Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting
"> Figure 1
<p>Workflow of the proposed approach.</p> "> Figure 2
<p>Comparison of the proposed skeleton-based object linearity index (SOLI) with LFI and LFIe. (<b>a</b>) LFI (figure is adapted from [<a href="#B13-remotesensing-08-00637" class="html-bibr">13</a>]); (<b>b</b>) LFIe (figure is adapted from [<a href="#B50-remotesensing-08-00637" class="html-bibr">50</a>]); (<b>c</b>) SOLI.</p> "> Figure 3
<p>Three types of linear objects with different levels of complexity, which demonstrate the superiority of SOLI: (<b>a</b>) rectangular object; (<b>b</b>) curved object; (<b>c</b>) branched object.</p> "> Figure 4
<p>Tensor voting representation: (<b>a</b>) graphical representation of a second order tensor as its components (adapted from [<a href="#B55-remotesensing-08-00637" class="html-bibr">55</a>]); (<b>b</b>) stick voting from “Voter” token to “Receiver” token (adapted from [<a href="#B56-remotesensing-08-00637" class="html-bibr">56</a>]).</p> "> Figure 5
<p>First study area: (<b>a</b>) input image; (<b>b</b>) ground truth data obtained via manual digitization; (<b>c</b>) segmentation result; (<b>d</b>) road binary map; (<b>e</b>) filling gaps using CTV.</p> "> Figure 6
<p>Extraction results of the first study area: (<b>a</b>) result of the proposed method; (<b>b</b>) result of Poullis 2014 (adapted from [<a href="#B12-remotesensing-08-00637" class="html-bibr">12</a>]); (<b>c</b>) result of Miao 2013 (adapted from [<a href="#B13-remotesensing-08-00637" class="html-bibr">13</a>]).</p> "> Figure 7
<p>Second study area: (<b>a</b>) input image; (<b>b</b>) overlaid ground truth data.</p> "> Figure 8
<p>Road extraction results of the second study area: (<b>a</b>) result of Poullis 2014 (adapted from [<a href="#B12-remotesensing-08-00637" class="html-bibr">12</a>]); (<b>b</b>) result of Poullis 2010 (adapted from [<a href="#B12-remotesensing-08-00637" class="html-bibr">12</a>]); (<b>c</b>) result of proposed method.</p> "> Figure 9
<p>Third study area: (<b>a</b>) Input image; (<b>b</b>) Ground truth data; (<b>c</b>) Result of proposed method.</p> "> Figure 10
<p>Comparison of computation efficiency of TV and Customized TV.</p> "> Figure 11
<p>Analysis of impact of tensor voting scale (σ) on efficiency of the road extraction.</p> ">
Abstract
:1. Introduction
2. Proposed Approach and Methods
2.1. Guided Filter
2.2. Segmentation
2.3. Object-Based Feature Integration
2.4. Tensor Voting
2.5. Vectorization and Pruning
2.6. Evaluation Metrics
3. Experimental Results and Discussion
3.1. First Experiment
3.2. Second Experiment
3.3. Third Experiment
3.4. Discussion on Tensor Voting
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
DSM | Digital Surface Model |
CTV | Customized Tensor Voting |
GLCM | Gray Level Co-occurrence Matrix |
GSD | Ground Sampling Distance |
SOLI | Skeleton-based Object Linearity Index |
TV | Tensor Voting |
VHR | Very High Resolution |
References
- Hu, J.; Razdan, A.; Femiani, J.C.; Cui, M.; Wonka, P. Road network extraction and intersection detection from aerial images by tracking road footprints. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4144–4157. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, B.; Hu, X.; Di, L. Application of a fast linear feature detector to road extraction from remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 626–631. [Google Scholar] [CrossRef]
- Shi, W.; Miao, Z.; Wang, Q.; Zhang, H. Spectral-spatial classification and shape features for urban road centerline extraction. IEEE Geosci. Remote Sens. Lett. 2014, 11, 788–792. [Google Scholar]
- Saati, M.; Amini, J.; Maboudi, M. A method for automatic road extraction of high resolution sar imagery. J. Indian Soc. Remote Sens. 2015, 43, 697–707. [Google Scholar] [CrossRef]
- Song, M.; Civco, D. Road extraction using svm and image segmentation. Photog. Eng. Remote Sens. 2004, 70, 1365–1371. [Google Scholar] [CrossRef]
- Wegner, J.D.; Montoya-Zegarra, J.A.; Schindler, K. Road networks as collections of minimum cost paths. ISPRS J. Photogramm. Remote Sens. 2015, 108, 128–137. [Google Scholar] [CrossRef]
- Mena, J.B. State of the art on automatic road extraction for gis update: A novel classification. Pattern Recognit. Lett. 2003, 24, 3037–3058. [Google Scholar] [CrossRef]
- Mayer, H.; Hinz, S.; Bacher, U.; Baltsavias, E. A test of automatic road extraction approaches. In Proceedings of the Symposium of ISPRS Commission III: Photogrammetric Computer Vision (PCV’ 06), Bonn, Germany, 20–22 September 2006; pp. 209–214.
