GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings
<p>Villa Klonaridi historic building.</p> "> Figure 2
<p>(<b>a</b>) Plan of the construction phases of the historic building; (<b>b</b>) east façade of Villa Klonaridi indicating the pathology of the walls.</p> "> Figure 3
<p>3D model of Villa Klonaridi: (<b>a</b>) 3d mesh; (<b>b</b>) 3d textured model (northeast orientation).</p> "> Figure 4
<p>Infrared thermography (IRT) images of the north façade: (<b>a</b>) areas consisted of brick (below the window opening and the relieving arch above the basement window), present higher temperatures in comparison to plastered and un-plastered parts of the ruble-stone masonry; (<b>b</b>) the masonry area below the metal strapping, (applied for structural stability), presents lower temperatures in comparison to the masonry area above the metal strapping, indicating issues of rising damp at the lower parts of the north façade.</p> "> Figure 5
<p>IRT images of the north façade: (<b>a</b>) moisture issues are observed in the lower part of the 3rd construction phase structure; (<b>b</b>) temperature variations and different thermal conductivity behavior is observed between the building materials of the first and the third construction phase.</p> "> Figure 6
<p>Digital microscopy images of stones, bricks and mortars from the three construction phases: first construction phase: (<b>a</b>) compact grey limestone with a ferrous vein evident; (<b>b</b>) red brick; (<b>c</b>) clay mortar with lumps of lime; second construction phase: (<b>d</b>) compact grey limestone with iron oxides and hydroxides; (<b>e</b>) yellow Brick; (<b>f</b>) lime-clay mortar; third construction phase: (<b>g</b>) compact grey limestone; (<b>h</b>) light-yellow brick with micro-fissuring; (<b>i</b>) lime-clay mortar with micro-fissuring and low cohesion.</p> "> Figure 7
<p>Ground penetrating radar (GPR) measurement results indicating the masonry’s stratigraphy along with the 3D point cloud of the masonry under examination.</p> "> Figure 8
<p>Thematic map of building materials and decay of the east façade.</p> "> Figure 9
<p>Thematic map of building materials and decay of the west façade.</p> "> Figure 10
<p>Thematic map of building materials of the south façade.</p> "> Figure 11
<p>Thematic map of building materials and decay of the north façade.</p> "> Figure 12
<p>Thematic map of cracks and detachment of building materials depicted on the west façade of the building.</p> "> Figure 13
<p>Thematic map of cracks and detachment of building materials depicted on the north façade of the building.</p> "> Figure 14
<p>Thematic map of cracks and detachment of building materials depicted on the east façade of the building.</p> "> Figure 15
<p>Thematic map of cracks and detachment of building materials depicted on the south façade of the building.</p> "> Figure 16
<p>Wall structural element of the 1st construction phase incorporating stratigraphic information.</p> "> Figure 17
<p>HBIM of the historic building of Villa Klonaridi.</p> "> Figure 18
<p>Elements of cracks (all types) embedded within the HBIM of the building: (<b>a</b>) southeast of the historic building; (<b>b</b>) southwest of the historic building.</p> "> Figure 19
<p>Selection of lime-clay filling mortar in the structural element.</p> "> Figure 20
<p>Workflow indicating the proposed process towards HBIM creation and integration.</p> "> Figure 21
<p>Diagram illustrating the percentage of the length of each type of crack (m) for all facades of the building.</p> "> Figure 22
<p>Diagram illustrating the percentage of the area (m<sup>2</sup>) each type of crack possesses for all facades of the building.</p> "> Figure 23
<p>Comparative diagrams indicating the percentage of each façade of the building in regards to each type of crack.</p> "> Figure 24
<p>Volumetric diagram of the restoration filling material quantity in m<sup>3</sup> for each crack category.</p> "> Figure 25
<p>Diagram demonstrating the monitoring of a structure by incorporating multidisciplinary data in an ICT environment, as well as the multidisciplinary results that can derive from the implementation of the proposed methodology.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Historical and Architectural Archive
2.2. 3D Metric Survey
