First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery
"> Figure 1
<p>Locations of the studied lakes.</p> "> Figure 2
<p>Field reflectance spectra collected 2011–2013 and recalculated into Sentinel-2 bands (grey lines) and Sentinel-2 reflectance spectra (black lines) obtained with Sen2cor atmospheric correction procedure for: Lake Võrtsjarv (<b>a</b>); and Lake Peipsi (<b>b</b>).</p> "> Figure 3
<p>Reflectance spectra of three small lakes: (<b>a</b>) top of atmosphere (TOA) reflectance; and (<b>b</b>) bottom of atmosphere (BOA) reflectance after correction with Sen2cor.</p> "> Figure 4
<p>Reflectance spectra of large Lakes Peipsi and Võrtsjärv: (<b>a</b>) top of atmosphere reflectance (TOA); and (<b>b</b>) bottom of atmosphere (BOA) reflectance after correction with Sen2cor.</p> "> Figure 5
<p>Correlation between the height of the 705 nm peak calculated from the Sentinel-2 data and chlorophyll <span class="html-italic">a</span> (Chl <span class="html-italic">a</span>) measured from water samples: (<b>a</b>) band ratio calculated from the top of atmosphere reflectance (L1C); and (<b>b</b>) band ratio calculated from the bottom of atmosphere reflectance (L2A).</p> "> Figure 6
<p>Correlation between the ratio of bands 3 and 4 calculated from the Sentinel-2 data and colored dissolved organic matter (CDOM) concentrations measured from water samples: (<b>a</b>) band ratio calculated from the top of atmosphere reflectance (L1C); and (<b>b</b>) band ratio calculated from the bottom of atmosphere reflectance (L2A).</p> "> Figure 7
<p>Correlation between the ratio of bands 3 and 4 calculated from the Sentinel-2 data and water color (Color) estimated from water samples: (<b>a</b>) band ratio calculated from the top of atmosphere reflectance (L1C); and (<b>b</b>) band ratio calculated from the bottom of atmosphere reflectance (L2A).</p> "> Figure 8
<p>Correlation between the ratio of bands 3 and 4 calculated from the Sentinel-2 data and concentration of dissolved organic carbon (DOC) measured from water samples: (<b>a</b>) band ratio calculated from the top of atmosphere reflectance (L1C); and (<b>b</b>) band ratio calculated from the bottom of atmosphere reflectance (L2A).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and in Situ Data
2.2. Sentinel-2 Data
2.3. Remote Sensing Algorithms
3. Results
3.1. In Situ Data
3.2. Atmospheric Correction and Reflectance Spectra
3.3. Results of the Remote Sensing Algorithms vs. in Situ Data
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Knoll, L.B.; Kutser, T.; Larsen, S.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limn. Oceanogr. 2009, 56, 2298–2314. [Google Scholar] [CrossRef]
- Brönmark, C.; Hansson, L.A. Environmental issues in lakes and ponds: Current state and perspectives. Environ. Conserv. 2002, 29, 290–307. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekel, D.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 639–642. [Google Scholar] [CrossRef]
- Staehr, P.A.; Baastrup-Spohr, L.; Sand-Jensen, K.; Stedmon, C. Lake metabolism scales with lake morphometry and catchment conditions. Aquat. Sci. 2012, 74, 155–169. [Google Scholar] [CrossRef]
- Meinson, P.; Idrizaj, A.; Nõges, P.; Nõges, T.; Laas, A. Continuous and high-frequency measurement in limnology: History, applications, and future challenges. Environ. Rev. 2016, 24, 1–11. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsälainen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Bukata, R.P.; Bruton, J.E.; Jerome, J.H.; Jain, S.C.; Zwick, H.H. Optical water quality model of Lake Ontario. 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors. Appl. Opt. 1981, 20, 1704–1714. [Google Scholar] [CrossRef] [PubMed]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 2001, 268, 197–214. [Google Scholar] [CrossRef]
- Giardino, C.; Brando, V.E.; Dekker, A.G.; Strömbrck, N.; Candiani, G. Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sens. Environ. 2007, 109, 183–195. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilgyi, F.; Mittenzwey, K.-H.; Karnieli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Hunter, P.D.; Tyler, A.N.; Carvalho, L.; Codd, G.A.; Maberly, S.C. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ. 2010, 114, 2705–2718. [Google Scholar] [CrossRef] [Green Version]
