Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring—A Review
<p>Point cloud of Castello del Valentino in Turin (Italy) obtained from a single scan.</p> "> Figure 2
<p>High-density point cloud with applied texture of the: (<b>left</b>) exterior and (<b>right</b>) interior of the church of Santa Maria Maggiore [<a href="#B101-remotesensing-13-03936" class="html-bibr">101</a>].</p> "> Figure 3
<p>Detailed representation of the thermal infrared spectrum [<a href="#B119-remotesensing-13-03936" class="html-bibr">119</a>].</p> "> Figure 4
<p>Color image and corresponding thermographic image (grey and iron color pallet) captured at Turin’s Castello del Valentino (Italy) riverside façade.</p> "> Figure 5
<p>Thermographic image elaboration for Turin’s Castello del Valentino (Italy): (<b>left</b>) original thermogram; (<b>center</b>) thermal contours (every 0.5 °C); (<b>right</b>) thresholded thermogram (at 17.7 °C).</p> "> Figure 6
<p>Spectral images captured at Turin’s Castello del Valentino (Italy) main façade, right column: (<b>left</b>) color; (<b>center</b>) very near-infrared reflectance; (<b>right</b>) thermal.</p> "> Figure 7
<p>GPR profile above the deck of a historical masonry arch bridge [<a href="#B161-remotesensing-13-03936" class="html-bibr">161</a>].</p> ">
Abstract
:1. Introduction
2. Close-Range Sensing Technologies
2.1. Laser Scanning
- Time-of-Flight (ToF) scanners measure distances, by measuring the time difference between the emitted laser pulse and the received backscatter. These devices are characterized by lower acquisition speeds and accuracies (5–6 mm), but are mainly suited for long-range acquisition.
- Phase Shift (PS) scanners record the difference of phase between the emitted and backscattered signal (sinusoidal wave patterns) of continuous laser pulses. These devices are characterized by shorter ranges (up to 300 m) and provide better accuracy compared to ToF scanners (2–3 mm); thus, they are suited for documentation at large scales.
2.2. Photogrammetric Techniques
2.3. Infrared Thermography
2.4. Multispectral Imaging
2.5. Ground-Penetrating Radar
2.6. Active Elastic Wave Techniques
3. Data Fusion
3.1. Integration between Photogrammetric and Ranging Techniques
3.2. Multispectral Data
3.3. Thermographic Data
3.4. Radar, Ultrasonic, and Sonic Data
4. Conclusions and Outlooks
4.1. The Aerial Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Kioussi, A.; Karoglou, M.; Labropoulos, K.; Bakolas, A.; Moropoulou, A. Integrated documentation protocols enabling decision making in cultural heritage protection. J. Cult. Herit. 2013, 14, e141–e146. [Google Scholar] [CrossRef]
- Alexakis, E.; Delegou, E.T.; Lampropoulos, K.C.; Apostolopoulou, M.; Ntoutsi, I.; Moropoulou, A. NDT as a monitoring tool of the works progress and the assessment of materials and rehabilitation interventions at the holy aedicule of the holy sepulchre. Constr. Build. Mater. 2018, 189, 512–526. [Google Scholar] [CrossRef]
- Kilic, G. Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy. J. Cult. Herit. 2015, 16, 526–535. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Caselles, J.O.; Clapés, J.; Martinez, G.; Osorio, R. Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT E Int. 2013, 59, 40–47. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.C. Non-Destructive Testing for Assessing Structural Damage and Interventions Effectiveness for Built Cultural Heritage Protection. In Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; Advances in Civil and Industrial Engineering; Asteris, P.G., Plevris, V., Eds.; IGI Global: Hershey, PA, USA, 2015; pp. 448–499. ISBN 978-1-4666-8286-3. [Google Scholar]
- De Vita, M.; Massara, G.; De Berardinis, P. More comprehension, more protection: Non-destructive techniques in the survey of the former S. Salvatore hospital in L’Aquila, Italy. SCIRES-IT 2019, 9, 85–94. [Google Scholar] [CrossRef]
- Bosiljkov, V.; Uranjek, M.; Žarnić, R.; Bokan-Bosiljkov, V. An integrated diagnostic approach for the assessment of historic masonry structures. J. Cult. Herit. 2010, 11, 239–249. [Google Scholar] [CrossRef]
- Cardinali, V.; Castellini, M.; Cristofaro, M.T.; Lacanna, G.; Coli, M.; De Stefano, M.; Tanganelli, M. Integrated techniques for the structural assessment of cultural heritage masonry buildings: Application to Palazzo Cocchi-Serristori in Florence. J. Cult. Herit. Manag. Sustain. Dev. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Mascort-Albea, E.J.; Romero-Hernández, R.; Galán-Marín, C.; Rivera-Gómez, C.; Ruiz-Jaramillo, J.; Jaramillo-Morilla, A. Non-destructive testing and finite element method integrated procedure for heritage diagnosis: The Seville Cathedral case study. J. Build. Eng. 2021, 37, 102134. [Google Scholar] [CrossRef]
- Guadagnuolo, M.; Faella, G.; Donadio, A.; Ferri, L. Integrated evaluation of the Church of S. Nicola Di Mira: Conservation versus safety. NDT E Int. 2014, 68, 53–65. [Google Scholar] [CrossRef]
- Napolitano, R.; Hess, M.; Glisic, B. Integrating non-destructive testing, laser scanning, and numerical modeling for damage assessment: The room of the elements. Heritage 2019, 2, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Conde, B.; Ramos, L.F.; Oliveira, D.V.; Riveiro, B.; Solla, M. Structural Assessment of Masonry Arch Bridges by Combination of Non-Destructive Testing Techniques and Three-Dimensional Numerical Modelling: Application to Vilanova Bridge. Eng. Struct. 2017, 148, 621–638. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Tsilimantou, E.; Keramidas, V.; Apostolopoulou, M.; Karoglou, M.; Tapinaki, S.; Ioannidis, C.; Georgopoulos, A.; Moropoulou, A. Multi-sensor documentation of metric and qualitative information of historic stone structures. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, D.; Mollica Nardo, V.; Neri, D.; Cucinotta, G.; Calabrò, I.V.; Pace, L.; Ponterio, R.C. A multi-analytical study for the enhancement and accessibility of archaeological heritage: The Churches of San Nicola and San Basilio in Motta Sant’Agata (RC, Italy). Remote Sens. 2021, 13, 3738. [Google Scholar] [CrossRef]
- Francisco, C.; Gonçalves, L.; Gaspar, F.; Rodrigues, H.; Carracelas, M.S.; Luna, I.P.; Gonçalves, G.; Providência, P. Data Acquisition in Cultural Heritage Buildings Using Non-destructive Techniques, and Its Gathering with BIM—The Case Study of the Gothic Monastery of Batalha in Portugal. In Sustainability and Automation in Smart Constructions; Advances in Science, Technology & Innovation; Rodrigues, H., Gaspar, F., Fernandes, P., Mateus, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 59–68. ISBN 978-3-030-35532-6. [Google Scholar]
- Pavlidis, G.; Koutsoudis, A.; Arnaoutoglou, F.; Tsioukas, V.; Chamzas, C. Methods for 3D digitization of cultural heritage. J. Cult. Herit. 2007, 8, 93–98. [Google Scholar] [CrossRef] [Green Version]
- De Luca, L. Methods, formalisms and tools for the semantic-based surveying and representation of architectural heritage. Appl. Geomat. 2011, 6, 115–139. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, A.; Stathopoulou, E.K. Data acquisition for 3D geometric recording: State of the art and recent innovations. In Heritage and Archaeology in the Digital Age; Vincent, M.L., López-Menchero Bendicho, V.M., Ioannides, M., Levy, T.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–26. ISBN 978-3-319-65369-3. [Google Scholar]
- Masciotta, M.G.; Morais, M.J.; Ramos, L.F.; Oliveira, D.V.; Sánchez-Aparicio, L.J.; González-Aguilera, D. A digital-based integrated methodology for the preventive conservation of cultural heritage: The experience of HeritageCare Project. Int. J. Archit. Herit. 2019, 15, 844–863. [Google Scholar] [CrossRef]
- Napolitano, R.; Liu, Z.; Sun, C.; Glisic, B. Combination of image-based documentation and augmented reality for structural health monitoring and building pathology. Front. Built Environ. 2019, 5, 50. [Google Scholar] [CrossRef]
- Achille, C.; Tommasi, C.; Rechichi, F.; Fassi, F.; De Filippis, E. Towards an advanced conservation strategy: A structured database for sharing 3D documentation between expert users. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Fassi, F.; Achille, C.; Mandelli, A.; Rechichi, F.; Parri, S. A new idea of BIM system for vizualization, web sharing and using huge complex 3D models for facility management. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Maietti, F.; Medici, M.; Ferrari, F. From semantic-aware digital models to augmented reality applications for architectural heritage conservation and restoration. Disegnarecon 2021, 14, 17. [Google Scholar] [CrossRef]
- Marques, L.; Roca, J.; Tenedório, J.A. Valorisation of urban elements through 3D models generated from image matching point clouds and augmented reality visualization based in mobile platforms. In Proceedings of the Remote Sensing Technologies and Applications in Urban Environments, Warsaw, Poland, 11–14 September 2017; Heldens, W., Chrysoulakis, N., Erbertseder, T., Zhang, Y., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10431. [Google Scholar]
- Marques, L.; Tenedório, J.A.; Burns, M.; Româo, T.; Birra, F.; Marques, J.; Pires, A. Cultural heritage 3D modelling and visualisation within an augmented reality environment, based on geographic information technologies and mobile platforms. Archit. City Environ. 2017, 11, 117–136. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, T.; Véron, P.; Halin, G.; De Luca, L. An ontological model for the reality-based 3D annotation of heritage building conservation state. J. Cult. Herit. 2018, 29, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Rechichi, F.; Mandelli, A.; Achille, C.; Fassi, F. Sharing high-resolution models and information on web: The web module of BIM3DSG system. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Stefani, C.; Brunetaud, X.; Janvier-Badosa, S.; Beck, K.; De Luca, L.; Al-Mukhtar, M. Developing a toolkit for mapping and displaying stone alteration on a web-based documentation platform. J. Cult. Herit. 2014, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alshawabkeh, Y.; El-Khalili, M.; Almasri, E.; Bala’awi, F.; Al-Massarweh, A. Heritage documentation using laser scanner and photogrammetry. The case study of Qasr Al-Abidit, Jordan. Digit. Appl. Archaeol. Cult. Herit. 2020, 16, e00133. [Google Scholar] [CrossRef]
- Gines, J.L.C.; Cervera, C.B. Toward hybrid modeling and automatic planimetry for graphic documentation of the archaeological heritage: The Cortina family pantheon in the cemetery of Valencia. Int. J. Archit. Herit. 2020, 14, 1210–1220. [Google Scholar] [CrossRef]