2.3. Building Materials’ Characterization
2.4. GIS Platform
2.5. HBIM Creation
3. Results
3.1. Geometric Documentation
3.2. Diagnostic Study Results
3.3. Multidisciplinary Documentation Data
3.4. GIS Thematic Mapping
3.5. HBIM Creation
3.6. Integration of HBIM with GIS Results
3.7. Process towards Integrated HBIM
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diara, F.; Rinaudo, F. Open Source HBIM for Cultural Heritage: A Project Proposal. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–2, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Banfi, F.; Previtali, M.; Stanga, C.; Brumana, R. A Layered-Web Interface based on HBIM and 360deg; Panoramas for Historical, Material and Geometric Analysis. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W9, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Moropoulou, A.; Skentou, A.D.; Apostolopoulou, M.; Mohebkhah, A.; Cavaleri, L.; Rodrigues, H.; Varum, H. Stochastic vulnerability assessment of masonry structures: Concepts, modeling and restoration Aspects. Appl. Sci. 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Fregonese, L.; Frigeri, A. Assessing the Seismic Vulnerability of a Historical Building. Eng. Struct. 2013, 57, 523–535. [Google Scholar] [CrossRef]
- Bitelli, G.; Balletti, C.; Brumana, R.; Barazzetti, L.; Previtali, M.; D’Urso, G.; Rinaudo, F.; Tucci, G. Metric Documentation of Cultural Heritage: Research directions from the Italian GAMHER Project. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Plevris, V. Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; IGI Global: Hershey, PA, USA, 2015; pp. 1–867. [Google Scholar]
- Chiabrando, F.; Di Lolli, A.; Patrucco, G.; Spanò, A.; Sammartano, G.; Teppati Losè, L. Multitemporal 3D Modelling for Cultural Heritage emergency during Seismic events: Damage assessment of S. Agostino church in Amatrice (RI). ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII–5/W1, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Douvika, M.G.; Apostolopoulou, M.; Moropoulou, A. Seismic and Restoration Assessment of Monumental Masonry Structures. Materials 2017, 10, 895. [Google Scholar] [CrossRef] [Green Version]
- Fregonese, L.; Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Frigeri, A.; Taffurelli, L. Surveying and Monitoring for Vulnerability Assessment of an Ancient Building. Sensors 2013, 13, 9747–9773. [Google Scholar] [CrossRef]
- Georgopoulos, A. Data Acquisition for the Geometric Documentation of Cultural Heritage. In Mixed Reality and Gamification for Cultural Heritage; Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 29–73. [Google Scholar] [CrossRef]
- Ioannidis, C.; Georgopoulos, A. Innovative Techniques for the Acquisition and Processing of Multisource Data for the Geometric Documentation of Monuments. Int. J. Arch. Comp. 2007, 5, 179–198. [Google Scholar] [CrossRef]
- Letellier, R.; Schmid, W.; LeBlanc, F. Guiding Principles Recording, Documentation, and Information Management for the Conservation of Heritage Places; J. Paul Getty Trust, Getty Conservation Institute: Los Angeles, USA, 2007; pp. 36–38. [Google Scholar]
- Salonia, P.; Negri, A. Historical buildings and their decay: Data recording, analyzing and transferring in an ITC environment.). ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2003, XXXIV–5/W12, 302–306. [Google Scholar]
- Meroño, J.E.; Perea, A.J.; Aguilera, M.J.; Laguna, A.M. Recognition of materials and damage on historical buildings using digital image classification. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guidi, G.; Remondino, F. 3D modeling from real data. In Modeling and Simulation in Engineering; Alexandru, C., Ed.; InTech Publisher: Rijeka, Croatia, 2012; pp. 69–102. ISBN 978-953-51-0012-6. [Google Scholar] [CrossRef] [Green Version]
- Kersten, T.P.; Lindstaedt, M. Image-based low-cost systems for automatic 3D recording and modelling of archaeological finds and objects. In EuroMed 2012: Progress in Cultural Heritage Preservation; Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R., Eds.; LNCS; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7616, pp. 1–10. [Google Scholar] [CrossRef]
- Remondino, F. Photogrammetry—Basic Theory. In 3D Recording and Modelling in Archaeology and Cultural Heritage—Theory and Best Practices; Remondino, F., Campana, S., Eds.; Archaeopress BAR Publication Series 2598; Gordon House: Oxford, UK, 2014; pp. 63–72. ISBN 9781407312309. [Google Scholar]