- Quackenbush, L.J. A review of techniques for extracting linear features from imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1383–1392. [Google Scholar] [CrossRef]
- Das, S.; Mirnalinee, T.T.; Varghese, K. Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3906–3931. [Google Scholar] [CrossRef]
- VPLab, Downloads. Available online: http://www.cse.iitm.ac.in/~vplab/road_detection.html (accessed on 10 February 2015).
- Poullis, C. Tensor-Cuts: A simultaneous multi-type feature extractor and classifier and its application to road extraction from satellite images. ISPRS J. Photogramm. Remote Sens. 2014, 95, 93–108. [Google Scholar] [CrossRef]
- Miao, Z.; Shi, W.; Zhang, H.; Wang, X. Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines. IEEE Geosci. Remote Sens. Lett. 2013, 10, 583–587. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Kushwaha, N.K.; Samal, A. Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1538–1544. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Chen, M.; Yang, Z. Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine. Int. J. Remote Sen. 2015, 36, 3144–3169. [Google Scholar] [CrossRef]
- Shanmugam, L.; Kaliaperumal, V. Water flow based geometric active deformable model for road network. ISPRS J. Photogramm. Remote Sens. 2015, 102, 140–147. [Google Scholar]
- Grote, A.; Heipke, C.; Rottensteiner, F. Road network extraction in suburban areas. Photogramm. Rec. 2012, 27, 8–28. [Google Scholar] [CrossRef]
- Nikfar, M.; Valadan Zoej, M.J.; Mokhtarzade, M.; Aliyari Shoorehdeli, M. Designing a new framework using type-2 FLS and cooperative-competitive genetic algorithms for road detection from IKONOS satellite imagery. Remote Sens. 2015, 7, 8271–8299. [Google Scholar] [CrossRef]
- Sun, W.; Messinger, D.W. Knowledge-based automated road network extraction system using multispectral images. Opt. Eng. 2013, 52, 047203. [Google Scholar] [CrossRef]
- Miao, Z.; Shi, W.; Gamba, P.; Li, Z. An object-based method for road network extraction in VHR satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4853–4862. [Google Scholar] [CrossRef]
- Miao, Z.; Wang, B.; Shi, W.; Zhang, H. A semi-automatic method for road centerline extraction from VHR images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1856–1860. [Google Scholar] [CrossRef]
- Miao, Z.; Shi, W.; Samat, A.; Lisini, G.; Gamba, P. Information fusion for urban road extraction from VHR optical satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1817–1829. [Google Scholar] [CrossRef]
- Yin, D.; Du, S.; Wang, S.; Guo, Z. A direction-guided ant colony optimization method for extraction of urban road information from very-high-resolution images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4785–4794. [Google Scholar] [CrossRef]
- Zarrinpanjeh, N.; Samadzadegan, F.; Schenk, T. A new ant based distributed framework for urban road map updating from high resolution satellite imagery. Comput. Geosci. 2013, 54, 337–350. [Google Scholar] [CrossRef]
- Ameri, F.; Valadan Zoej, M.J. Road vectorization from high-resolution imagery based on dynamic clustering using particle swarm optimization. Photogramm. Rec. 2015, 30, 363–386. [Google Scholar] [CrossRef]
- Doucette, P.; Agouris, P.; Stefanidis, A. Automated road extraction from high resolution multispectral imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1405–1416. [Google Scholar] [CrossRef]
- Poullis, C.; You, S. Delineation and geometric modeling of road networks. ISPRS J. Photogramm. Remote Sens. 2010, 65, 165–181. [Google Scholar] [CrossRef]
- Sironi, A.; Türetken, E.; Lepetit, V.; Fua, P. Multiscale centerline detection. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Grote, A. Automatic Road Network Extraction in Suburban Areas from Aerial Images. Ph.D. Thesis, Leibniz University, Hannover, Germany, 2011. [Google Scholar]