- Guarnieri, A.; Milan, N.; Vettore, A. Monitoring of complex structure for structural control using terrestrial laser scanning (Tls) and photogrammetry. Int. J. Archit. Herit. 2013, 7, 54–67. [Google Scholar] [CrossRef]
- Grussenmeyer, P.; Alby, E.; Assali, P.; Poitevin, V.; Hullo, J.-F.; Smigiel, E. Accurate Documentation in Cultural Heritage by Merging TLS and High-Resolution Photogrammetric Data. In Proc. SPIE 8085, Videometrics, Range Imaging, and Applications XI, Proceedings of SPIE Optical Metrology, 2011, Munich, Germany, 25–26 May 2011; Remondino, F., Shortis, M.R., Eds.; SPIE: Munich, Germany, 21 June 2011; p. 808508. [Google Scholar]
- Mateus, L.; Fernández, J.; Ferreira, V.; Oliveira, C.; Aguiar, J.; Gago, A.S.; Pacheco, P.; Pernão, J. Terrestrial laser scanning and digital photogrammetry for heritage conservation: Case study of the Historical Walls of Lagos, Portugal. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D.; Awalludin, R. Multi-scale and multi-sensor 3D documentation of heritage complexes in urban areas. ISPRS Int. J. Geoinf. 2018, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Remondino, F.; Rizzi, A. Reality-based 3D documentation of natural and cultural heritage sites—Techniques, problems, and examples. Appl. Geomat. 2010, 2, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Budak, I.; Stojakovic, V.; Korolija Crkvenjakov, D.; Obradovic, R.; Molisevic, M.; Sokac, M. Development of expert system for the selection of 3D digitization method in tangible cultural heritage. Teh. Vjesn. 2019, 26, 838–844. [Google Scholar] [CrossRef]
- Barsanti, S.G.; Remondino, F.; Fenández-Palacios, B.J.; Visintini, D. Critical factors and guidelines for 3D surveying and modelling in cultural heritage. Int. J. Herit. Digit. Era 2014, 3, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Hassani, F. Documentation of cultural heritage; techniques, potentials, and constraints. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Haddad, N.A. From ground surveying to 3D laser scanner: A review of techniques used for spatial documentation of historic sites. J. King Saud. Univ. Eng. Sci. 2011, 23, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1–28. [Google Scholar] [CrossRef] [Green Version]
- El Masri, Y.; Rakha, T. A Scoping review of nondestructive testing (NDT) techniques in building performance diagnostic inspections. Constr. Built. Mater. 2020, 265, 120542. [Google Scholar] [CrossRef]
- Grussenmeyer, P.; Landes, T.; Doneus, M.; Lerma, J.L. Basics of range-based modelling techniques in cultural heritage 3D recording. In 3D Recording, Documentation and Management of Cultural Heritage; Stylianidis, E., Remondino, F., Eds.; Whittles Publishing: Dunbeath, UK, 2016; pp. 305–368. ISBN 978-1-84995-168-5. [Google Scholar]
- Lerma, J.L. (Ed.) Theory and Practice on Terrestrial Laser Scanning: Training Material Based on Practical Applications; Universidad Politecnica de Valencia Editorial: Valencia, Spain, 2008; ISBN 978-8-48363-312-0. [Google Scholar]
- Beraldin, J.-A.; Blais, F.; Lohr, U. Laser scanning technology. In Airborne and Terrestrial Laser Scanning; Vosselman, G., Maas, H.-G., Eds.; Whittles Publishing: Dunbeath, UK, 2010; pp. 1–42. ISBN 978-1-904445-87-6. [Google Scholar]
- Petrie, G.; Toth, C.K. Terrestrial laser scanners. In Topographic Laser Ranging and Scanning: Principles and Processing, 2nd ed.; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 87–128. ISBN 978-1-4987-7227-3. [Google Scholar]
- Vacca, G.; Deidda, M.; Dessi, A.; Marras, M. Laser scanner survey to cultural heritage conservation and restoration. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, 39, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Wohn, K. Interactive scan planning for heritage recording. Multimed. Tools Appl. 2016, 75, 3655–3675. [Google Scholar] [CrossRef]
- Metawie, M.; Marzouk, M. Optimizing laser scanning positions in buildings exteriors: Heritage building applications. J. Civ. Eng. Manag. 2020, 26, 304–314. [Google Scholar] [CrossRef]
- Barber, D.; Mills, J.; Bryan, P. Towards a standard specification for terrestrial laser scanning of cultural heritage. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2003, 34, 619–624. [Google Scholar]
- Bouaziz, S.; Tagliasacchi, A.; Pauly, M. Sparse iterative closest point. Comput. Graph. Forum 2013, 32, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Fabado, S.; Seguí, A.E.; Cabrelles, M.; Navarro, S.; García-De-San-Miguel, D.; Lerma, J.L. 3DVEM software modules for efficient management of point clouds and photorealistic 3D models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, 40, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Lachat, E.; Landes, T.; Grussenmeyer, P. Comparison of point cloud registration algorithms for better result assessment—Towards an open-source solution. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of laser scanning point clouds: A review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J.; et al. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Fassi, F.; Achille, C.; Fregonese, L. Surveying and modelling the main spire of Milan Cathedral using multiple data sources. Photogramm. Rec. 2011, 26, 462–487. [Google Scholar] [CrossRef]
- Dorninger, P.; Nothegger, C.; Rasztovits, S. Efficient 3D documentation of neptune fountain in the park of Schönbrunn palace at millimeter scale. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, 2, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, D.; Sperner, J.; Hoepner, S.; Tenschert, R. Terrestrial laser scanning for heritage conservation:The cologne cathedral documentation project. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 4, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; Rawlinson, A.; Frost, A.; Hepher, J. 3D Digital Documentation for Disaster Management in Historic Buildings: Applications Following Fire Damage at the Mackintosh Building, The Glasgow School of Art. J. Cult. Herit. 2018, 31, 24–32. [Google Scholar] [CrossRef]
- Kincey, M.; Gerrard, C.; Warburton, J. Quantifying erosion of ‘at risk’ archaeological sites using repeat terrestrial laser scanning. J. Archaeol. Sci. Rep. 2017, 12, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, A.; Fissore, F.; Masiero, A.; Vettore, A. From TLS survey to 3D solid modeling for documentation of built heritage: The case study of Porta Savonarola in Padua. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Monego, M.; Fabris, M.; Menin, A.; Achilli, V. 3-D survey applied to industrial archaeology by TLS methodology. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Monego, M.; Menin, A.; Fabris, M.; Achilli, V. 3D survey of sarno baths (Pompeii) by integrated geomatic methodologies. J. Cult. Herit. 2019, 40, 240–246. [Google Scholar] [CrossRef]
- Li, L.; Cao, X.; He, Q.; Sun, J.; Jia, B.; Dong, X. A new 3D laser-scanning and GPS combined measurement system. Comptes Rendus Geosci. 2019, 351, 508–516. [Google Scholar] [CrossRef]
- Fregonese, L.; Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Frigeri, A.; Taffurelli, L. Surveying and monitoring for vulnerability assessment of an ancient building. Sensors 2013, 13, 9747–9773. [Google Scholar] [CrossRef]
- Georgopoulos, G.D.; Telioni, E.C.; Tsontzou, A. The contribution of laser scanning technology in the estimation of ancient Greek monuments’ deformations. Surv. Rev. 2016, 48, 303–308. [Google Scholar] [CrossRef]
- Jaafar, H.A.; Meng, X.; Sowter, A.; Bryan, P. New approach for monitoring historic and heritage buildings: Using terrestrial laser scanning and generalised procrustes analysis. Struct. Control Health Monit. 2017, 24, e1987. [Google Scholar] [CrossRef]
- Pesci, A.; Casula, G.; Boschi, E. Laser scanning the garisenda and asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings. J. Cult. Herit. 2011, 12, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Pesci, A.; Teza, G.; Bonali, E.; Casula, G.; Boschi, E. A laser scanning-based method for fast estimation of seismic-induced building deformations. ISPRS J. Photogramm. 2013, 79, 185–198. [Google Scholar] [CrossRef]
- Pesci, A.; Bonali, E.; Galli, C.; Boschi, E. Laser scanning and digital imaging for the investigation of an ancient building: Palazzo d’Accursio study case (Bologna, Italy). J. Cult. Herit. 2012, 13, 215–220. [Google Scholar] [CrossRef]
- Quagliarini, E.; Clini, P.; Ripanti, M. Fast, low cost and safe methodology for the assessment of the state of conservation of historical buildings from 3D laser scanning: The case study of Santa Maria in Portonovo (Italy). J. Cult. Herit. 2017, 24, 175–183. [Google Scholar] [CrossRef]
- Tucci, G.; Bonora, V. Towers in San Gimignano: Metric survey approach. J. Perform. Constr. Facil. 2017, 31, 04017105. [Google Scholar] [CrossRef]
- Tucci, G.; Conti, A.; Fiorini, L. Geomatics for structural assessment and surface diagnostic of CH. Procedia Struct. Integr. 2018, 11, 2–11. [Google Scholar] [CrossRef]
- Batur, M.; Yilmaz, O.; Ozener, H. A case study of deformation measurements of Istanbul land walls via terrestrial laser scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6362–6371. [Google Scholar] [CrossRef]
- Costamagna, E.; Santana Quintero, M.; Bianchini, N.; Mendes, N.; Lourenço, P.B.; Su, S.; Paik, Y.M.; Min, A. Advanced nondestructive techniques for the diagnosis of historic buildings: The loka-hteik-pan temple in Bagan. J. Cult. Herit. 2020, 43, 108–117. [Google Scholar] [CrossRef]
- Grazzini, A.; Chiabrando, F.; Foti, S.; Sammartano, G.; Spanò, A. A multidisciplinary study on the seismic vulnerability of St. Agostino church in Amatrice following the 2016 seismic sequence. Int. J. Archit. Herit. 2020, 14, 885–902. [Google Scholar] [CrossRef]
- Teza, G.; Pesci, A.; Trevisani, S. Multisensor surveys of tall historical buildings in high seismic hazard areas before and during a seismic sequence. J. Cult. Herit. 2015, 16, 255–266. [Google Scholar] [CrossRef]
- Armesto, J.; Roca-Pardiñas, J.; Lorenzo, H.; Arias, P. Modelling masonry arches shape using terrestrial laser scanning data and nonparametric methods. Eng. Struct. 2010, 32, 607–615. [Google Scholar] [CrossRef]
- Chellini, G.; Nardini, L.; Pucci, B.; Salvatore, W.; Tognaccini, R. Evaluation of seismic vulnerability of Santa Maria Del Mar in Barcelona by an integrated approach based on terrestrial laser scanner and finite element modeling. Int. J. Archit. Herit. 2014, 8, 795–819. [Google Scholar] [CrossRef]
- Castellazzi, G.; D’Altri, A.; Bitelli, G.; Selvaggi, I.; Lambertini, A. From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors 2015, 15, 18360–18380. [Google Scholar] [CrossRef] [Green Version]