- Moropoulou, A.; Delegou, E.T.; Avdelidis, N.P.; Athanasiadou, A. Integrated diagnostics using advanced in situ measuring technology. In Proceedings of the 10th International Conference on Durability of Building Materials and Components, Lyon, France, 17–20 April 2005; pp. 1116–1123. [Google Scholar]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Non-Destructive Techniques as a tool for the protection of Built Cultural Heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Tsilimantou, E.; Keramidas, V.; Apostolopoulou, M.; Karoglou, M.; Tapinaki, S.; Ioannidis, C.; Georgopoulos, A.; Moropoulou, A. Multi-Sensor Documentation of metric and qualitative information of Historic Stone structures. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Delegou, E.T.; Tsilimantou, E.; Oikonomopoulou, E.; Sayas, J.; Ioannidis, C.; Moropoulou, A. Mapping of building materials and consevation interventions using GIS: The case of Sarantapicho Acropolis and Erimokastro Acropolis in Rhodes. Int. J. Herit. Digit. Era 2013, 2, 631–653. [Google Scholar] [CrossRef]
- Günay, S. Geographical Information Systems as a tool for 3D visualization of lost Architectural Heritage. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W6, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Del Curto, D.; Garzulino, A.; Allegretti, F.; Mazza, S. GIS or BIM? A comparison applied to the conservation management plan of a 20th century architectural Heritage. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Saygi, G.; Agugiaro, G.; Hamamcıoğlu-Turan, M.; Remondino, F. Evaluation of GIS and BIM roles for the Information Management of Historical Buildings. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W1, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Baik, A.; Yaagoubi, R.; Boehm, J. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Dore, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for Recording and Managing Cultural Heritage Sites. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 369–376. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, S.; Delinasiou, A.; Stylianidis, E. Building Information Modelling for cultural heritage: A review. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-5/W3, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modelling (BIM) for existing buildings—Literature review and future needs. J. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- De Luca, L.; Véron, P.; Florenzano, M. A generic formalism for the semantic modeling and representation of architectural elements. Vis. Comput. 2007, 23, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, I. Integrating Digital Technologies in support of historic Building Information Modelling: Bim4conservation (HBIM); A COTAC BIM4Conservation (HBIM) Report; The Building Crafts College: London, UK, 2014; pp. 1–50. [Google Scholar]
- Quattrini, R.; Malinverni, E.S.; Clini, P.; Nespeca, R.; Orlietti, E. From TLS to HBIM. High quality semantically—Aware 3D modeling of complex architecture. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, C.; Nicastro, S. The definition of the Level of Reliability: A contribution to the transparency of Historical-BIM processes. Dienne 2018, 2, 46–60. [Google Scholar]
- Attenni, M.; Bianchini, C.; Ippolito, A. HBIM: An information model for historical building. In Reflections: The art of drawing/ the drawing of art. In Proceedings of the 41° Convegno UID, Perugia, Italy, 19–21 September 2019; pp. 285–296. [Google Scholar]
- Albano, R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019, 9, 4674. [Google Scholar] [CrossRef] [Green Version]
- Macher, H.; Landes, T.; Grussenmeyer, P. From Point Clouds to Building Information Models: 3D Semi-Automatic Reconstruction of Indoors of Existing Buildings. Appl. Sci. 2017, 7, 1030. [Google Scholar] [CrossRef] [Green Version]
