Abstract
In this study, we present the digital evaluation of Landsat TM data and field spectral measurements for retrieving chlorophyll-a (chl-a) concentration and trophic state index in Lake Chagan of Northeast China. Chl-a concentration of the lake can be estimated from the band ratio (TM4/TM3) and the field spectral data at 670 nm (absorption peak) and at 700 nm (reflectance peak). The results show that the best determination coefficient (R 2) is 0.67 from the TM data, by which chl-a distribution can be mapped. Based on chl-a determination from laboratory analysis, field spectral and TM data, the modified trophic state index (TSIM) was applied to assess the lake’s trophic state. With the available data in Lake Chagan, each algorithm demonstrates the similar result for assessing the lake’s chl-a and trophic state. Our results indicate that Landsat TM and field spectral data could be used effectively to determine chl-a concentration and evaluate the trophic state of Lake Chagan in the study.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aizaki, M., Iwakuma, T., & Takamura, N. (1981). Application of modified Carlson’s trophic state index to Japanese lakes and its relationship to other parameters related to trophic state. Research Report on National Institute of Environmental Studies, 23, 13–31.
Arenz, R. F., Lewis, W. M., & Saunders, J. F. (1996). Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. International Journal of Remote Sensing, 17(8), 1547–1566.
Brezonik, P., Menken, K. D., & Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21(4), 373–382.
Brivio, P. A., Giardino, C., & Zilioli, E. (2001). Validation of satellite data for quality assurance in lake monitoring applications. Science of the Total Environment, 268, 3–13.
Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.
Chen, Q., Zhang, Y., Ekroos, A., & Hallikainen, M. (2004). The role of remote sensing technology in the EU water framework directive (WFD). Environmental Science and Policy, 7(4), 267–276.
Dekker, A. G. (1993). Detection of optical water parameters for eutrophic lakes by high resolution remote sensing. PhD Dissertation, Free University, Amsterdam.
Dekker, A. G., & Peters, S. W. M. (1993). The use of the thematic mapper for the analysis of eutrophic lakes: A case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821.
Erkkila, A., & Kalliola, R. (2004). Patterns and dynamics of coastal waters in multi-temporal satellite images: Support to water quality monitoring in the Archipelago Sea, Finland. Estuarine Coastal and Shelf Science, 60, 165–177.
Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Science of the Total Environment, 268, 19–29.
Gitelson, A. A., Garbuzov, G., Szilagyi, F., Mittenzway, K. H., Karnieli, A., & Kaiser, A. (1993). Quantitative remote sensing methods for real-time monitoring of inland waters quality. International Journal of Remote Sensing, 14(7), 1269–1295.
Gitelson, A. A., & Kondratyev, K. Y. (1991). Optical models of mesotrophic and eutrophic water bodies. International Journal of Remote Sensing, 12, 373–385.
Gordon, H. R. (1979). Diffusive reflectance of the ocean: The theory of its augmentation by chlorophyll-a fluorescence at 685 nm. Applied Optics, 18, 1161–1166.
Harma, P., Vepsalainena, J., Hannonena, T., Pyhalahti, T., Kamari, J., Kallio, K., et al. (2001). Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Science of the Total Environment, 268, 107–121.
Iwashita, K., Kudoh, K., Fujii, H., & Nishikawa, H. (2004). Satellite analysis for water flow of Lake Inbanuma. Advances in Space Research, 33(3), 284–289.
Kallio, K., Kutser, T., Hannonen, T., Koponen, S., Pulliainen, J., Vepsalainen, J., et al. (2001). Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Science of the Total Environment, 268, 59–77.
Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82, 38–47.
Koponen, S., Pulliainen, J., Kallio, K., & Hallikainen, M. (2002). Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing Environment, 79, 51–59.