- D’Altri, A.M.; Milani, G.; de Miranda, S.; Castellazzi, G.; Sarhosis, V. Stability analysis of leaning historic masonry structures. Automat. Constr. 2018, 92, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Korumaz, M.; Betti, M.; Conti, A.; Tucci, G.; Bartoli, G.; Bonora, V.; Korumaz, A.G.; Fiorini, L. An integrated terrestrial laser scanner (TLS), deviation analysis (DA) and finite element (FE) approach for health assessment of historical structures. A minaret case study. Eng. Struct. 2017, 153, 224–238. [Google Scholar] [CrossRef]
- González-Jorge, H.; Gonzalez-Aguilera, D.; Rodriguez-Gonzalvez, P.; Arias, P. Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners. Constr. Build. Mater. 2012, 31, 119–128. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Puente, I.; Pereira, M.F.C.; Rocha, C.S.A. Quantification and mapping of deterioration patterns on granite surfaces by means of mobile LiDAR data. Measurement 2019, 140, 227–236. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Del Pozo, S.; Ramos, L.F.; Arce, A.; Fernandes, F.M. Heritage site preservation with combined radiometric and geometric analysis of TLS data. Automat. Constr. 2018, 85, 24–39. [Google Scholar] [CrossRef]
- Suchocki, C. Comparison of time-of-flight and phase-shift TLS intensity data for the diagnostics measurements of buildings. Materials 2020, 13, 353. [Google Scholar] [CrossRef] [Green Version]
- Lerones, P.M.; Vélez, D.O.; Rojo, F.G.; Gómez-García-Bermejo, J.; Casanova, E.Z. Moisture detection in heritage buildings by 3D laser scanning. Stud. Conserv. 2016, 61, 46–54. [Google Scholar] [CrossRef]
- Suchocki, C.; Damięcka-Suchocka, M.; Katzer, J.; Janicka, J.; Rapiński, J.; Stałowska, P. Remote detection of moisture and bio-deterioration of building walls by time-of-flight and phase-shift terrestrial laser scanners. Remote Sens. 2020, 12, 1708. [Google Scholar] [CrossRef]
- Suchocki, C.; Katzer, J. Terrestrial laser scanning harnessed for moisture detection in building materials—Problems and limitations. Automat. Constr. 2018, 94, 127–134. [Google Scholar] [CrossRef]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Kashani, A.; Olsen, M.; Parrish, C.; Wilson, N. A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Cheng, X. Correction of incidence angle and distance effects on TLS intensity data based on reference targets. Remote Sens. 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F. State of the art in high density image matching. Photogramm. Rec. 2014, 29, 144–166. [Google Scholar] [CrossRef] [Green Version]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging, 3rd ed.; De Gruyter: Berlin, Germany, 2019; pp. 123–274. ISBN 978-3-11-060725-3. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Aicardi, I.; Chiabrando, F.; Maria Lingua, A.; Noardo, F. Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. J. Cult. Herit. 2018, 32, 257–266. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landforms 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Martínez, S.; Ortiz, J.; Gil, M.L.; Rego, M.T. Recording complex structures using close range photogrammetry: The cathedral of Santiago De Compostela. Photogram Rec. 2013, 28, 375–395. [Google Scholar] [CrossRef]
- Adami, A.; Fassi, F.; Fregonese, L.; Piana, M. Image-based techniques for the survey of mosaics in the St Mark’s Basilica in Venice. Virtual Archaeol. Rev. 2018, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-image 3D reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Pirchio, D.; Walsh, K.Q.; Kerr, E.; Giongo, I.; Giaretton, M.; Weldon, B.D.; Ciocci, L.; Sorrentino, L. Integrated framework to structurally model unreinforced masonry Italian medieval churches from photogrammetry to finite element model analysis through heritage building information modeling. Eng. Struct. 2021, 241, 112439. [Google Scholar] [CrossRef]
- Tucci, G.; Bonora, V.; Conti, A.; Fiorini, L. Benchmarking range-based and image-based techniques for digitizing a glazed Earthenware frieze. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 2, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Tapinaki, S.; Skamantzari, M.; Chliverou, R.; Evgenikou, V.; Konidi, A.M.; Ioannatou, E.; Mylonas, A.; Georgopoulos, A. 3D image based geometric documentation of a medieval fortress. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Kouimtzoglou, T.; Stathopoulou, E.K.; Agrafiotis, P.; Georgopoulos, A. Image-based 3D reconstruction data as an analysis and documentation tool for architects: The case of Plaka Bridge in Greece. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gracia, V.; Di Capua, D.; Caselles, O.; Rial, F.; Lorenzo, H.; González-Drigo, R.; Armesto, J. Characterization of a Romanesque Bridge in Galicia (Spain). Int. J. Archit. Herit. 2011, 5, 251–263. [Google Scholar] [CrossRef]
- Peña-Villasenín, S.; Gil-Docampo, M.; Ortiz-Sanz, J. 3-D modeling of historic façades using SFM photogrammetry metric documentation of different building types of a historic center. Int. J. Archit. Herit. 2017, 11, 871–890. [Google Scholar] [CrossRef]
- Riveiro, B.; Caamaño, J.C.; Arias, P.; Sanz, E. Photogrammetric 3D modelling and mechanical analysis of masonry arches: An approach based on a discontinuous model of voussoirs. Automat. Constr. 2011, 20, 380–388. [Google Scholar] [CrossRef]
- Abate, D. Built-heritage multi-temporal monitoring through photogrammetry and 2D/3D change detection algorithms. Stud. Conserv. 2019, 64, 423–434. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Fatiguso, F. Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis. J. Cult. Herit. 2019, 36, 51–62. [Google Scholar] [CrossRef]
- Jalón, M.L.; Chiachío, J.; Gil-Martín, L.M.; Hernández-Montes, E. Probabilistic identification of surface recession patterns in heritage buildings based on digital photogrammetry. J. Build. Eng. 2021, 34, 101922. [Google Scholar] [CrossRef]
- Russo, M.; Carnevali, L.; Russo, V.; Savastano, D.; Taddia, Y. Modeling and deterioration mapping of façades in historical urban context by close-range ultra-lightweight UAVs photogrammetry. Int. J. Archit. Herit. 2019, 13, 549–568. [Google Scholar] [CrossRef]
- Brunetaud, X.; Luca, L.D.; Janvier-Badosa, S.; Beck, K.; Al-Mukhtar, M. Application of digital techniques in monument preservation. Eur. J. Environ. Civ. Eng. 2012, 16, 543–556. [Google Scholar] [CrossRef]
- Randazzo, L.; Collina, M.; Ricca, M.; Barbieri, L.; Bruno, F.; Arcudi, A.; La Russa, M.F. Damage indices and photogrammetry for decay assessment of stone-built cultural heritage: The case study of the San Domenico Church main entrance Portal (South Calabria, Italy). Sustainability 2020, 12, 5198. [Google Scholar] [CrossRef]
- Rosina, E.; Grinzato, E. Infrared and thermal testing for conservation of historic buildings. Mater. Eval. 2001, 59, 942–954. [Google Scholar]
- Moropoulou, A.; Avdelidis, N.; Karoglou, M.; Delegou, E.; Alexakis, E.; Keramidas, V. Multispectral applications of infrared thermography in the diagnosis and protection of built cultural heritage. Appl. Sci. 2018, 8, 284. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer, 3rd ed.; Academic Press: New York, NY, USA, 2013; ISBN 978-0-12-386944-9. [Google Scholar]
- Vollmer, M.; Möllmann, K.-P. Infrared Thermal Imaging: Fundamentals, Research and Applications, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; ISBN 978-3-527-41351-5. [Google Scholar]
- Corsi, C. History highlights and future trends of infrared sensors. J. Mod. Opt. 2010, 57, 1663–1686. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O. A review of infrared thermography for the investigation of building envelopes: Advances and prospects. Energy Build. 2018, 176, 390–406. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Rivera, J.P.; Heinz, S.; Berner, K.; Lerma, J.L. Thermographic documentation and 3D visualization of the Burjassot Silo-Yard: Processing and 3D visualization of FLIR One thermal images. In Responsibility for Cultural Heritage through Geomatics; Karlsruher geowissenschaftliche, Schriften; Reihe, B., Ed.; Vermessungswesen und Photogrammetrie; HsKA-IMM: Karlsruhe, Germany, 2019; pp. 31–38. ISBN 978-3-89063-109-7. [Google Scholar]
- Adamopoulos, E.; Rinaudo, F.; Bovero, A. First assessments on heritage science oriented image-based modeling using low-cost modified and mobile cameras. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Avdelidis, N.P.; Moropoulou, A. Emissivity considerations in building thermography. Energy Build. 2003, 35, 663–667. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Simões, M.L. Emissivity of building materials for infrared measurements. Sensors 2021, 21, 1961. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Panella, F.W.; Pirinu, A.; Dattoma, V. A brief review and advances of thermographic image—Processing methods for IRT inspection: A case of study on GFRP plate. Exp. Tech. 2020, 45, 429–443. [Google Scholar] [CrossRef]
- Bogue, R. Sensors for condition monitoring: A review of technologies and applications. Sens. Rev. 2013, 33, 295–299. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F. Infrared thermography for temperature measurement and nondestructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Shepard, S.M. Introduction to active thermography for nondestructive evaluation. Anti-Corros. Methods Mater. 1997, 44, 236–239. [Google Scholar] [CrossRef]
- Maierhofer, C.; Röllig, M.; Krankenhagen, R. Integration of active thermography into the assessment of cultural heritage buildings. J. Mod. Opt. 2010, 57, 1790–1802. [Google Scholar] [CrossRef]
- Balaras, C.A.; Argiriou, A.A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Moropoulou, A. Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 2004, 5, 119–127. [Google Scholar] [CrossRef]
- Bisegna, F.; Ambrosini, D.; Paoletti, D.; Sfarra, S.; Gugliermetti, F. A Qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography—A case study. J. Cult. Herit. 2014, 15, 199–202. [Google Scholar] [CrossRef]
- Maldague, X. Theory and Practice of Infrared Technology for Nondestructive Testing; Wiley Series in Microwave and Optical Engineering; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-18190-3. [Google Scholar]
- Brooke, C. Thermal imaging for the archaeological investigation of historic buildings. Remote Sens. 2018, 10, 1401. [Google Scholar] [CrossRef] [Green Version]
- Esteve, S.T. Aplicación de la Termografía Infrarroja como ensayo no destructivo (END) en la restauración del patrimonio arquitectónico. Pap. Partal Rev. Restaur. Monum. 2016, 8, 69–82. [Google Scholar]