- Garagnani, S.; Manferdini, A.M. Parametric accuracy: Building information modeling process applied to the cultural heritage preservation. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2013, XL-5/W1, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Brumana, R.; Oreni, D.; Raimondi, A.; Georgopoulos, A.; Bregianni, A. From survey to HBIM for documentation, dissemination and management of built heritage: The case study of St. In Maria in Scaria d’Intelvi. In Proceedings of the Digital Heritage 2013—Federating the 19th Int’l VSMM, 10th Eurographics GCH, and 2nd UNESCO Memory of the World Conferences, Plus Special Sessions from CAA, Marseille, France, 28 October–1 November 2013; pp. 497–504. [Google Scholar]
- Utica, G.; Pinti, V.; Guzzoni, L.; Bonelli, S.; Brizzolari, A. Integrating Laser Scanner and BIM for conservation and reuse: ‘the Lyric Theatre of Milan’. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-5/W1, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Chiabrando, F.; Turco, M.L.; Rinaudo, F. Modeling the decay in an HBIM starting from 3D point clouds. A followed approach for Cultural Heritage Knowledge. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Oreni, D.; Brumana, R.; Della Torre, S.; Banfi, F.; Previtali, M. Survey turned into HBIM: The restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L’Aquila). ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-5, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Osello, A.; Rinaudo, F. Cultural heritage management tools: The role of GIS and BIM. In 3D Recording, Documentation and Management in Cultural Heritage; Stylianidis, E., Remondino, F., Eds.; Whittles Publishing: Dunbeath, UK, 2016; pp. 105–124. [Google Scholar]
- Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751. [Google Scholar] [CrossRef] [Green Version]
- Tsilimantou, E.; Delegou, T.E.; Ioannidis, C.; Moropoulou, A. Geoinformation techniques for the 3D visualisation of historic buildings and representation of a building’s pathology. In Proceedings of the SPIE 9688, Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos, Cyprus, 12 August 2016; p. 968810. [Google Scholar] [CrossRef]
- Danihl, M. The Restoration of the Klonaridis Villa; Library of Technical Chamber of Greece, Archives: Athens, Greece, 2012; Available online: http://library.tee.gr/digital/m2616/m2616_daniil.pdf (accessed on 11 April 2019).
- Tsilimantou, E.; Delegou, E.T.; Labropoulos, K.; Karoglou, M.; Bourbos, E.; Moropoulou, A. Multisensor Fusion of NDTs with Geometric Documentation for the Assessment of Historic Buildings Preservation State. In Proceedings of the International Symposium on Structural Health Monitoring and Nondestructive Testing, Saarbrücken, Germany, 4–5 October 2018; p. 8. [Google Scholar]
- Žarnić, R.; Rajčić, V.; Skordaki, N. A Contribution to the Built Heritage Environmental Impact Assessment. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-5/W3, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Kioussi, A.; Karoglou, M.; Labropoulos, K.; Bakolas, A.; Moropoulou, A. Integrated Documentation Protocols Enabling Decision Making in Cultural Heritage Protection. J. Cult. Her. 2013, 14, 141–146. [Google Scholar] [CrossRef]
- Di Giulio, R.; Maietti, F.; Piaia, E.; Medici, M.; Ferrari, F.; Turillazzi, B. Integrated Data Capturing requirements for 3D Semantic Modelling of Cultural Heritage: The INCEPTION protocol. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Tsilimantou, E.; Nikitakos, I.A.; Delegou, E.T.; Soile, S.; Tapinaki, S.; Ioannidis, C.; Moropoulou, A. GIS modelling for integrated documentation of the historic building of Villa Klonaridi in Athens. In Proceedings of the 6th International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Athens, Greece, 22–25 October 2013; Volume I, pp. 217–223. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. 2020, 10, 1078. https://doi.org/10.3390/app10031078
Tsilimantou E, Delegou ET, Nikitakos IA, Ioannidis C, Moropoulou A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Applied Sciences. 2020; 10(3):1078. https://doi.org/10.3390/app10031078
Chicago/Turabian StyleTsilimantou, Elisavet, Ekaterini T. Delegou, Ioannis A. Nikitakos, Charalabos Ioannidis, and Antonia Moropoulou. 2020. "GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings" Applied Sciences 10, no. 3: 1078. https://doi.org/10.3390/app10031078
APA StyleTsilimantou, E., Delegou, E. T., Nikitakos, I. A., Ioannidis, C., & Moropoulou, A. (2020). GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Applied Sciences, 10(3), 1078. https://doi.org/10.3390/app10031078