- Vertucci, F.A.; Likens, G.E. Spectral reflectance and water quality of Adirondack mountain region lakes. Limnol. Oceanogr. 1989, 34, 1656–1672. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges. Environ. Res. Lett. 2009, 4, 045005. [Google Scholar] [CrossRef]
- Eikebrokk, B.; Vogt, R.D.; Liltved, H. NOM increase in Northern European source waters: Discussion of possible causes and impacts on coagulation/contact filtration processes. Water Sci. Technol. Water Supply 2004, 4, 47–54. [Google Scholar]
- Tranvik, L.J. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 1992, 229, 107–114. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.M.; Pyhälahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T. The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens. Environ. 2012, 123, 334–338. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 User Handbook; ESA Standard Document; ESA: Paris, France, 2015. [Google Scholar]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Hedley, J.; Roelfsema, C.; Koetz, B.; Phinn, S. Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sens. Environ. 2012, 120, 145–155. [Google Scholar] [CrossRef]
- EN 1484:1997. Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). 1997. [Google Scholar]
- Toming, K.; Tuvikene, L.; Vilbaste, S.; Agasild, H.; Kisand, A.; Viik, M.; Martma, T.; Jones, R.; Nõges, T. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnol. Oceanogr. 2013, 58, 1259–1270. [Google Scholar]
- Højerslev, N.K. On the origin of yellow substance in the marine environment. Oceanogr. Rep. Univ. Copenhagen. Inst. Phys. 1980, 42, 1–35. [Google Scholar]
- Sipelgas, L.; Arst, H.; Kallio, K.; Erm, A.; Oja, P.; Soomere, T. Optical properties of dissolved organic matter in Finnish and Estonian lakes. Nord. Hydrol. 2003, 34, 361–386. [Google Scholar]
- ISO 7887:2011. Water Quality—Examination and Determination of Colour. 2011. [Google Scholar]
- Edler, L. Recommendations for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll. Balt. Mar. Biol. 1979, 5, 1–38. [Google Scholar]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Kutser, T. Estimation of Water Quality in Turbid Inland and Coastal Waters by Passive Optical Remote Sensing. Ph.D. Thesis, Tartu University, Tartu, Estonia, 1997. [Google Scholar]
- Gower, J.F.R.; King, S.; Borstad, G.A.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Robertson, L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Brezonik, P.; Olmanson, L.G.; Finlay, J.C.; Bauer, M. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Kallio, K. Absorption properties of dissolved organic matter in Finnish lakes. Proc. Estonian Acad. Sci. Biol. Ecol. 1999, 48, 75–83. [Google Scholar]
- Kutser, T.; Verpoorter, C.; Paavel, B.; Tranvik, L.J. Estimating lake carbon fractions from remote sensing data. Remote Sens. Environ. 2015, 157, 138–146. [Google Scholar] [CrossRef]
- Toming, K.; Arst, H.; Paavel, B.; Laas, A.; Nõges, T. Spatial and temporal variations in coloured dissolved organic matter in large and shallow Estonian waterbodies. Boreal Environ. Res. 2009, 14, 959–970. [Google Scholar]
- Cardille, J.A.; Leguet, J.-B.; del Giorgio, P. Remote Sensing of lake CDOM using noncontemporaneous field data. Can. J. Remote Sens. 2013, 39, 118–126. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Sterckx, S.; Knaeps, E.; Adriaensen, S.; Reisen, I.; De Keukelaere, L.; Hunter, P.; Giardino, E.; Odermatt, D. OPERA: An atmospheric correction for land and water. In Proceedings of the ESA Sentinel-3 for Science Workshop, Venice, Italy, 2–5 June 2015.
- Molot, L.A.; Dillon, P.J. Colour-mass balances and colour-dissolved organic carbon relationships in lakes and streams in central Ontario. Can. J. Fish. Aquat. Sci. 1997, 54, 2789–2795. [Google Scholar] [CrossRef]
- Erlandsson, M.; Futter, M.N.; Kothawala, D.N.; Köhler, S.J. Variability in spectral absorbance metrics across boreal lake waters. J. Environ. Monit. 2012, 14, 2643–2652. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T.; Casal Pascual, G.; Barbosa, C.; Paavel, B.; Ferreira, R.; Carvalho, L.; Toming, K. Mapping inland water carbon content with Landsat 8 data. Int. J. Remote Sens. 2016, 37, 2950–2961. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Tuvikene, L.; Viik, M.; Nõges, T. Dissolved organic carbon and its potential predictors in eutrophic lakes. Water Res. 2016, 102, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T.; Alikas, K.; Kothawala, D.N.; Köhler, S.J. Impact of iron associated to organic matter on remote sensing estimates of lake carbon content. Remote Sens. Environ. 2015, 156, 109–116. [Google Scholar] [CrossRef]