- Finco, L.; Girotto, M.; Gomez Serito, M.; Volinia, M. Un contributo per la conoscenza della chiesa maggiore di Santa Giulitta: La termografia all’infrarosso per la lettura delle tessiture murarie e l’interpretazione delle fasi costruttive. In Un Paesaggio Medievale tra Piemonte e Liguria: Il Sito di Santa Giulitta e l’Alta Val Tanaro/a cura di Paolo Demeglio; Insegna del Giglio: Sesto Fiorentino, Italy, 2019; pp. 364–373. ISBN 978-88-7814-947-2. [Google Scholar]
- Grinzato, E.; Bison, P.G.; Marinetti, S. Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 2002, 3, 21–29. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Delegou, E.T.; Mourgi, G.; Tsilimantou, E.; Ioannidis, C.; Moropoulou, A. A multidisciplinary approach for historic buildings diagnosis: The case study of the Kaisariani monastery. Heritage 2019, 2, 1211–1232. [Google Scholar] [CrossRef] [Green Version]
- Lerma, C.; Mas, Á.; Gil, E.; Vercher, J.; Torner, M.E. Quantitative analysis procedure for building materials in historic buildings by applying infrared thermography. Russ. J. Nondestruct. Test. 2018, 54, 601–609. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Nondestructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- De Freitas, S.S.; de Freitas, V.P.; Barreira, E. Detection of façade plaster detachments using infrared thermography—A nondestructive technique. Constr. Build. Mater. 2014, 70, 80–87. [Google Scholar] [CrossRef]
- Moral Ruiz, C.; García Bueno, A.; Cultrone, G.; Almagro Gorbea, A. Análisis de alteraciones murarias y modificaciones relacionales en dos áreas del palacio de Pedro I del Alcázar de Sevilla mediante estudio documental y verificación termográfica. Arqueol. Arquitect. 2018, 68, 2. [Google Scholar] [CrossRef] [Green Version]
- Torres-González, M.; Alejandre, F.J.; Flores-Alés, V.; Calero-Castillo, A.I.; Blasco-López, F.J. Analysis of the state of conservation of historical plasterwork through visual inspection and non-destructive tests. The case of the upper frieze of the toledanos room (The Royal Alcázar of Seville, Spain). J. Build. Eng. 2021, 40, 102314. [Google Scholar] [CrossRef]
- Volinia, M. Integration of qualitative and quantitative infrared surveys to study the plaster conditions of valentino castle. In Proc. SPIE 4020; Dinwiddie, R.B., LeMieux, D.H., Eds.; SPIE: Orlando, FL, USA, 30 March 2000; pp. 324–334. [Google Scholar]
- Briceño, C.; Gonzales, M.; Yaya, C.; Moreira, S.; Aguilar, R. Preliminary structural diagnosis of the Sacsamarca Church in Peru using photogrammetry and IR thermography. In Structural Analysis of Historical Constructions: An Interdisciplinary Approach; Aguilar, R., Moreira, S., Pando, M.A., Ramos, L.F., Torrealva, D., Eds.; RILEM Bookseries; Springer International Publishing: Cham, Switzerland, 2019; pp. 2431–2438. ISBN 978-3-319-99441-3. [Google Scholar]
- Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. Preventive thermographic diagnosis of historical buildings for consolidation. J. Cult. Herit. 2013, 14, 116–121. [Google Scholar] [CrossRef]
- Danese, M.; Demšar, U.; Masini, N.; Charlton, M. Investigating material decay of historic buidlings using visual analytics with multi-temporal infrared thermographic data. Archaeometry 2009, 52, 482–501. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Heras, M.; Martinez-Perez, L.; Fort, R.; Alvarez de Buergo, M. Decay assessment through thermographic analysis in architectural and archaeological heritage. In Proceedings of the Geophysical Research Abstracts; EGU2010-8596; EGU: Vienna, Austria, 2010; Volume 12. [Google Scholar]
- İnce, İ.; Bozdağ, A.; Tosunlar, M.B.; Hatır, M.E.; Korkanç, M. Determination of deterioration of the main facade of the ferit Paşa Cistern by nondestructive techniques (Konya, Turkey). Environ. Earth Sci. 2018, 77, 420. [Google Scholar] [CrossRef]
- Garrido, I.; Lagüela, S.; Sfarra, S.; Solla, M. Algorithms for the automatic detection and characterization of pathologies in heritage elements from thermographic images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Grinzato, E.; Cadelano, G.; Bison, P. Moisture map by IR thermography. J. Mod. Opt. 2010, 57, 1770–1778. [Google Scholar] [CrossRef]
- Lerma, J.L.; Cabrelles, M.; Portalés, C. Multitemporal thermal analysis to detect moisture on a building façade. Constr. Build. Mater. 2011, 25, 2190–2197. [Google Scholar] [CrossRef]
- Martínez-Garrido, M.I.; Fort, R.; Gómez-Heras, M.; Valles-Iriso, J.; Varas-Muriel, M.J. A comprehensive study for moisture control in cultural heritage using non-Destructive techniques. J. Appl. Geophys. 2018, 155, 36–52. [Google Scholar] [CrossRef]
- Barbosa, M.T.G.; Rosse, V.J.; Laurindo, N.G. Thermography evaluation strategy proposal due moisture damage on building facades. J. Build. Eng. 2021, 43, 102555. [Google Scholar] [CrossRef]
- Glavaš, H.; Hadzima-Nyarko, M.; Buljan, I.H.; Barić, T. Locating hidden elements in walls of cultural heritage buildings by using infrared thermography. Buildings 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Castanedo, C.; Sfarra, S.; Klein, M.; Maldague, X. Solar loading thermography: Time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures. Infrared Phys. Technol. 2017, 82, 56–74. [Google Scholar] [CrossRef]
- Spodek, J.; Rosina, E. Application of infrared thermography to historic building investigation. J. Archit. Conserv. 2009, 15, 65–81. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Moropoulou, A.; Theoulakis, P. Detection of water deposits and movement in porous materials by infrared imaging. Infrared Phys. Technol. 2003, 44, 183–190. [Google Scholar] [CrossRef]
- Bergamo, O.; Campione, G.; Donadello, S.; Russo, G. In-situ NDT testing procedure as an integral part of failure analysis of historical masonry arch bridges. Eng. Fail. Anal. 2015, 57, 31–55. [Google Scholar] [CrossRef]
- Clark, M.R.; McCann, D.M.; Forde, M.C. Application of Infrared Thermography to the Non-Destructive Testing of Concrete and Masonry Bridges. NDT E Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Orbán, Z.; Gutermann, M. Assessment of masonry arch railway bridges using non-destructive in-situ testing methods. Eng. Struct. 2009, 31, 2287–2298. [Google Scholar] [CrossRef]
- Sciuto, C.; Allios, D.; Bendoula, R.; Cocoual, A.; Gardel, M.-E.; Geladi, P.; Gobrecht, A.; Gorretta, N.; Guermeur, N.; Jay, S.; et al. Characterization of building materials by means of spectral remote sensing: The example of carcassonne’s defensive wall (Aude, France). J. Archaeol. Sci. Rep. 2019, 23, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, S.; Sánchez-Aparicio, L.J.; Rodriguez-Gonzalvez, P.; Herrero-Pascual, J.; Muñoz-Nieto, A.; Gonzalez-Aguilera, D. Multispectral imaging: Fundamentals, principles and methods of damage assessment in constructions. In Nondestructive Techniques for the Evaluation of Structures and Infrastructure; Riveiro, B., Solla, M., Eds.; Structures & Infrastructures Series; CRC Press: London, UK, 2016; pp. 139–166. ISBN 978-1-138-02810-4. [Google Scholar]
- Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L.J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D. Multispectral imaging in cultural heritage conservation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Adamopoulos, E.; Rinaudo, F. Combining multiband imaging, photogrammetric techniques, and FOSS GIS for affordable degradation mapping of stone monuments. Buildings 2021, 11, 304. [Google Scholar] [CrossRef]
- Lerma, J.L.; Cabrelles, M.; Akasheh, T.S.; Haddad, N.A. Documentation of weathered architectural heritage with visible, near infrared, thermal and laser scanning data. Int. J. Herit. Digit. Era 2012, 1, 251–275. [Google Scholar] [CrossRef]
- Meroño, J.E.; Perea, A.J.; Aguilera, M.J.; Laguna, A.M. Recognition of materials and damage on historical buildings using digital image classification. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rahrig, M.; Drewello, R.; Lazzeri, A. Opto-technical monitoring—A standardized methodology to assess the treatment of historical stone surfaces. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Valença, J.; Gonçalves, L.M.S.; Júlio, E. Damage assessment on concrete surfaces using multi-spectral image analysis. Constr. Build. Mater. 2013, 40, 971–981. [Google Scholar] [CrossRef]
- Valença, J.; Dias-da-Costa, D.; Gonçalves, L.; Júlio, E.; Araújo, H. Automatic concrete health monitoring: Assessment and monitoring of concrete surfaces. Struct. Infrastr. Eng. 2014, 10, 1547–1554. [Google Scholar] [CrossRef]
- Verhoeven, G. Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J. Archaeol. Sci. 2008, 35, 3087–3100. [Google Scholar] [CrossRef]
- Falco, C.M. High resolution digital camera for infrared reflectography. Rev. Sci. Instrum. 2009, 80, 071301. [Google Scholar] [CrossRef]
- Webb, E.K.; Robson, S.; MacDonald, L.; Garside, D.; Evans, R. Spectral and 3D cultural heritage documentation using a modified camera. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.; Quirós, E. Semiautomatic detection and classification of materials in historic buildings with low-cost photogrammetric equipment. J. Cult. Herit. 2017, 25, 21–30. [Google Scholar] [CrossRef]
- Daniels, D.J. Ground penetrating radar. In Encyclopedia of RF and Microwave Engineering; Chang, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 1833–1846. ISBN 978-0-471-65450-6. [Google Scholar]
- Persico, R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing; WileyPress: Hoboken, NJ, USA, 2014; ISBN 978-1-118-83568-5. [Google Scholar]
- Ground Penetrating Radar; Daniels, D.J. (Eds.) Institution of Engineering and Technology; Ground Penetrating Radar: London, UK, 2004; ISBN 978-0-86341-360-5. [Google Scholar]
- Martinho, E.; Dionísio, A. Main geophysical techniques used for non-destructive evaluation in cultural built heritage: A review. J. Geophys. Eng. 2014, 11, 053001. [Google Scholar] [CrossRef]
- Nobes, D.C.; Deng, J. Ground penetrating radar resolution in archaeological geophysics. In Archaeogeophysics; El-Qady, G., Metwaly, M., Eds.; Natural Science in Archaeology; Springer International Publishing: Cham, Switzerland, 2019; pp. 183–204. ISBN 978-3-319-78860-9. [Google Scholar]
- Blake, V.S. Image processing and interpretation of ground penetrating radar data. Bar Int. Ser. 1995, 600, 175–180. [Google Scholar]
- Annan, A.P. Electromagnetic principles of ground penetrating radar. In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 3–40. ISBN 978-0-444-53348-7. [Google Scholar]
- Solla, M.; Lorenzo, H.; Pérez-Gracia, V. Ground penetrating radar: Fundamentals, methodologies and applications in structures and infrastructure. In Non-Destructive Techniques for the Evaluation of Structures and Infrastructure; Riveiro, B., Solla, M., Eds.; Structures & Infrastructures; CRC Press: London, UK, 2016; pp. 89–111. ISBN 978-0-429-22621-2. [Google Scholar]