- Amini, J.; Lucas, C.; Saradjian, M.R.; Azizi, A.; Sadeghian, S. Fuzzy logic system for road identification using IKONOS images. Photogramm. Rec. 2002, 17, 493–503. [Google Scholar] [CrossRef]
- Movaghati, S.; Moghaddamjoo, A.; Tavakoli, A. Road extraction from satellite images using particle filtering and extended kalman filtering. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2807–2817. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Blaschke, T.; Burnett, C.; Pekkarinen, A. Image segmentation methods for object-based analysis and classification. In Remote Sensing Image Analysis: Including the Spatial Domain; de Jong, S.M., van der Meer, F., Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 5, pp. 211–236. [Google Scholar]
- Maboudi, M.; Amini, J. Object based segmentation effect on road network extraction from satellite images. In Proceedings of the 36th Asian Conference on Remote Sensing, Manila, Philippines, 19–23 October 2015.
- Luo, J.; Guo, C. Perceptual grouping of segmented regions in color images. Pattern Recognit. 2003, 36, 2781–2792. [Google Scholar] [CrossRef]
- Wang, M.; Li, R. Segmentation of high spatial resolution remote sensing imagery based on hard-boundary constraint and two-stage merging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5712–5725. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale image segmentation. In Proceedings of the Applied Geographical Information Processing XII (Contributions to AGIT Symposium), Salzburg, Austria, 5–7 July 2000; Volume 58, pp. 12–23.
- Chen, J.; Li, J.; Pan, D.; Zhu, Q.; Mao, Z. Edge-guided multiscale segmentation of satellite multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4513–4520. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Nikfar, M.; ValadanZoej, M.J.; Mohammadzadeh, A.; Mokhtarzade, M.; Navabi, A. Optimization of multiresolution segmentation by using a genetic algorithm. J. Appl. Remote Sens. 2012, 6. [Google Scholar] [CrossRef]
- Saba, F.; ValadanZoej, M.J.; Mokhtarzade, M. Optimization of multiresolution segmentation for object-oriented road detection from high-resolution images. Can. J. Remote Sens. 2016, 42, 75–84. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Chen, G. Refining high spatial resolution remote sensing image segmentation for man-made objects through aCollinear and Ipsilateral neighborhood model. Photogramm. Eng. Remote Sens. 2015, 81, 397–406. [Google Scholar] [CrossRef]
- Tabib Mahmoudi, F.; Samadzadegan, F.; Reinartz, P. Object oriented image analysis based on multi-agent recognition system. Comput. Geosci. 2013, 54, 219–230. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.S. Classified road detection from satellite images based on perceptual organization. Int. J. Remote Sen. 2007, 28, 4653–4669. [Google Scholar] [CrossRef]
- Dal Poz, A.P.; Zanin, R.B.; do Vale, G.M. Automated extraction of road network from medium and high-resolution images. Pattern Recognit. Image Anal. 2006, 16, 239–248. [Google Scholar] [CrossRef]
- Vosselman, G.; Knecht, J. Road tracking by profile matching and Kalman filtering. In Automatic Extraction of Man-Made Objects from Aerial and Space Image; Gruen, A., Kuebler, O., Agouris, P., Eds.; Birkhäuser: Basel, Switzerland, 1995; pp. 365–274. [Google Scholar]
- Hu, X.; Tao, C.V. A reliable and fast ribbon road detector using profile analysis and model-based verification. Int. J. Remote Sen. 2005, 26, 887–902. [Google Scholar] [CrossRef]
- Cheng, G.; Zhu, F.; Xiang, S.; Wang, Y.; Pan, C. Accurate urban road centerline extraction from VHR Imagery via multiscale segmentation and tensor voting. Neurocomputing 2016, 205, 407–420. [Google Scholar] [CrossRef]
- Rahimi, S.; Arefi, H.; Bahmanyar, R. Automatic road extraction based on integration of high resolution lidar and aerial imagery. In Proceedings of the ISPRS International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish, Iran, 23–25 November 2015; pp. 583–587.
