Natl. Acad. Sci. USA 2013, 110, 6500–6505. [Google Scholar] [CrossRef]
- Modic, M.; Junkar, I.; Vesel, A.; Mozetic, M. Aging of plasma treated surfaces and their effects on platelet adhesion and activation. Surf. Coat. Technol. 2012, 213, 98–104. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mat. Sci. Eng. R 2002, 36, 143–206. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; Geyter, N.D.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, I.-K.; Huh, M.W.; Yoon, S.-C. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 2000, 21, 121–130. [Google Scholar] [CrossRef]
- García, J.L.; Asadinezhad, A.; Pacherník, J.; Lehocký, M.; Junkar, I.; Humpolíček, P.; Sáha, P.; Valášek, P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 2010, 15, 2845–2856. [Google Scholar] [CrossRef]
- Lehocký, M.; Drnovská, H.; Lapčıková, B.; Barros-Timmons, A.M.; Trindade, T.; Zembala, M.; Lapčık, L.R., Jr. Plasma surface modification of polyethylene. Colloids Surf. A: Physicochem. Eng. Aspects 2003, 222, 125–131. [Google Scholar] [CrossRef]
- Sowe, M.; Novák, I.; Vesel, A.; Junkar, I.; Lehocký, M.; Sáha, P.; Chodák, I. Analysis and characterization of printed plasma-treated polyvinyl chloride. Int. J. Polym. Anal. Charact. 2009, 14, 641–651. [Google Scholar] [CrossRef]
- Popelka, A.; Novák, I.; Lehocký, M.; Chodák, I.; Sedliačik, J.; Gajtanska, M.; Sedliačiková, M.; Vesel, A.; Junkar, I.; Kleinová, A.; et al. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules 2012, 17, 762–785. [Google Scholar] [CrossRef]
- Popelka, A.; Novák, I.; Lehocký, M.; Junkar, I.; Mozetič, M.; Kleinová, A.; Janigová, I.; Šlouf, M.; Bílek, F.; Chodák, I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012, 90, 1501–1508. [Google Scholar] [CrossRef]
- Asadinezhad, A.; Novák, I.; Lehocký, M.; Sedlařík, V.; Vesel, A.; Junkar, I.; Sáha, P.; Chodák, I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf. B: Biointerfaces 2010, 77, 246–256. [Google Scholar] [CrossRef]
- Asadinezhad, A.; Novák, I.; Lehocký, M.; Sedlařík, V.; Vesel, A.; Junkar, I.; Sáha, P.; Chodák, I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating. Plasma Process. Polym. 2010, 7, 504–514. [Google Scholar] [CrossRef]
- Vesel, A.; Junkar, I.; Cvelbar, U.; Kovac, J.; Mozetic, M. Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf. Interface Anal. 2008, 40, 1444–1453. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, Y.; Han, S.; Kim, K.-J. Improvement of hydrophobic properties of polymer surfaces by plasma source ion implantation. Surf. Coat. Technol. 2006, 200, 4763–4769. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—A review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Ramires, P.A.; Mirenghi, L.; Romano, A.R.; Palumbo, F.; Nicolardi, G. Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells. J. Biomed. Mater. Res. 2000, 51, 535–539. [Google Scholar] [CrossRef]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Anand, G.; Sharma, S.; Dutta, A.K.; Kumar, S.K.; Belfort, G. Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 2010, 26, 10803–10811. [Google Scholar] [CrossRef]
- Anselme, K.; Ploux, L.; Ponche, A. Cell/material interfaces: Influence of surface chemistry and surface topography on cell adhesion. J. Adhes. Sci. Technol. 2010, 24, 831–852. [Google Scholar] [CrossRef]
- Dixon, M.C. Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. JBT 2008, 19, 151–158. [Google Scholar]
- Lord, M.S.; Modin, C.; Foss, M.; Duch, M.; Simmons, A.; Pedersen, F.S.; Milthorpe, B.K.; Besenbacher, F. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 2006, 27, 4529–4537. [Google Scholar] [CrossRef]
- Kou, J.; Tao, D.; Xu, G. A study of adsorption of dodecylamine on quartz surface using quartz crystal microbalance with dissipation. Colloids Surf. A: Physicochem. Eng. Asp. 2010, 368, 75–83. [Google Scholar] [CrossRef]
- Indest, T.; Laine, J.; Kleinschek, K.S.; Zemljič, L.F. Adsorption of human serum albumin (HSA) on modified PET films monitored by QCM-D, XPS and AFM. Colloids Surf. A: Physicochem. Eng. Asp. 2010, 360, 210–219. [Google Scholar] [CrossRef]
- Doliška, A.; Ribitsch, V.; Stana Kleinschek, K.; Strnad, S. Viscoelastic properties of fibrinogen adsorbed onto poly(ethylene terephthalate) surfaces by QCM-D. Carbohydr. Polym. 2013, 93, 246–255. [Google Scholar] [CrossRef]
- Jaganjac, M.; Matijevic, T.; Cindric, M.; Cipak, A.; Mrakovcic, L.; Gubisch, W.; Zarkovic, N. Induction of CMV-1 promoter by 4-hydroxy-2-nonenal in human embryonic kidney cells. Acta Biochim. Pol. 2010, 57, 179–183. [Google Scholar]