- Linford, N. The Application of geophysical methods to archaeological prospection. Rep. Prog. Phys. 2006, 69, 2205–2257. [Google Scholar] [CrossRef]
- Morris, I.; Abdel-Jaber, H.; Glisic, B. Quantitative attribute analyses with ground penetrating radar for infrastructure assessments and structural health monitoring. Sensors 2019, 19, 1637. [Google Scholar] [CrossRef] [Green Version]
- Nuzzo, L.; Leucci, G.; Negri, S.; Carrozzo, M.T.; Quarta, T. Application of 3D visualization techniques in the analysis of GPR data for archaeology. Ann. Geophys. 2002, 45, 321–337. [Google Scholar] [CrossRef]
- Ortega-Ramírez, J.; Bano, M.; Villa Alvarado, L.A.; Medellín Martínez, D.; Rivero-Chong, R.; Motolinía-Temol, C.L. High-Resolution 3-D GPR Applied in the Diagnostic of the Detachment and Cracks in Pre-Hispanic Mural Paintings at “Templo Rojo”, Cacaxtla, Tlaxcala, Mexico. J. Cult. Herit. 2021, 50, 61–72. [Google Scholar] [CrossRef]
- Lualdi, M.; Zanzi, L.; Binda, L. Acquisition and processing requirements for high quality 3D reconstructions from GPR investigations. In Proceedings of the Non-Destructive Testing in Civil Engineering, Berlin, Germany, 16–19 September 2003. [Google Scholar]
- Novo, A. Ground-penetrating radar (GPR). In Good Practice in Archaeological Diagnostics; Corsi, C., Slapšak, B., Vermeulen, F., Eds.; Natural Science in Archaeology; Springer International Publishing: Cham, Switzerland, 2013; pp. 165–176. ISBN 978-3-319-01783-9. [Google Scholar]
- Utsi, E.C. Ground Penetrating Radar, 1st ed.; Elsevier: Boston, MA, USA, 2017; pp. 105–116. ISBN 978-0-08-102216-0. [Google Scholar]
- Binda, L.; Lualdi, M.; Saisi, A.; Zanzi, L. Radar investigation as a complementary tool for the diagnosis of historic masonry buildings. Int. J. Mater. Struct. Integr. 2011, 5, 1. [Google Scholar] [CrossRef]
- Binda, L.; Saisi, A.; Tiraboschi, C.; Valle, S.; Colla, C.; Forde, M. Application of sonic and radar tests on the piers and walls of the cathedral of noto. Constr. Build. Mater. 2003, 17, 613–627. [Google Scholar] [CrossRef]
- Deiana, R. The contribution of geophysical prospecting to the multidisciplinary study of the Sarno Baths, Pompeii. J. Cult. Herit. 2019, 40, 274–279. [Google Scholar] [CrossRef]
- Işık, N.; Halifeoğlu, F.M.; İpek, S. Nondestructive testing techniques to evaluate the structural damage of historical city walls. Constr. Build. Mater. 2020, 253, 119228. [Google Scholar] [CrossRef]
- Lachowicz, J.; Rucka, M. Diagnostics of Pillars in St. Mary’s Church (Gdańsk, Poland) using the GPR method. Int. J. Arch. Herit. 2019, 13, 1223–1233. [Google Scholar] [CrossRef]
- Lampropoulos, K.C.; Moropoulou, A.; Korres, M. Ground penetrating radar prospection of the construction phases of the holy aedicula of the holy sepulchre in correlation with architectural analysis. Constr. Build. Mater. 2017, 155, 307–322. [Google Scholar] [CrossRef]
- Leucci, G.; Masini, N.; Persico, R. Time–frequency analysis of GPR data to investigate the damage of monumental buildings. J. Geophys. Eng. 2012, 9, S81–S91. [Google Scholar] [CrossRef]
- Ludeno, G.; Cavalagli, N.; Ubertini, F.; Soldovieri, F.; Catapano, I. On the combined use of ground penetrating radar and crack meter sensors for structural monitoring: Application to the historical Consoli Palace in Gubbio, Italy. Surv. Geophys. 2020, 41, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Masini, N.; Nuzzo, L.; Rizzo, E. GPR Investigations for the study and the restoration of the rose window of Troia cathedral (Southern Italy). Near Surf. Geophys. 2007, 5, 287–300. [Google Scholar] [CrossRef]
- Orlando, L.; Slob, E. Using multicomponent GPR to monitor cracks in a historical building. J. Appl. Geophys. 2009, 67, 327–334. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; García, F.; Pujades, L.G.; González Drigo, R.; Di Capua, D. GPR survey to study the restoration of a Roman monument. J. Cult. Herit. 2008, 9, 89–96. [Google Scholar] [CrossRef]
- Ranalli, D.; Scozzafava, M.; Tallini, M. Ground penetrating radar investigations for the restoration of historic buildings: The case study of the Collemaggio Basilica (L’Aquila, Italy). J. Cult. Herit. 2004, 5, 91–99. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Novo, A.; Rial, F.I. Ground-penetrating radar assessment of the medieval arch bridge of San Antón, Galicia, Spain. Archaeol. Prospect. 2010, 17, 223–232. [Google Scholar] [CrossRef]
- Barone, P.M.; Di Matteo, A.; Graziano, F.; Mattei, E.; Pettinelli, E. GPR Application to the structural control of historical buildings: Two case studies in Rome, Italy. Near Surf. Geophys. 2010, 8, 407–413. [Google Scholar] [CrossRef]
- Labropoulos, K.; Moropoulou, A. Ground penetrating radar investigation of the bell tower of the church of the Holy Sepulchre. Constr. Build. Mater. 2013, 47, 689–700. [Google Scholar] [CrossRef]
- Leucci, G.; Cataldo, R.; De Nunzio, G. Assessment of fractures in some columns inside the crypt of the cattedrale Di Otranto using integrated geophysical methods. J. Archaeol. Sci. 2007, 34, 222–232. [Google Scholar] [CrossRef]
- Johnston, B.; Ruffell, A.; McKinley, J.; Warke, P. Detecting voids within a historical building façade: A comparative study of three high frequency GPR Antenna. J. Cult. Herit. 2018, 32, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Barraca, N.; Almeida, M.; Varum, H.; Almeida, F.; Matias, M.S. A case study of the use of GPR for rehabilitation of a classified art deco building: The inovadomus house. J. Appl. Geophys. 2016, 127, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Leucci, G.; Cataldo, R.; De Nunzio, G. Subsurface water-content identification in a crypt using GPR and comparison with microclimatic conditions. Near Surf. Geophys. 2006, 4, 207–213. [Google Scholar] [CrossRef]
- Masini, N.; Persico, R.; Rizzo, E. Some examples of GPR prospecting for monitoring of the monumental heritage. J. Geophys. Eng. 2010, 7, 190–199. [Google Scholar] [CrossRef]
- Kanli, A.I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E. GPR survey for reinforcement of historical heritage construction at fire tower of sopron. J. Appl. Geophys. 2015, 112, 79–90. [Google Scholar] [CrossRef]
- Rucka, M.; Lachowicz, J.; Zielińska, M. GPR Investigation of the strengthening system of a historic masonry tower. J. Appl. Geophys. 2016, 131, 94–102. [Google Scholar] [CrossRef]
- Pieraccini, M.; Noferini, L.; Mecatti, D.; Luzi, G.; Atzeni, C.; Persico, R.; Soldovieri, F. Advanced processing techniques for step-frequency continuous-wave penetrating radar: The case study of “Palazzo Vecchio” Walls (Firenze, Italy). Res. Nondestr. Eval. 2006, 17, 71–83. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; Riveiro, B.; Lorenzo, H. Non-Destructive Testing for the Analysis of Moisture in the Masonry Arch Bridge of Lubians (Spain). Struct. Control Health Monit. 2013, 20, 1366–1376. [Google Scholar] [CrossRef]
- Alani, A.M.; Tosti, F.; Ciampoli, L.B.; Gagliardi, V.; Benedetto, A. An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT E Int. 2020, 115, 102288. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Rial, F.I.; Novo, A. GPR evaluation of the roman masonry arch bridge of Lugo (Spain). NDT E Int. 2011, 44, 8–12. [Google Scholar] [CrossRef]
- Bautista-De Castro, Á.; Sánchez-Aparicio, L.J.; Carrasco-García, P.; Ramos, L.F.; González-Aguilera, D. A Multidisciplinary Approach to Calibrating Advanced Numerical Simulations of Masonry Arch Bridges. Mech. Syst. Signal Process. 2019, 129, 337–365. [Google Scholar] [CrossRef]
- Solla, M.; Asorey-Cacheda, R.; Núñez-Nieto, X.; Conde-Carnero, B. Evaluation of historical bridges through recreation of GPR models with the FDTD algorithm. NDT E Int. 2016, 77, 19–27. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Rial, F.I.; Novo, A. Ground-Penetrating Radar for the Structural Evaluation of Masonry Bridges: Results and Interpretational Tools. Constr. Build. Mater. 2012, 29, 458–465. [Google Scholar] [CrossRef]
- Helmerich, R.; Niederleithinger, E.; Trela, C.; Bień, J.; Kamiński, T.; Bernardini, G. Multi-Tool Inspection and Numerical Analysis of an Old Masonry Arch Bridge. Struct. Infrastruct. Eng. 2012, 8, 27–39. [Google Scholar] [CrossRef]
- Russo, S. Integrated assessment of monumental structures through ambient vibrations and ND tests: The case of Rialto Bridge. J. Cult. Herit. 2016, 19, 402–414. [Google Scholar] [CrossRef]
- Oliveira, D.V.; Allahvirdizadeh, R.; Sánchez, A.; Riveiro, B.; Mendes, N.; Silva, R.A.; Fernandes, F.M. Assessment of a Medieval Arch Bridge Resorting to Non-destructive Techniques and Numerical Tools. In Proceedings of ARCH 2019; Arêde, A., Costa, C., Eds.; Structural Integrity; Springer International Publishing: Cham, Switzerland, 2020; Volume 11, pp. 464–472. ISBN 978-3-030-29226-3. [Google Scholar]
- Solla, M.; Lorenzo, H.; Novo, A.; Riveiro, B. Evaluation of ancient structures by GPR (ground penetrating radar): The arch bridges of Galicia (Spain). Sci. Res. Essays 2011, 6, 1877–1884. [Google Scholar] [CrossRef]
- Trela, C.; Wöstmann, J.; Kruschwitz, S. Contribution of radar measurements to the inspection and condition assessment of railway bridges—Case study at a historic masonry arch bridge in Oleśnica/Poland. In Proceedings of the High Performance Structures and Materials IV; WIT Press: Algarve, Portugal, 2008; Volume 1, pp. 535–544. [Google Scholar]
- Miranda, L.; Cantini, L.; Guedes, J.; Costa, A. Assessment of mechanical properties of full-scale masonry panels through sonic methods. Comparison with mechanical destructive tests: Experimental sonic test on stone masonry. Struct. Control Health Monit. 2016, 23, 503–516. [Google Scholar] [CrossRef]
- Concu, G.; De Nicolo, B.; Valdes, M. Prediction of building limestone physical and mechanical properties by means of ultrasonic P-wave velocity. Sci. World J. 2014, 2014, 508073. [Google Scholar] [CrossRef]
- Rodríguez-Mariscal, J.D.; Canivell, J.; Solís, M. Evaluating the performance of sonic and ultrasonic tests for the inspection of rammed Earth constructions. Constr. Build. Mater. 2021, 299, 123854. [Google Scholar] [CrossRef]
- Luchin, G.; Ramos, L.F.; D’Amato, M. Sonic tomography for masonry walls characterization. Int. J. Archit. Herit. 2020, 14, 589–604. [Google Scholar] [CrossRef]
- Manning, E.; Ramos, L.F.; Fernandes, F.M. Direct Sonic and Ultrasonic Wave Velocity in Masonry under Compressive Stress; International Masonry Society: Guimarães, Portugal, 2014. [Google Scholar]
- Binda, L.; Saisi, A.; Tiraboschi, C. Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 2000, 14, 199–233. [Google Scholar] [CrossRef]