- Haralick, R.M.; Shapiro, L.G. Computer and Robot Vision, 1st ed.; Addison-Wesley Longman Publishing Co.: Boston, MA, USA, 1992. [Google Scholar]
- Medioni, G.; Lee, M.S.; Tang, C.K. A Computational Framework for Segmentation and Grouping, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Guy, G.; Medioni, G. Inference of surfaces, 3D curves, and junctions from sparse, noisy, 3D data. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 1265–1277. [Google Scholar] [CrossRef]
- Jörgens, D.; Moreno, R. Tensor voting: Current state, challenges and new trends in the context of medical image analysis. In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Hotz, I., Schultz, T., Eds.; Springer International Publishing: Berlin, Germany, 2015; pp. 163–187. [Google Scholar]
- Moreno, R.; Garcia, M.A.; Puig, D.; Pizarro, L.; Burgeth, B.; Weickert, J. On improving the efficiency of tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2215–2228. [Google Scholar] [CrossRef] [PubMed]
- Medioni, G.; Mordohai, P. The tensor voting framework. In Emerging Topics in Computer Vision; Medioni, G., Kang, S.B., Eds.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2005; pp. 191–250. [Google Scholar]
- Wu, T.P.; Yeung, S.K.; Jia, J.; Tang, C.K.; Medioni, G. A closed-form solution to tensor voting: Theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1482–1495. [Google Scholar] [PubMed]
- Maggiori, E.; Lotito, P.; Manterola, H.L.; Fresno, M. Comments on “A closed-form solution to tensor voting: Theory and applications”. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2567–2568. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Cheung, C. Performance evaluation of line simplification algorithms for vector generalization. Cartogr. J. 2006, 43, 27–44. [Google Scholar] [CrossRef]
- Wiedemann, C.; Heipke, C.; Mayer, H.; Jamet, O. Empirical evaluation of automatically extracted road axes. In Empirical Evaluation Techniques in Computer Vision; Bowyer, K., Phillips, P.J., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1998; pp. 172–187. [Google Scholar]
- Wiedemann, C.; Ebner, H. Automatic completion and evaluation of road networks. Int. Arch. Photogramm. Remote Sens. 2000, 33, 979–986. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875 A, 4 January 2000. [Google Scholar]
- Shi, W.; Miao, Z.; Debayle, J. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3359–3372. [Google Scholar] [CrossRef]
Evaluation Criteria | Miao 2013 | Poullis 2014 | Proposed |
---|---|---|---|
Completeness (%) | 94.17 | 96.2 | 97.14 |
Correctness (%) | 99.20 | 98.3 | 98.85 |
Quality (%) | 93.46 | 94.6 | 96.06 |
Evaluation Criteria | Poullis 2010 | Poullis 2014 | Wang 2015 | Proposed |
---|---|---|---|---|
Completeness (%) | 71.4 | 68.1 | 75 | 89.9 |
Correctness (%) | 80 | 64.3 | 70 | 93.4 |
Quality (%) | 60.6 | 61.9 | 74 | 84.8 |
Evaluation Criteria | Ameri 2015 | Miao 2015 | Nikfar 2015 | Proposed |
---|---|---|---|---|
Completeness (%) | 89 | 94 | 89.3 | 93.4 |
Correctness (%) | 94 | 92 | 84.6 | 95.9 |
Quality (%) | 84 | 87 | 76.8 | 89.8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maboudi, M.; Amini, J.; Hahn, M.; Saati, M. Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting. Remote Sens. 2016, 8, 637. https://doi.org/10.3390/rs8080637
Maboudi M, Amini J, Hahn M, Saati M. Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting. Remote Sensing. 2016; 8(8):637. https://doi.org/10.3390/rs8080637
Chicago/Turabian StyleMaboudi, Mehdi, Jalal Amini, Michael Hahn, and Mehdi Saati. 2016. "Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting" Remote Sensing 8, no. 8: 637. https://doi.org/10.3390/rs8080637
APA StyleMaboudi, M., Amini, J., Hahn, M., & Saati, M. (2016). Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting. Remote Sensing, 8(8), 637. https://doi.org/10.3390/rs8080637