Koponen, S., Pulliainen, J., Servomaa, H., Zhang, Y., Hallikainen, M., Kallio, K., et al. (2001). Analysis on the feasibility of multisource remote sensing observations for chl-a monitoring in Finnish lakes. Science of the Total Environment, 268, 95–106.
Lathrop, R. G. (1992). Landsat Thematic Mapper monitoring of turbid inland water quality. Photogrammetric Engineering and Remote Sensing, 58, 465–470.
Lavery, P., Pattiaratchi, C., Wyllie, A., & Hick, P. (1993). Water quality monitoring in estuarine waters using the Landsat Thematic Mapper. Remote Sensing of Environment, 46, 268–280.
Ostlunda, C., Flinka, P., Strombeckb, N., Piersonb, D., & Lindell, T. (2001). Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper. Science of the Total Environment, 268, 139–154.
Porcella, D. B., Peterson, S. A., & Larsen, D. P. (1980). Index to evaluate lake restoration. Journal of the Environmental Engineering Division ASCE, 106(EE6), 1151–1169.
Pulliainen, J., Kallio, K., Eloheimo, K., Koponen, S., Servomaa, H., Hannonen, T., et al. (2001). A semi-operative approach to lake water quality retrieval from remote sensing data. Science of the Total Environment, 268, 79–93.
Ritchie, J. C., Cooper, C. M., & Schiebe, F. R. (1990). The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sensing of Environment, 33, 137–148.
Shu, J. H. (1990). Discussion of assessment methods of eutrophication in main lakes of China. Environmental Pollutions and Control, 12(5), 2–7 (in Chinese).
Shu, J. H. (1993). Assessment of eutrophication in main lakes of China. Oceanologia et Limnologia Sinica, 24(6), 616–620 (in Chinese).
Thiemann, S., & Kaufmann, H. (2000). Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany. Remote Sensing of Environment, 73, 227–235.
Walker, W. W. (1979). Use of hypolimnetic oxygen depletion rate as a trophic state index for lakes. Water Research, 15(6), 1463–1470.
Wang, Y. P., Xia, H., Fu, J., & Sheng, G. Y. (2004). Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Science of the Total Environment, 328, 195–206.
Xing, K. X., Guo, H. C., Sun, Y. F., & Huang, Y. T. (2005). Assessment of the spatial–temporal eutrophic character in the Lake Dianchi. Journal of Geographical Sciences, 15(1), 37–43.
Xu, F. L., Shu, T., Dawson, R. W., & Li, B. G. (2001). A GIS-based method of lake eutrophication assessment. Ecological Modelling, 144, 231–244.
Zhang, Y., Koponen, S., Pulliainen, J., & Hallikainen, M. (2002). Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment, 81(2–3), 327–336.
Zhang, Y., Koponen, S., Pulliainen, J., & Hallikainen, M. (2003a). Application of empirical neural networks to chlorophyll-a estimation in coastal waters using remote optosensors. IEEE Sensors Journal, 3(4), 376–382.
Zhang, Y., Koponen, S., Pulliainen, J., & Hallikainen, M. (2003b). Water quality retrievals from combined Landsat TM and ERS-2 SAR data in the Gulf of Finland. IEEE Transactions on Geoscience and Remote Sensing Letters, 41(3), 622–629.
Zhang, Y., Koponen, S., Pulliainen, J., & Hallikainen, M. (2003c). Empirical algorithms for Secchi disk depth using optical and microwave remote sensing data from the Gulf of Finland and the Archipelago Sea. Boreal Environment Research, 8(3), 251–261.
Zibordi, G., Melin, F., Berthon, J. F. (2006). A time series of above-water radiometric measurements for coastal water monitoring and remote sensing product validation. IEEE Transactions on Geoscience and Remote Sensing Letters, 3(1), 120–124.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Duan, H., Zhang, Y., Zhang, B. et al. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environ Monit Assess 129, 295–308 (2007). https://doi.org/10.1007/s10661-006-9362-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10661-006-9362-y