- Binda, L.; Saisi, A.; Tiraboschi, C. Application of sonic tests to the diagnosis of damaged and repaired structures. NDT E Int. 2001, 34, 123–138. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Fontul, S.; Santos-Asssunçao, S.; Marecos, V. Geophysics: Fundamentals and applications in structures and infrastructure. In Non-Destructive Techniques for the Evaluation of Structures and Infrastructure; Riveiro, B., Solla, M., Eds.; Structures & Infrastructures Series; CRC Press/Balkema: Leiden, The Netherlands, 2016; pp. 59–88. ISBN 978-1-138-02810-4. [Google Scholar]
- Leucci, G. Nondestructive testing technologies for cultural heritage: Overview. In Nondestructive Testing for Archaeology and Cultural Heritage; Springer International Publishing: Cham, Switzerland, 2019; pp. 15–73. ISBN 978-3-030-01898-6. [Google Scholar]
- Bozdağ, A.; İnce, İ.; Bozdağ, A.; Hatır, M.E.; Tosunlar, M.B.; Korkanç, M. An assessment of deterioration in cultural heritage: The unique case of eflatunpinar hittite water monument in Konya, Turkey. Bull. Eng. Geol. Environ. 2020, 79, 1185–1197. [Google Scholar] [CrossRef]
- Fais, S.; Casula, G.; Cuccuru, F.; Ligas, P.; Bianchi, M.G. An innovative methodology for the non-destructive diagnosis of architectural elements of ancient historical buildings. Sci. Rep. 2018, 8, 4334. [Google Scholar] [CrossRef] [Green Version]
- Fais, S.; Cuccuru, F.; Ligas, P.; Casula, G.; Bianchi, M.G. Integrated ultrasonic, laser scanning and petrographical characterisation of carbonate building materials on an architectural structure of a historic building. Bull. Eng. Geol. Environ. 2017, 76, 71–84. [Google Scholar] [CrossRef]
- Grazzini, A.; Fasana, S.; Zerbinatti, M.; Lacidogna, G. Non-destructive tests for damage evaluation of stone columns: The case study of Sacro Monte in Ghiffa (Italy). Appl. Sci. 2020, 10, 2673. [Google Scholar] [CrossRef]
- Hatır, M.E.; Korkanç, M.; Başar, M.E. Evaluating the deterioration effects of building stones using NDT: The Küçükköy Church, Cappadocia Region, Central Turkey. Bull. Eng. Geol. Environ. 2019, 78, 3465–3478. [Google Scholar] [CrossRef]
- Karanikoloudis, G.; Lourenço, P.B. Structural assessment and seismic vulnerability of earthen historic structures. Application of sophisticated numerical and simple analytical models. Eng. Struct. 2018, 160, 488–509. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, E.; Martini, R.; Alves, A.; Antunes, P.; Varum, H. Non-destructive characterization of ancient clay brick walls by indirect ultrasonic measurements. J. Build. Eng. 2018, 19, 172–180. [Google Scholar] [CrossRef]
- Salvatici, T.; Calandra, S.; Centauro, I.; Pecchioni, E.; Intrieri, E.; Garzonio, C.A. Monitoring and evaluation of sandstone decay adopting non-destructive techniques: On-site application on building stones. Heritage 2020, 3, 1287–1301. [Google Scholar] [CrossRef]
- Tosunlar, M.B.; Beycan, A.D.; Korkanç, M. Non-destructive test investigations on the deterioration of roman mausoleum in Karadağ central anatolia, Turkey. Mediterr. Archaeol. Archaeom. 2020, 20, 199–219. [Google Scholar]
- Klein, L.A. Sensor and Data Fusion: A Tool for Information Assessment and Decision Making; SPIE: Bellingham, WA, USA, 2004; ISBN 978-0-8194-5435-5. [Google Scholar]
- Ramos, M.M.; Remondino, F. Data fusion in cultural heritage—A review. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Adamopoulos, E.; Rinaudo, F. 3D interpretation and fusion of multidisciplinary data for heritage science: A review. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.; Oliveira, J.F.; Pereira, J.M.; de Araújo, B.R.; Boavida, J. 3D modelling of laser scanned and photogrammetric data for digital documentation: The Mosteiro Da Batalha case study. J. Real-Time Image Proc. 2014, 9, 673–688. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; Piemonte, A.; Bevilacqua, M.G. Geomatics for cultural heritage conservation: Integrated survey and 3D modeling. In Proceedings of the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage (2019 MetroArchaeo), Florence, Italy, 4–6 December 2019; Catelani, M., Daponte, P., Eds.; IMEKO: Florence, Italy, 2019; pp. 271–276. Available online: https://www.imeko.org/publications/tc4-Archaeo-2019/IMEKO-TC4-METROARCHAEO-2019-50.pdf (accessed on 27 September 2021).
- Chiabrando, F.; Sammartano, G.; Spanò, A.; Spreafico, A. Hybrid 3D models: When geomatics innovations meet extensive built heritage complexes. ISPRS Int. J. Geoinf. 2019, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Alshawabkeh, Y. Color and laser data as a complementary approach for heritage documentation. Remote Sens. 2020, 12, 3465. [Google Scholar] [CrossRef]
- Muñumer, E.; Lerma, J.L. Fusion of 3D data from different image-based and range-based sources for efficient heritage recording. In Proceedings of the 2015 Digital Heritage, Granada, Spain, 28 September–2 October 2015; IEEE: Granada, Spain, 2015; pp. 83–86. [Google Scholar]
- Altuntas, C.; Yildiz, F.; Scaioni, M. Laser scanning and data integration for three-dimensional digital recording of complex historical structures: The case of Mevlana Museum. ISPRS Int. J. Geoinf. 2016, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Shanoer, M.M.; Abed, F.M. Evaluate 3D laser point clouds registration for cultural heritage documentation. Egypt. J. Remote Sens. Space Sci. 2018, 21, 295–304. [Google Scholar] [CrossRef]
- Tombari, F.; Remondino, F. Feature-Based Automatic 3D Registration for Cultural Heritage Applications.; IEEE: Marseille, France, 2013; pp. 55–62. [Google Scholar]
- Costanzo, A.; Pisciotta, A.; Pannaccione Apa, M.I.; Bongiovanni, S.; Capizzi, P.; D’Alessandro, A.; Falcone, S.; La Piana, C.; Martorana, R. Integrated use of unmanned aerial vehicle photogrammetry and terrestrial laser scanning to support archaeological analysis: The Acropolis of Selinunte case (Sicily, Italy). Archaeol. Prospect. 2021, 28, 153–165. [Google Scholar] [CrossRef]
- Jo, Y.; Hong, S. Three-dimensional digital documentation of cultural heritage site based on the convergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry. ISPRS Int. J. Geoinf. 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Li, W.; Lai, S.; Zhu, L.; Jiang, W.; Zhang, Q. The integration of terrestrial laser scanning and terrestrial and unmanned aerial vehicle digital photogrammetry for the documentation of Chinese classical gardens—A case study of Huanxiu Shanzhuang, Suzhou, China. J. Cult. Herit. 2018, 33, 222–230. [Google Scholar] [CrossRef]
- Ulvi, A. Documentation, three-dimensional (3D) modelling and visualization of cultural heritage by using unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanners. Int. J. Remote Sens. 2021, 42, 1994–2021. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef] [Green Version]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Lerma, J.L.; Akasheh, T.S.; Haddad, N.A.; Cabrelles, M. Multispectral sensors in combination with recording tools for cultural heritage documentation. Chang. Over Time 2011, 1, 236–250. [Google Scholar]
- Sánchez-Aparicio, L.J.; Del Pozo, S.; Rodriguez-Gonzalvez, P.; Herrero-Pascual, J.; Muñoz-Nieto, A.; Gonzalez-Aguilera, D. Practical use of multispectral techniques for the detection of pathologies in constructions. In Non-Destructive Techniques for the Evaluation of Structures and Infrastructure; Riveiro, B., Solla, M., Eds.; Structures & Infrastructures Series; CRC Press: London, UK, 2016; pp. 253–271. ISBN 978-1-138-02810-4. [Google Scholar]
- Del Pozo, S.; Herrero-Pascual, J.; Felipe-García, B.; Hernández-López, D.; Rodríguez-Gonzálvez, P.; González-Aguilera, D. Multispectral radiometric analysis of façades to detect pathologies from active and passive remote sensing. Remote Sens. 2016, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Conde, B.; Del Pozo, S.; Riveiro, B.; González-Aguilera, D. Automatic mapping of moisture affectation in exposed concrete structures by fusing different wavelength remote sensors. Struct. Control Health Monit. 2016, 23, 923–937. [Google Scholar] [CrossRef]
- Bitelli, G.; Barbieri, E.; Girelli, V.A.; Lambertini, A.; Mandanici, E.; Melandri, E.; Roggio, D.S.; Santangelo, A.; Tini, M.A.; Tondelli, S.; et al. The complex of Santa Croce in Ravenna as a case study: Integration of 3D techniques for surveying and monitoring of a historical site. In Proceedings of the ARQUEOLÓGICA 2.0—9th International Congress & 3rd GEORES—GEOmatics and pREServation, Valéncia, Spain, 26–28 April 2021; pp. 408–413. [Google Scholar]
- Rizzi, A.; Voltolini, F.; Girardi, S.; Gonzo, L.; Remondino, F. Digital presentation, documentation and analysis of paintings, monuments and large cultural heritage with infrared technology, digital cameras and range sensors. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2007, 36, 3–8. [Google Scholar]
- Mizginov, V.A.; Kniaz, V.V. Evaluating the accuracy of 3D object reconstruction from thermal images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Adamopoulos, E.; Patrucco, G.; Volinia, M.; Girotto, M.; Rinaudo, F.; Tonolo, F.G.; Spanò, A. 3D thermal mapping of architectural heritage: Up-to-date workflows for the production of three-dimensional thermographic models for built heritage NDT. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Fink, E., Cantoni, L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzeralnd, 2021; Volume 12642, pp. 26–37. ISBN 978-3-030-73042-0. [Google Scholar]
- González-Aguilera, D.; Lagüela, S.; Rodríguez-Gonzálvez, P.; Hernández-López, D. Image-based thermographic modeling for assessing energy efficiency of buildings façades. Energy Build. 2013, 65, 29–36. [Google Scholar] [CrossRef]
- Dlesk, A.; Vach, K.; Holubec, P. Usage of photogrammetric processing of thermal images for civil engineers. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Patrucco, G.; Cortese, G.; Giulio Tonolo, F.; Spanò, A. Thermal and optical data fusion supporting built heritage analyses. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 619–626. [Google Scholar] [CrossRef]
- Previtali, M.; Barazzetti, L.; Redaelli, V.; Scaioni, M.; Rosina, E. Rigorous procedure for mapping thermal infrared images on three-dimensional models of building façades. J. Appl. Remote Sens. 2013, 7, 073503. [Google Scholar] [CrossRef] [Green Version]
- Hoegner, L.; Stilla, U. Mobile thermal mapping for matching of infrared images with 3D building models and 3D point clouds. Quant. InfraRed Thermogr. J. 2018, 1–19. [Google Scholar] [CrossRef]
- Macher, H.; Boudhaim, M.; Grussenmeyer, P.; Siroux, M.; Landes, T. Combination of thermal and geometric information for BIM enrichment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Dino, I.G.; Sari, A.E.; Iseri, O.K.; Akin, S.; Kalfaoglu, E.; Erdogan, B.; Kalkan, S.; Alatan, A.A. Image-based construction of building energy models using computer vision. Automat. Constr. 2020, 116, 103231. [Google Scholar] [CrossRef]