- Mayo, M.; Gitelson, A.; Yacobi, Y.Z.; Ben-Avraham, Z. Chlorophyll distribution in Lake Kinneret determined from Landsat Thematic Mapper data. Int. J. Remote Sens. 1995, 8, 175–182. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of Chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Donlon, C.; Bernard, S.; Kutser, T.; Kudela, R.; Ruddick, K.; Vanhellemont, Q.; Collard, F.; Chapron, B.; Ceriola, G.; Peters, S.; et al. The potential of the Copernicus Sentinel-2 mission for coastal oceanography and inland waters. Remote Sens. Environ. 2015. in preparation. [Google Scholar]
Lake Name | x-coordinate | y-coordinate | Area (ha) | Avg Depth (m) | Max Depth (m) | Catchment Area (km2) | Secchi Depth 2015 (m) | Trophic State |
---|---|---|---|---|---|---|---|---|
Nohipalo Valgõjärv | 698140 | 6427130 | 7 | 6.2 | 12.5 | - | 4.5 | Oligotrophic |
Pühajärv | 645054 | 6433972 | 298.3 | 4.3 | 8.5 | 44 | 3.0 | Eutrophic |
Rõuge Suurjärv | 674071 | 6402220 | 15 | 11.9 | 38 | 25.8 | 3.1 | Eutrophic |
Viitna Pikkjärv | 614054 | 6591301 | 16.4 | 3 | 6.2 | 1.1 | 3.4 | Oligotrophic |
Ähijärv | 649104 | 6399416 | 181.4 | 3.8 | 5.5 | 14.7 | 2.1 | Eutrophic |
Karijärv | 641931 | 6464450 | 82.1 | 5.7 | 14.5 | 11.1 | 2.3 | Eutrophic |
Keeri | 643615 | 6467624 | 127.3 | 3 | 4.5 | 408 | 1.3 | Eutrophic |
Käsmu | 606437 | 6606460 | 48.5 | 2.2 | 3.3 | 16.5 | 1.4 | Mixotrophic |
Lohja | 595682 | 6602433 | 56 | 2.2 | 3.7 | 12.3 | 0.7 | Mixotrophic |
Võrtsjärv | 620167 | 6465743 | 27,000 | 2.8 | 6.0 | 3104 | 0.8 | Eutrophic |
Peipsi | 69683 | 6501577 | 355,500 | 7.1 | 15.3 | 47,800 | 1.8 | Eutrophic |
Band Number | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
1 | 443 | 20 | 60 |
2 | 490 | 65 | 10 |
3 | 560 | 35 | 10 |
4 | 665 | 30 | 10 |
5 | 705 | 15 | 20 |
6 | 740 | 15 | 20 |
7 | 783 | 20 | 20 |
8a | 842 | 115 | 10 |
8b | 865 | 20 | 20 |
9 | 945 | 20 | 60 |
10 | 1375 | 30 | 60 |
11 | 1610 | 90 | 20 |
12 | 2190 | 180 | 20 |
Lake | Date | DOC (mg·L−1) | Chl a (μg·L−1) | CDOM (mg·L−1) | Color (mg·Pt·L−1) |
---|---|---|---|---|---|
Nohipalo Valgõjärv | 3 August 2015 | 6.65 | 3.70 | 1.77 | 3.00 |
Pühajärv | 3 August 2015 | 10.0 | 11.0 | 3.54 | 5.00 |
Rõuge Suurjärv | 4 August 2015 | 6.04 | 3.60 | 2.30 | 3.50 |
Viitna Pikkjärv | 10 August 2015 | 6.25 | 5.60 | 3.01 | 5.00 |
Ähijärv | 4 August 2015 | 9.84 | 10.0 | 2.65 | 3.50 |
Karijärv | 18 August 2015 | 10.3 | 4.00 | 4.07 | 6.00 |
Keeri järv | 18 August 2015 | 8.14 | 29.0 | 5.13 | 7.50 |
Käsmu | 12 August 2015 | 12.8 | 30.0 | 6.73 | 10.0 |
Lohja | 12 August 2015 | 20.9 | 50.0 | 15.8 | 22.0 |
Peipsi 92 | 18 August 2015 | - | 18.8 | - | 20.0 |
Peipsi 2 | 18 August 2015 | - | 21.3 | - | 20.0 |
Peipsi 79 | 18 August 2015 | - | 18.9 | - | 20.0 |
Peipsi 11 | 18 August 2015 | 11.4 | 24.6 | - | 20.0 |
Peipsi 12 | 18 August 2015 | - | 29.9 | - | 25.0 |
Peipsi 38 | 18 August 2015 | 11.8 | 27.0 | - | 25.0 |
Võrtsjärv 10 | 18 August 2015 | 14.0 | 47.2 | 4.74 | 25.0 |
Võrtsjärv Sula Kuru | 18 August 2015 | - | 62.3 | 5.13 | 30.0 |
Võrtsjärv Ohne | 18 August 2015 | - | 52.8 | 4.53 | 25.0 |
Võrtsjärv Tamme | 18 August 2015 | - | 44.3 | 4.35 | 25.0 |
Võrtsjärv Tarvastu | 18 August 2015 | - | 72.9 | 4.42 | 25.0 |
Võrtsjärv Karikolga | 18 August 2015 | - | 34.3 | 4.18 | 25.0 |
Võrtsjärv Joesuu | 18 August 2015 | - | 30.9 | 4.21 | 25.0 |
Võrtsjärv Tanassilma | 18 August 2015 | - | 37.1 | 4.21 | 25.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. https://doi.org/10.3390/rs8080640
Toming K, Kutser T, Laas A, Sepp M, Paavel B, Nõges T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sensing. 2016; 8(8):640. https://doi.org/10.3390/rs8080640
Chicago/Turabian StyleToming, Kaire, Tiit Kutser, Alo Laas, Margot Sepp, Birgot Paavel, and Tiina Nõges. 2016. "First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery" Remote Sensing 8, no. 8: 640. https://doi.org/10.3390/rs8080640
APA StyleToming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B., & Nõges, T. (2016). First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sensing, 8(8), 640. https://doi.org/10.3390/rs8080640