- Wang, C.; Lai, P.-C.; Syu, S.H.; Leu, J. Effects of CF4 plasma treatment on the moisture uptake, diffusion, and WVTR of poly(ethylene terephthalate) flexible films. Surf. Coat. Technol. 2011, 206, 318–324. [Google Scholar] [CrossRef]
- Cheng, T.-S.; Lin, H.-T.; Chuang, M.-J. Surface fluorination of polyethylene terephthalate films with RF plasma. Mater. Lett. 2004, 58, 650–653. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Miyazaki, H. Sulfonic acid group-containing thin films prepared by plasma polymerization. J. Appl. Polym. Sci. 1989, 38, 1829–1838. [Google Scholar] [CrossRef]
- De Geyter, N.; Morent, R.; Leys, C.; Gengembre, L.; Payen, E.; van Vlierberghe, S.; Schacht, E. DBD treatment of polyethylene terephthalate: Atmospheric versus medium pressure treatment. Surf. Coat. Technol. 2008, 202, 3000–3010. [Google Scholar] [CrossRef]
- Xu, T.; Fu, R.; Yan, L. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. J. Colloid Interface Sci. 2003, 262, 342–350. [Google Scholar] [CrossRef]
- Mori, O.; Imae, T. AFM investigation of the adsorption process of bovine serum albumin on mica. Colloids Surf. B: Biointerfaces 1997, 9, 31–36. [Google Scholar] [CrossRef]
- D’Sa, R.A.; Burke, G.A.; Meenan, B.J. Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomater. 2010, 6, 2609–2620. [Google Scholar] [CrossRef]
- Kurniawan, H.; Lai, J.-T.; Wang, M.-J. Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 2012, 19, 1975–1988. [Google Scholar] [CrossRef]
- Tsai, W.-B.; Wei, T.-C.; Lin, M.-C.; Wang, J.-Y.; Chen, C.-H. The effect of radio-frequency glow discharge treatment of polystyrene on the behavior of porcine chondrocytes in vitro. J. Biomater. Sci. Polym. Ed. 2005, 16, 699–714. [Google Scholar] [CrossRef]
- Eloy, R.; Parrat, D.; Duc, T.M.; Legeay, G.; Bechetoille, A. In vitro evaluation of inflammatory cell response after CF4 plasma surface modification of poly(methyl methacrylate) intraocular lenses. J. Cataract Refract. Surg. 1993, 19, 364–370. [Google Scholar] [CrossRef]
- Blackstone, B.N.; Willard, J.J.; Lee, C.H.; Nelson, M.T.; Hart, R.T.; Lannutti, J.J.; Powell, H.M. Plasma surface modification of electrospun fibers for adhesion-based cancer cell sorting. Integr. Biol. 2012, 4, 1112–1121. [Google Scholar] [CrossRef]
- Jacobs, T.; Morent, R.; Geyter, N.; Dubruel, P.; Leys, C. Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem. Plasma Process. 2012, 32, 1039–1073. [Google Scholar] [CrossRef]
- Shin, Y.N.; Kim, B.S.; Ahn, H.H.; Lee, J.H.; Kim, K.S.; Lee, J.Y.; Kim, M.S.; Khang, G.; Lee, H.B. Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment. Appl. Surf. Sci. 2008, 255, 293–296. [Google Scholar] [CrossRef]
- Beaulieu, I.; Geissler, M.; Mauzeroll, J. Oxygen plasma treatment of polystyrene and zeonor: Substrates for adhesion of patterned cells. Langmuir 2009, 25, 7169–7176. [Google Scholar] [CrossRef]
- Dowling, D.P.; Miller, I.S.; Ardhaoui, M.; Gallagher, W.M. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J. Biomater. Appl. 2011, 26, 327–347. [Google Scholar] [CrossRef]
- Martínez, E.; Engel, E.; Planell, J.A.; Samitier, J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. Anat. Anz. 2009, 191, 126–135. [Google Scholar] [CrossRef]
- Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999, 20, 573–588. [Google Scholar] [CrossRef]
- Lord, M.S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010, 5, 66–78. [Google Scholar] [CrossRef]
- Sample Availability: Contact the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Recek, N.; Jaganjac, M.; Kolar, M.; Milkovic, L.; Mozetič, M.; Stana-Kleinschek, K.; Vesel, A. Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates. Molecules 2013, 18, 12441-12463. https://doi.org/10.3390/molecules181012441
Recek N, Jaganjac M, Kolar M, Milkovic L, Mozetič M, Stana-Kleinschek K, Vesel A. Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates. Molecules. 2013; 18(10):12441-12463. https://doi.org/10.3390/molecules181012441
Chicago/Turabian StyleRecek, Nina, Morana Jaganjac, Metod Kolar, Lidija Milkovic, Miran Mozetič, Karin Stana-Kleinschek, and Alenka Vesel. 2013. "Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates" Molecules 18, no. 10: 12441-12463. https://doi.org/10.3390/molecules181012441
APA StyleRecek, N., Jaganjac, M., Kolar, M., Milkovic, L., Mozetič, M., Stana-Kleinschek, K., & Vesel, A. (2013). Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates. Molecules, 18(10), 12441-12463. https://doi.org/10.3390/molecules181012441