- Spanò, A.; Volinia, M.; Girotto, M. Spatial data and temperature: Relationship to deepen. Integrated methods for advanced architectural diagnosis and metric documentation. In Proceedings of the Eight Internation Conference on Non’Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Lecce, Italy, 15–19 May 2005; Marabelli, M., Parisi, C., Buzzanca, G., Paradisi, A., Eds.; Italian Society of Non-Destructive Testing Monitoring Diagnostics AIPnD: Lecce, Italy, 2005. [Google Scholar]
- Zalama, E.; Gómez-García-Bermejo, J.; Llamas, J.; Medina, R. An effective texture mapping approach for 3D models obtained from laser scanner data to building documentation: An effective texture mapping approach. Comput.-Aided Civil Infrastr. Eng. 2011, 26, 381–392. [Google Scholar] [CrossRef]
- Costanzo, A.; Minasi, M.; Casula, G.; Musacchio, M.; Buongiorno, M. Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensors 2014, 15, 194–213. [Google Scholar] [CrossRef] [Green Version]
- Mileto, C.; Vegas, F.; Lerma, J.L. Multidisciplinary studies, crossreading and transversal use of thermography: The castle of Monzón (Huesca) as a case study. In Proceedings of the Modern Age Fortifications of the Mediterranean Coast—Defensive Architecture of the Mediterranean (Fortmed2015), Valéncia, Spain, 15–17 October 2015; Editorial Universitat Politècnica de València, Ed.; Editorial Universitat Politècnica de València: Valéncia, Spain, 2015. [Google Scholar]
- Lagüela, S.; Díaz-Vilariño, L.; Martínez, J.; Armesto, J. Automatic thermographic and RGB texture of as-built BIM for energy rehabilitation purposes. Automat. Constr. 2013, 31, 230–240. [Google Scholar] [CrossRef]
- González-Aguilera, D.; Rodriguez-Gonzalvez, P.; Armesto, J.; Lagüela, S. Novel approach to 3D thermography and energy efficiency evaluation. Energy Build. 2012, 54, 436–443. [Google Scholar] [CrossRef]
- Alba, M.I.; Barazzetti, L.; Scaioni, M.; Rosina, E.; Previtali, M. Mapping infrared data on terrestrial laser scanning 3D models of buildings. Remote Sens. 2011, 3, 1847–1870. [Google Scholar] [CrossRef] [Green Version]
- Borrmann, D.; Elseberg, J.; Nüchter, A. Thermal 3D mapping of building façades. In Intelligent Autonomous Systems 12; Lee, S., Cho, H., Yoon, K.-J., Lee, J., Eds.; Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 193, pp. 173–182. ISBN 978-3-642-33925-7. [Google Scholar]
- Merchán, P.; Merchán, M.J.; Salamanca, S.; Adán, A. Application of multisensory technology for resolution of problems in the field of research and preservation of cultural heritage. In Advances in Digital Cultural Heritage; Ioannides, M., Martins, J., Žarnić, R., Lim, V., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzeralnd, 2018; Volume 10754, pp. 32–47. ISBN 978-3-319-75788-9. [Google Scholar]
- Yang, M.-D.; Su, T.-C.; Lin, H.-Y. Fusion of infrared thermal image and visible image for 3D thermal model reconstruction using smartphone sensors. Sensors 2018, 18, 2003. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Jarzabek-Rychard, M.; Tong, X.; Maas, H.-G. Fusion of thermal imagery with point clouds for building façade thermal attribute mapping. ISPRS J. Photogramm. Remote Sens. 2019, 151, 162–175. [Google Scholar] [CrossRef]
- Sahin, C.D.; Mengüç, M.P. Image registration method for mobile-device-based multispectral optical diagnostics for buildings. Appl. Opt. 2019, 58, 7165. [Google Scholar] [CrossRef] [PubMed]
- Adán, A.; Pérez, V.; Vivancos, J.-L.; Aparicio-Fernández, C.; Prieto, S.A. Proposing 3D thermal technology for heritage building energy monitoring. Remote Sens. 2021, 13, 1537. [Google Scholar] [CrossRef]
- Coret, L.; Briottet, X.; Kerr, Y.H.; Chehbouni, A. Simulation study of view angle effects on thermal infrared measurements over heterogeneous surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 664–672. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Colombero, C.; Comina, C.; Rinaudo, F.; Volinia, M.; Girotto, M.; Ardissono, L. Integrating multiband photogrammetry, scanning, and GPR for built heritage surveys: The façades of Castello Del Valentino. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Garrido, I.; Solla, M.; Lagüela, S.; Fernández, N. IRT and GPR Techniques for moisture detection and characterisation in buildings. Sensors 2020, 20, 6421. [Google Scholar] [CrossRef]
- Moselhi, O.; Ahmed, M.; Bhowmick, A. Multisensor data fusion for bridge condition assessment. J. Perform. Constr. Facil. 2017, 31, 04017008. [Google Scholar] [CrossRef]
- Pérez, J.; de Sanjosé Blasco, J.; Atkinson, A.; del Río Pérez, L. Assessment of the structural integrity of the roman bridge of alcántara (Spain) using TLS and GPR. Remote Sens. 2018, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, M.; Di Meo, A.; Gentile, V. The contribution of indirect topographic surveys (photogrammetry and laser scanner) and GPR investigations in the study of the vulnerability of the abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 2019, 62, SE343. [Google Scholar] [CrossRef]
- Biscarini, C.; Catapano, I.; Cavalagli, N.; Ludeno, G.; Pepe, F.A.; Ubertini, F. UAV Photogrammetry, infrared thermography and GPR for enhancing structural and material degradation evaluation of the Roman masonry bridge of Ponte Lucano in Italy. NDT E Int. 2020, 115, 102287. [Google Scholar] [CrossRef]
- De Giorgi, L.; Ferrari, I.; Giuri, F.; Leucci, G.; Scardozzi, G. Integrated geoscientific surveys at the Church of Santa Maria Della Lizza (Alezio, Italy). Sensors 2021, 21, 2205. [Google Scholar] [CrossRef]
- Agrafiotis, P.; Lampropoulos, K.; Georgopoulos, A.; Moropoulou, A. 3D modelling the invisible using ground penetrating radar. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A. Inside the polygonal walls of amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections. J. Appl. Geophys. 2016, 127, 31–44. [Google Scholar] [CrossRef]
- Puente, I.; Solla, M.; González-Jorge, H.; Arias, P. NDT documentation and evaluation of the Roman Bridge of Lugo using GPR and mobile and static LiDAR. J. Perform. Constr. Facil. 2015, 29, 06014004. [Google Scholar] [CrossRef]
- Solla, M.; Caamano, C.; Riveiro, B.; Lorenzo, H. GPR Analysis of a Masonry Arch for Structural Assessment. In Proceedings of the 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Aachen, Germany, 22–24 June 2011; IEEE: Aachen, Germany, June 2011; p. 5963873. [Google Scholar] [CrossRef]
- Arias, P.; Armesto, J.; Di-Capua, D.; González-Drigo, R.; Lorenzo, H.; Pérez-Gracia, V. Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng. Fail. Anal. 2007, 14, 1444–1457. [Google Scholar] [CrossRef]
- Fauchard, C.; Antoine, R.; Bretar, F.; Lacogne, J.; Fargier, Y.; Maisonnave, C.; Guilbert, V.; Marjerie, P.; Thérain, P.-F.; Dupont, J.-P.; et al. Assessment of an ancient bridge combining geophysical and advanced photogrammetric methods: Application to the Pont De Coq, France. J. Appl. Geophys. 2013, 98, 100–112. [Google Scholar] [CrossRef]
- Lubowiecka, I.; Arias, P.; Riveiro, B.; Solla, M. Multidisciplinary approach to the assessment of historic structures based on the case of a Masonry Bridge in Galicia (Spain). Comput. Struct. 2011, 89, 1615–1627. [Google Scholar] [CrossRef]
- Lubowiecka, I.; Armesto, J.; Arias, P.; Lorenzo, H. Historic bridge modelling using laser scanning, ground penetrating radar and finite element methods in the context of Structural dynamics. Eng. Struct. 2009, 31, 2667–2676. [Google Scholar] [CrossRef]
- Mills, J.P.; Chandler, J.H. Digital photogrammetry, GPR and finite elements in heritage documentation: Geometry and structural damages. Photogramm. Rec. 2007, 22, 94–96. [Google Scholar] [CrossRef]
- Riveiro, B.; Arias, P.; Armesto, J.; Caamaño, J.C.; Solla, M. From geometry to diagnosis: Experiences of geomatics in structural engineering. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, 39, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Solla, M.; Caamaño, J.C.; Riveiro, B.; Arias, P. A novel methodology for the structural assessment of stone arches based on geometric data by integration of photogrammetry and ground-penetrating radar. Eng. Struct. 2012, 35, 296–306. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Novo, A.; Caamaño, J.C. Structural analysis of the Roman Bibei Bridge (Spain) based on GPR data and numerical modelling. Automat. Constr. 2012, 22, 334–339. [Google Scholar] [CrossRef]
- Stavroulaki, M.E.; Riveiro, B.; Drosopoulos, G.A.; Solla, M.; Koutsianitis, P.; Stavroulakis, G.E. Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv. Eng. Softw. 2016, 101, 136–148. [Google Scholar] [CrossRef]
- Santos-Asssunçao, S.; Perez-Gracia, V.; Gonzalez, R.; Caselles, O.; Clapes, J.; Salinas, V. Geophysical exploration of columns in historical heritage buildings. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgian, 30 June–4 July 2014; IEEE: Belgian, Brussels, 2014; pp. 97–102. [Google Scholar]
- Santos-Assunçao, S.; Perez-Gracia, V.; Caselles, O.; Clapes, J.; Salinas, V. Assessment of complex masonry structures with GPR compared to other non-destructive testing studies. Remote Sens. 2014, 6, 8220–8237. [Google Scholar] [CrossRef] [Green Version]
- Merkle, D.; Frey, C.; Reiterer, A. Fusion of ground penetrating radar and laser scanning for infrastructure mapping. J. Appl. Geodesy 2021, 15, 31–45. [Google Scholar] [CrossRef]
- Bianchi, M.G.; Casula, G.; Cuccuru, F.; Fais, S.; Ligas, P.; Ferrara, C. Three-dimensional imaging from laser scanner, photogrammetric and acoustic non-destructive techniques in the characterization of stone building materials. Adv. Geosci. 2018, 45, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Casula, G.; Cuccuru, F.; Bianchi, M.G.; Fais, S.; Ligas, P. High resolution 3-D modelling of cylinder shape bodies applied to ancient columns of a church. Adv. Geosci. 2020, 54, 119–127. [Google Scholar] [CrossRef]
- Apollonio, F.I.; Gaiani, M.; Sun, Z. A reality integrated BIM for architectural heritage conservation. In Handbook of Research on Emerging Technologies for Architectural and Archaeological Heritage; Advances in Religious and Cultural Studies; Ippolito, A., Ed.; IGI Global: Hershey, PA, USA, 2017; ISBN 978-1-5225-0675-1. [Google Scholar]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of laser scanner and photogrammetry for heritage BIM enhancement. IJGI 2021, 10, 316. [Google Scholar] [CrossRef]
- Godinho, M.; Machete, R.; Ponte, M.; Falcão, A.P.; Gonçalves, A.B.; Bento, R. BIM as a resource in heritage management: An application for the national palace of Sintra, Portugal. J. Cult. Herit. 2020, 43, 153–162. [Google Scholar] [CrossRef]
- Solla, M.; Gonçalves, L.M.S.; Gonçalves, G.; Francisco, C.; Puente, I.; Providência, P.; Gaspar, F.; Rodrigues, H. A building information modeling approach to integrate geomatic data for the documentation and preservation of cultural heritage. Remote Sens. 2020, 12, 4028. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as integrated digital environments for modeling and monitoring of historic buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Martín-Lerones, P.; Olmedo, D.; López-Vidal, A.; Gómez-García-Bermejo, J.; Zalama, E. BIM supported surveying and imaging combination for heritage conservation. Remote Sens. 2021, 13, 1584. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. UAS-based archaeological remote sensing: Review, meta-analysis and state-of-the-art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Campana, S. Drones in archaeology. State-of-the-art and future perspectives: Drones in archaeology. Archaeol. Prospect. 2017, 24, 275–296. [Google Scholar] [CrossRef]
- Azzola, P.; Cardaci, A.; Mirabella Roberti, G.; Nannei, V.M. UAV Photogrammetry for cultural heritage preservation modeling and mapping Venetian Walls of Bergamo. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Bakirman, T.; Bayram, B.; Akpinar, B.; Karabulut, M.F.; Bayrak, O.C.; Yigitoglu, A.; Seker, D.Z. Implementation of ultra-light UAV systems for cultural heritage documentation. J. Cult. Herit. 2020, 44, 174–184. [Google Scholar] [CrossRef]
- Mirabella Roberti, G.; Nannei, V.M.; Azzola, P.; Cardaci, A. Preserving the Venetian fortress of Bergamo: Quick photogrammetric survey for conservation planning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Mohd Nasir, N.H.; Tahar, K.N. 3D model generation from UAV: Historical mosque (Masjid Lama Nilai). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Costantino, D. UAV Photogrammetry and 3D modelling of complex architecture for maintenance purposes: The case study of the masonry bridge on the Sele River, Italy. Period. Polytech. Civil Eng. 2020. [Google Scholar] [CrossRef]
- Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R. Digital 3D borobudur—Integration of 3D surveying and modeling techniques. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Themistocleous, K.; Mettas, C.; Evagorou, E.; Hadjimitsis, D.G. The use of UAVs and photogrammetry for the documentation of cultural heritage monuments: The case study of the Churches in Cyprus. In Proc. SPIE 11156, Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications X, Strasbourg, France, 10–12 September 2012; Schulz, K., Nikolakopoulos, K.G., Michel, U., Eds.; SPIE: Strasbourg, France, 2019; p. 111560. [Google Scholar]
- Grenzdörffer, G.J.; Naumann, M.; Niemeyer, F.; Frank, A. Symbiosis of UAS photogrammetry and TLS for surveying and 3D modeling of cultural heritage monuments—A case study about the Cathedral of St. Nicholas in the City of Greifswald. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Qiao, Y.; Hou, M. The great wall 3D documentation and application based on multi-source data fusion—A case study of No.15 enemy tower of the new guangwu great wall. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 1465–1470. [Google Scholar] [CrossRef]
- Luhmann, T.; Chizhova, M.; Gorkovchuk, D. Fusion of UAV and terrestrial photogrammetry with laser scanning for 3D reconstruction of historic churches in georgia. Drones 2020, 4, 53. [Google Scholar] [CrossRef]
- Parrinello, S.; Marco, R.D. Integration and modelling of 3D data as strategy for structural diagnosis in endangered sites. The study case of Church of the Annunciation in Pokcha (Russia). In Proceedings of the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage (2019 MetroArchaeo), Florence, Italy, 4–6 December 2019; Catelani, M., Daponte, P., Eds.; IMEKO: Florence, Italy, 2019; pp. 223–228. Available online: https://www.imeko.org/publications/tc4-Archaeo-2019/IMEKO-TC4-METROARCHAEO-2019-41.pdf (accessed on 27 September 2021).
- Rabbia, A.; Sammartano, G.; Spanò, A. Fostering etruscan heritage with effective integration of UAV, TLS and SLAM-based methods. In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage (2020 MetroArchaeo), Trento, Italy, 22–24 October 2020; Daponte, P., Gialanella, S., Petri, D., Eds.; IMEKO: Trento, Italy, 2020; pp. 322–327. Available online: https://www.imeko.org/publications/tc4-Archaeo-2020/IMEKO-TC4-MetroArchaeo2020-060.pdf (accessed on 27 September 2021).
- Teppati Losè, L.; Chiabrando, F.; Giulio Tonolo, F. Documentation of complex environments using 360° cameras. The Santa Marta Belltower in Montanaro. Remote Sens. 2021, 13, 3633. [Google Scholar] [CrossRef]
- Deng, F.; Zhu, X.; Li, X.; Li, M. 3D digitisation of large-scale unstructured great wall heritage sites by a small unmanned helicopter. Remote Sens. 2017, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Alsadik, B.; Remondino, F. Flight planning for LiDAR-based UAS mapping applications. ISPRS Int. J. Geoinf. 2020, 9, 378. [Google Scholar] [CrossRef]
- Marino, B.G.; Masiero, A.; Chiabrando, F.; Lingua, A.M.; Fissore, F.; Błaszczak-Bak, W.; Vettore, A. Data optimization for 3D modeling and analysis of a fortress architecture. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Previtali, M.; Stanga, C.; Molnar, T.; Van Meerbeek, L.; Barazzetti, L. An integrated approach for threat assessment and damage identification on built heritage in climate-sensitive territories: The Albenga case study (San Clemente Church). Appl. Geomat. 2018, 10, 485–499. [Google Scholar] [CrossRef]
- Grilli, E.; Menna, F.; Remondino, F. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Grilli, E.; Remondino, F. Classification of 3D digital heritage. Remote Sens. 2019, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Matrone, F.; Grilli, E.; Martini, M.; Paolanti, M.; Pierdicca, R.; Remondino, F. Comparing machine and deep learning methods for large 3D heritage semantic segmentation. ISPRS Int. J. Geoinf. 2020, 9, 535. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; De Luca, L.; Jacquot, K.; Piemonte, A.; Véron, P. From the semantic point cloud to heritage-building information modeling: A semiautomatic approach exploiting machine learning. Remote Sens. 2021, 13, 461. [Google Scholar] [CrossRef]
- Templin, T.; Popielarczyk, D. The use of low-cost unmanned aerial vehicles in the process of building models for cultural Tourism, 3D web and augmented/mixed reality applications. Sensors 2020, 20, 5457. [Google Scholar] [CrossRef]
- Calantropio, A.; Chiabrando, F.; Sammartano, G.; Spanò, A.; Teppati Losè, L. UAV Strategies validation and remote sensing data for damage assessment in post-disaster scenarios. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Chiabrando, F.; Di Lolli, A.; Patrucco, G.; Spanò, A.; Sammartano, G.; Teppati Losè, L. Multitemporal 3D modelling for cultural heritage emergency during seismic events:damage assesment of S. Agostino Church in Amatrice (RI). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Achille, C.; Adami, A.; Chiarini, S.; Cremonesi, S.; Fassi, F.; Fregonese, L.; Taffurelli, L. UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15, 15520–15539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranwal, E.; Seth, P.; Pande, H.; Raghavendra, S.; Kushwaha, S.K.P. Application of unmanned aerial vehicle (UAV) for damage assessment of a cultural heritage monument. In Proceedings of the UASG 2019, Roorkee, India, 6–7 April 2019; Lecture Notes in Civil Engineering. Jain, K., Khoshelham, K., Zhu, X., Tiwari, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 51, pp. 123–131, ISBN 978-3-030-37392-4. [Google Scholar]
- Baranwal, E.; Raghvendra, S.; Tiwari, P.S.; Pande, H. Health monitoring and assessment of the cultural monument through unmanned aerial vehicle (UAV) image processing. In Advances in Systems Engineering; Lecture Notes in Mechanical Engineering; Saran, V.H., Misra, R.K., Eds.; Springer: Singapore, 2021; pp. 145–160. ISBN 9789811580246. [Google Scholar]
- Pepi, C.; Cavalagli, N.; Gusella, V.; Gioffrè, M. An integrated approach for the numerical modeling of severely damaged historic structures: Application to a Masonry Bridge. Adv. Eng. Softw. 2021, 151, 102935. [Google Scholar] [CrossRef]
RIEGL VZ-400i | TOPCON GLS-2000M | Leica ScanStation P30 | FARO FocusS 150 | Z+F IMAGER 5016 | |
Type | ToF | ToF | ToF | PS | PS |
Range | 1.5–800 m | 1–350 | 0.4–270 m | 0.6–150 m | 0.3–365 m |
Accuracy | 5 mm | 3.5 mm Distance, 6” Angle | 6 mm | 3.5 mm | 2 mm |
Precision | 3 mm | 2 mm | 1 mm | 1 mm | |
Weight | 9.7 kg | 11 kg | 12.25 * kg | 4.2 kg | 7.8 kg |
Avio InfReC R450 | FLIR T840 | FLIR T540 | Fluke TiX580 | Seek ShotPRO | |
Resolution | 480 × 360 | 640 × 480 | 464 × 348 | 640 × 480 | 320 × 240 |
FOV 1 | 14°/24°/48° | 14°/24°/42° | 14°/24°/42° | 12°/34°/48° | 52° |
NETD 2 | <25 mK | <30 mK | <50 mK | <50 mK | <70 mK |
Accuracy | 2% | 2% | 2% | 2% | 2% |
Range | 8–14 μm | 7.5–14 μm | 7.5–14 μm | 7.5–14 μm | 7.5–14 μm |
Make and Model | Configuration | Spectral Bands | Resolution (Pixels) |
---|---|---|---|
Buzzard Six Band | 6-camera | B, G, R, NIR1, NIR2, NIR3 | 1280 × 1024 |
MicaSense RedEdge | 5-camera | B, G, R, RE, NIR | 1280 × 960 |
Sal MAIA | 9-camera | VIS, V, B, G, R, RE, NIR1, NIR 2 | 1280 × 960 |
Tetracam ADC-Micro | single 3-band camera | G, R, NIR | 2048 × 1536 |
Tetracam μ-MCA | 4, 6 or 12-camera | user-selectable | 1280 × 1024 |
Deformations | Surface Features | Subsurface Features | Material Depth | Thermal Properties | Moisture Detection | |
---|---|---|---|---|---|---|
Close Range Photogrammetry | × | × | ||||
Laser Scanning | × | × | × | |||
Infrared Thermography | × | × | × | |||
Near-Infrared/Multispectral Imaging | × | × | ||||
Ground Penetrating Radar | × | × | × | |||
Ultrasound/Sonic | × | × | × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamopoulos, E.; Rinaudo, F. Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring—A Review. Remote Sens. 2021, 13, 3936. https://doi.org/10.3390/rs13193936
Adamopoulos E, Rinaudo F. Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring—A Review. Remote Sensing. 2021; 13(19):3936. https://doi.org/10.3390/rs13193936
Chicago/Turabian StyleAdamopoulos, Efstathios, and Fulvio Rinaudo. 2021. "Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring—A Review" Remote Sensing 13, no. 19: 3936. https://doi.org/10.3390/rs13193936
APA StyleAdamopoulos, E., & Rinaudo, F. (2021). Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring—A Review. Remote Sensing, 13(19), 3936. https://doi.org/10.3390/rs13193936